Lower crustal hydrothermal circulation at slow-spreading ridges: evidence from chlorine in Arctic and South Atlantic basalt glasses and melt inclusions

  • Froukje M. van der ZwanEmail author
  • Colin W. Devey
  • Thor H. Hansteen
  • Renat R. Almeev
  • Nico Augustin
  • Matthias Frische
  • Karsten M. Haase
  • Ali Basaham
  • Jonathan E. Snow
Original Paper


Hydrothermal circulation at slow-spreading ridges is important for cooling the newly formed lithosphere, but the depth to which it occurs is uncertain. Magmas which stagnate and partially crystallize during their rise from the mantle provide a means to constrain the depth of circulation because assimilation of hydrothermal fluids or hydrothermally altered country rock will raise their chlorine (Cl) contents. Here we present Cl concentrations in combination with chemical thermobarometry data on glassy basaltic rocks and melt inclusions from the Southern Mid-Atlantic Ridge (SMAR; ~ 3 cm year−1 full spreading rate) and the Gakkel Ridge (max. 1.5 cm year−1 full spreading rate) in order to define the depth and extent of chlorine contamination. Basaltic glasses show Cl-contents ranging from ca. 50–430 ppm and ca. 40–700 ppm for the SMAR and Gakkel Ridge, respectively, whereas SMAR melt inclusions contain between 20 and 460 ppm Cl. Compared to elements of similar mantle incompatibility (e.g. K, Nb), Cl-excess (Cl/Nb or Cl/K higher than normal mantle values) of up to 250 ppm in glasses and melt inclusions are found in 75% of the samples from both ridges. Cl-excess is interpreted to indicate assimilation of hydrothermal brines (as opposed to bulk altered rock or seawater) based on the large range of Cl/K ratios in samples showing a limited spread in H2O contents. Resorption and disequilibrium textures of olivine, plagioclase and clinopyroxene phenocrysts and an abundance of xenocrysts and gabbroic fragments in the SMAR lavas suggest multiple generations of crystallization and assimilation of hydrothermally altered rocks that contain these brines. Calculated pressures of last equilibration based on the major element compositions of melts cannot provide reliable estimates of the depths at which this crystallization/assimilation occurred as the assimilation negates the assumption of crystallization under equilibrium conditions implicit in such calculations. Clinopyroxene–melt thermobarometry on rare clinopyroxene phenocrysts present in the SMAR magmas yield lower crustal crystallization/assimilation depths (10–13 km in the segment containing clinopyroxene). The Cl-excesses in SMAR melt inclusions indicate that assimilation occurred before crystallization, while also homogeneous Cl in melts from Gakkel Ridge indicate Cl addition during magma chamber processes. Combined, these observations imply that hydrothermal circulation reaches the lower crust at slow-spreading ridges, and thereby promotes cooling of the lower crust. The generally lower Cl-excess at slow-spreading ridges (compared to fast-spreading ridges) is probably related to them having few if any permanent magma chambers. Magmas therefore do not fractionate as extensively in the crust, providing less heat for assimilation (on average, slow-spreading ridge magmas have higher Mg#), and hydrothermal systems are ephemeral, leading to lower total degrees of crustal alteration and more variation in the amount of Cl contamination. Hydrothermal plumes and vent fields have samples in close vicinity that display Cl-excess, mostly of > 25 ppm, which thus can aid as a guide for the exploration of (active or extinct) hydrothermal vent fields on the axis.


Hydrothermal circulation (Ultra)slow-spreading ridges Crystallization depths Crustal assimilation MORB Chlorine 



We are very grateful to Mario Thöner for the extensive technical assistance at the EMP and to Dagmar Rau for the technical assistance at the LA-ICP-MS. Further, we like to thank Jan Fietzke (all GEOMAR) for the help with the modification of the Cl measurement method for the melt inclusions. The suggestion of three anonymous reviewers and editorial handling by Jochen Hoefs was greatly appreciated. We acknowledge generous financial support from the Jeddah Transect Project between King Abdulaziz University and Helmholtz-Center for Ocean Research GEOMAR that was funded by King Abdulaziz University (KAU) Jeddah, Saudi Arabia, under Grant no. (T-065/430).

Supplementary material

410_2017_1418_MOESM1_ESM.xlsx (12 kb)
Supplementary material 1 (XLSX 11 kb)
410_2017_1418_MOESM2_ESM.pdf (247 kb)
Supplementary material 2 (PDF 247 kb)
410_2017_1418_MOESM3_ESM.pdf (207 kb)
Supplementary material 3 (PDF 206 kb)
410_2017_1418_MOESM4_ESM.pdf (84 kb)
Supplementary material 4 (PDF 84 kb)
410_2017_1418_MOESM5_ESM.pdf (112 kb)
Supplementary material 5 (PDF 112 kb)
410_2017_1418_MOESM6_ESM.pdf (328 kb)
Supplementary material 6 (PDF 327 kb)
410_2017_1418_MOESM7_ESM.pdf (99 kb)
Supplementary material 7 (PDF 99 kb)


  1. Almeev RR, Holtz F, Koepke J, Ariskin AA (2007a) The effect of minor H2O content on crystallisation in MORB: experiments, model, applications. In: Goldschmidt 2007 abstracts Geochim Cosmochim Acta vol 71 (15S1). p A15Google Scholar
  2. Almeev RR, Holtz F, Koepke J, Parat F, Botcharnikov RE (2007b) The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa. Am Miner 92(4):670–674CrossRefGoogle Scholar
  3. Almeev R, Holtz F, Koepke J, Haase K, Devey C (2008) Depths of partial crystallization of H2O-bearing MORB: phase equilibria simulations of basalts at the MAR near Ascension Island (7–11 S). J Petrol 49(1):25–45CrossRefGoogle Scholar
  4. Almeev RR, Holtz F, Koepke J, Parat F (2012) Experimental calibration of the effect of H2O on plagioclase crystallization in basaltic melt at 200 MPa. Am Miner 97(7):1234–1240CrossRefGoogle Scholar
  5. Alt JC, Bach W (2006) Oxygen isotope composition of a section of lower oceanic crust, ODP hole 735B. Geochem Geophys Geosyst 7(12):Q12008. CrossRefGoogle Scholar
  6. Alt JC, Teagle DA (2003) Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801. Chem Geol 201(3):191–211CrossRefGoogle Scholar
  7. Alt JC, Honnorez J, Laverne C, Emmermann R (1986) Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: mineralogy, chemistry and evolution of seawater–basalt interactions. J Geophys Res Solid Earth 91(B10):10309–10335CrossRefGoogle Scholar
  8. Anderson MO, Chadwick WW, Hannington MD, Merle SG, Resing JA, Baker ET, Butterfield DA, Walker SL, Augustin N (2017) Geological interpretation of volcanism and segmentation of the Mariana back-are spreading center between 12.7°N and 18.3°N. Geochem Geophys Geosyst 18(6):2240–2274CrossRefGoogle Scholar
  9. Ariskin AA, Barmina GS (2004) COMAGMAT: development of a magma crystallization model and its petrological applications. Geochem Int 42(1):S1–S157Google Scholar
  10. Augustin N, Lackschewitz K, Kuhn T, Devey CW (2008) Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15 N). Mar Geol 256(1):18–29CrossRefGoogle Scholar
  11. Bach W, Peucker-Ehrenbrink B, Hart SR, Blusztajn JS (2003) Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B–Implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochem Geophys Geosyst 4(3).
  12. Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M (2004) Seawater–peridotite interactions: First insights from ODP Leg 209, MAR 15 N. Geochem Geophys Geosyst 5(9).
  13. Baker ET, Edmonds HN, Michael PJ, Bach W, Dick HJB, Snow JE, Walker SL, Banerjee NR, Langmuir CH (2004) Hydrothermal venting in magma deserts: the ultraslow-spreading Gakkel and Southwest Indian ridges. Geochem Geophys Geosyst 5(8):Q08002. CrossRefGoogle Scholar
  14. Barnes JD, Cisneros M (2012) Mineralogical control on the chlorine isotope composition of altered oceanic crust. Chem Geol 326–327:51–60. CrossRefGoogle Scholar
  15. Bédard JH (1991) Cumulate recycling and crustal evolution in the Bay of Islands ophiolite. J Geol 2:225–249CrossRefGoogle Scholar
  16. Bédard JH, Hébert R (1996) The lower crust of the Bay of Islands ophiolite, Canada: petrology, mineralogy, and the importance of syntexis in magmatic differentiation in ophiolites and at ocean ridges. J Geophys Res Solid Earth 101(B11):25105–25124. CrossRefGoogle Scholar
  17. Bédard JH, Hebert R, Berclaz A, Varfalvy V (2000) Syntexis and the genesis of lower oceanic crust. In: Dilek Y (ed) Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program. Geological Society of America, pp 105–120Google Scholar
  18. Behrens H, Misiti V, Freda C, Vetere F, Botcharnikov RE, Scarlato P (2009) Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa. Am Miner 94(1):105–120CrossRefGoogle Scholar
  19. Berndt ME, Seyfried WE Jr (1990) Boron, bromine, and other trace elements as clues to the fate of chlorine in mid-ocean ridge vent fluids. Geochim Cosmochim Acta 54(8):2235–2245. CrossRefGoogle Scholar
  20. Berry AJ, O’Neill HStC, Rowe MC, Moselmans JFW, Rivard C (2017) The oxidation state of iron in basaltic glasses. In: Goldschmidt 2017 abstracts. Nr 327Google Scholar
  21. Bézos A, Humler E (2005) The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69(3):711–725CrossRefGoogle Scholar
  22. Bischoff JL, Rosenbauer RJ (1987) Phase separation in seafloor geothermal systems; an experimental study of the effects on metal transport. Am J Sci 287(10):953–978CrossRefGoogle Scholar
  23. Bruguier N, Minshull T, Brozena J (2003) Morphology and tectonics of the Mid-Atlantic Ridge, 7°–12°S. J Geophys Res Solid Earth 108(B2)Google Scholar
  24. Cannat M (1996) How thick is the magmatic crust at slow spreading oceanic ridges? J Geophys Res Solid Earth 101(B2):2847–2857CrossRefGoogle Scholar
  25. Cannat M, Mével C, Stakes D (1991) Stretching of the deep crust at the slow-spreading Southwest Indian ridge. Tectonophysics 190(1):73–94. CrossRefGoogle Scholar
  26. Cannat M, Sauter D, Mendel V, Ruellan E, Okino K, Escartin J, Combier V, Baala M (2006) Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 34(7):605–608CrossRefGoogle Scholar
  27. Cherkaoui AS, Wilcock WS, Dunn RA, Toomey DR (2003) A numerical model of hydrothermal cooling and crustal accretion at a fast spreading mid-ocean ridge. Geochem Geophys Geosyst 4(9):8616CrossRefGoogle Scholar
  28. Coakley BJ, Cochran JR (1998) Gravity evidence of very thin crust at the Gakkel Ridge (Arctic Ocean). Earth Planet Sci Lett 162(1):81–95CrossRefGoogle Scholar
  29. Coogan LA (2003) Contaminating the lower crust in the Oman ophiolite. Geology 31(12):1065–1068. CrossRefGoogle Scholar
  30. Coogan LA, Saunders AD, Kempton PD, Norry MJ (2000) Evidence from oceanic gabbros for porous melt migration within a crystal mush beneath the Mid-Atlantic Ridge. Geochem Geophys Geosyst 1(9):1044. CrossRefGoogle Scholar
  31. Coogan LA, Mitchell NC, O’Hara MJ (2003) Roof assimilation at fast spreading ridges: an investigation combining geophysical, geochemical, and field evidence. J Geophys Res Solid Earth 108(B1):ECV2-1–ECV2-14CrossRefGoogle Scholar
  32. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181(1):1–80CrossRefGoogle Scholar
  33. Detrick RS, Mutter JC, Buhl P, Kim II (1990) No evidence from multichannel reflection data for a crustal magma chamber in the MARK area on the Mid-Atlantic Ridge. Nature 347(6288):61–64CrossRefGoogle Scholar
  34. Devey CW, Lackschewitz KS, Baker E (2005) Hydrothermal and volcanic activity found on the Southern Mid-Atlantic Ridge. EOS Trans Am Geophys Union 86(22):209–212. CrossRefGoogle Scholar
  35. Devey CW, German C, Haase K, Lackschewitz K, Melchert B, Connelly D (2010) The relationships between volcanism, tectonism, and hydrothermal activity on the southern equatorial Mid-Atlantic Ridge. In: Rona PA, Devey CW, Dyment J, Murton BJ (eds) Diversity of hydrothermal systems on slow spreading ocean ridges, pp 133–152Google Scholar
  36. Dick HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu Y-L, Robinson PT, Snow J, Stephen RA, Trimby PW, Worm H-U, Yoshinobu A (2000) A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian ridge. Earth Planet Sci Lett 179(1):31–51. CrossRefGoogle Scholar
  37. Dick H, Ozawa K, Meyer P, Niu Y, Robinson P, Constantin M, Hebert R, Maeda J, Natland J, Hirth G (2002) Primary silicate mineral chemistry of a 1.5-km section of very slow spreading lower ocean crust: ODP Hole 735B, Southwest Indian ridge. Proc Ocean Drill Program Sci Results 176:1–61Google Scholar
  38. Dick HJB, Lin J, Schouten H (2003) An ultraslow-spreading class of ocean ridge. Nature 426(6965):405–412CrossRefGoogle Scholar
  39. Drouin M, Godard M, Ildefonse B, Bruguier O, Garrido CJ (2009) Geochemical and petrographic evidence for magmatic impregnation in the oceanic lithosphere at Atlantis Massif, Mid-Atlantic Ridge (IODP Hole U1309D, 30°N). Chem Geol 264(1–4):71–88. CrossRefGoogle Scholar
  40. Dunn RA, Toomey DR, Solomon SC (2000) Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30′N. J Geophys Res Solid Earth 105(B10):23537–23555CrossRefGoogle Scholar
  41. Edmonds HN, Michael PJ, Baker ET, Connelly DP, Snow JE, Langmuir CH, Dick HJB, Muhe R, German CR, Graham DW (2003) Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel Ridge in the Arctic Ocean. Nature 421(6920):252–256.
  42. Elkins L, Sims K, Prytulak J, Blichert-Toft J, Elliott T, Blusztajn J, Fretzdorff S, Reagan M, Haase K, Humphris S (2014) Melt generation beneath Arctic ridges: implications from U decay series disequilibria in the Mohns, Knipovich, and Gakkel Ridges. Geochim Cosmochim Acta 127:140–170CrossRefGoogle Scholar
  43. Engdahl ER, van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88(3):722–743Google Scholar
  44. Erdmann M, France L, Fischer LA, Deloule E, Koepke J (2017) Trace elements in anatectic products at the roof of mid-ocean ridge magma chambers: an experimental study. Chem Geol 456:43–57. CrossRefGoogle Scholar
  45. Expedition Scientific Party (2005) Oceanic core complex formation, Atlantis Massif, Mid-Atlantic Ridge: drilling into the footwall and hanging wall of a tectonic exposure of deep, young oceanic lithosphere to study deformation, alteration, and melt generation. IODP Prelim Rep. Google Scholar
  46. Fietzke J, Frische M (2016) Experimental evaluation of elemental behavior during LA-ICP-MS: influences of plasma conditions and limits of plasma robustness. J Anal At Spectrom. 31(1):234–244. CrossRefGoogle Scholar
  47. Fietzke J, Liebetrau V, Günther D, Gürs K, Hametner K, Zumholz K, Hansteen T, Eisenhauer A (2008) An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates. J Anal At Spectrom 23(7):955–961CrossRefGoogle Scholar
  48. Fischer LA, Erdmann M, France L, Wolff PE, Deloule E, Zhang C, Godard M, Koepke J (2016) Trace element evidence for anatexis at oceanic magma chamber roofs and the role of partial melts for contamination of fresh MORB. Lithos 260:1–8. CrossRefGoogle Scholar
  49. Fouquet Y (1997) Where are the large hydrothermal sulphide deposits in the oceans? Philos Trans R Soc Math Phys Eng Sci 355(1723):427–441CrossRefGoogle Scholar
  50. Fournier R (1987) Conceptual models of brine evolution in magmatic-hydrothermal systems. US Geol Surv Prof Pap 1350(2):1487–1506Google Scholar
  51. France L, Ildefonse B, Koepke J (2009) Interactions between magma and hydrothermal system in Oman ophiolite and in IODP Hole 1256D: Fossilization of a dynamic melt lens at fast spreading ridges. Geochem Geophys Geosyst 10(10).
  52. France L, Koepke J, Ildefonse B, Cichy SB, Deschamps F (2010) Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contrib Miner Petrol 160(5):683–704CrossRefGoogle Scholar
  53. France L, Koepke J, MacLeod CJ, Ildefonse B, Godard M, Deloule E (2014) Contamination of MORB by anatexis of magma chamber roof rocks: constraints from a geochemical study of experimental melts and associated residues. Lithos 202–203:120–137. CrossRefGoogle Scholar
  54. German C, Connelly D, Evans A, Parson L (2002) Hydrothermal activity on the southern Mid-Atlantic Ridge. In: AGU Fall Meeting Abstracts, vol 1. p 1361Google Scholar
  55. Gillis KM, Thompson G, Kelley DS (1993) A view of the lower crustal component of hydrothermal systems at the Mid-Atlantic Ridge. J Geophys Res Solid Earth 98(B11):19597–19619. CrossRefGoogle Scholar
  56. Gillis KM, Coogan LA, Chaussidon M (2003) Volatile element (B, Cl, F) behaviour in the roof of an axial magma chamber from the East Pacific Rise. Earth Planet Sci Lett 213(3–4):447–462. CrossRefGoogle Scholar
  57. Godard M, Awaji S, Hansen H, Hellebrand E, Brunelli D, Johnson K, Yamasaki T, Maeda J, Abratis M, Christie D, Kato Y, Mariet C, Rosner M (2009) Geochemistry of a long in situ section of intrusive slow-spread oceanic lithosphere: results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-ridge). Earth Planet Sci Lett 279(1–2):110–122. CrossRefGoogle Scholar
  58. Goldstein SL, Soffer G, Langmuir CH, Lehnert KA, Graham DW, Michael PJ (2008) Origin of a `Southern Hemisphere’ geochemical signature in the Arctic upper mantle. Nature 453(7191):89–93.
  59. Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res Solid Earth 86(B4):2737–2755CrossRefGoogle Scholar
  60. Grevemeyer I, Reston TJ, Moeller S (2013) Microseismicity of the Mid-Atlantic Ridge at 7°S–8°15′S and at the Logatchev Massif oceanic core complex at 14°40′N–14°50′N. Geochem Geophys Geosyst 14(9):3532–3554CrossRefGoogle Scholar
  61. Grimes CB, John BE, Cheadle MJ, Wooden JL (2008) Protracted construction of gabbroic crust at a slow spreading ridge: constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole U1309D (30 N, MAR). Geochem Geophys Geosyst 9(8).
  62. Haase K, Brandl PA, Devey CW, Hauff F, Melchert B, Garbe-Schönberg D, Kokfelt T, Paulick H (2016) Compositional variation and 226Ra-230Th model ages of axial lavas from the southern Mid-Atlantic Ridge, 8°48′S. Geochem Geophys Geosyst 17(1):199–218CrossRefGoogle Scholar
  63. Harper GD (1985) Tectonics of slow spreading mid-ocean ridges and consequences of a variable depth to the brittle/ductile transition. Tectonics 4(4):395–409. CrossRefGoogle Scholar
  64. Hart S, Erlank A, Kable E (1974) Sea floor basalt alteration: some chemical and Sr isotopic effects. Contrib Miner Petrol 44(3):219–230CrossRefGoogle Scholar
  65. Hasenclever J, Theissen-Krah S, Rüpke LH, Morgan JP, Iyer K, Petersen S, Devey CW (2014) Hybrid on-axis plus ridge-perpendicular circulation reconciles hydrothermal flow observations at fast spreading ridges. Nature 508:508–512CrossRefGoogle Scholar
  66. Hoernle K, Hauff F, Kokfelt TF, Haase K, Garbe-Schönberg D, Werner R (2011) On- and off-axis chemical heterogeneities along the South Atlantic Mid-Ocean-ridge (5–11°S): shallow or deep recycling of ocean crust and/or intraplate volcanism? Earth Planet Sci Lett 306(1–2):86–97. CrossRefGoogle Scholar
  67. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90(3):297–314CrossRefGoogle Scholar
  68. Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79(1–2):33–45. CrossRefGoogle Scholar
  69. International Seismological Centre (2011) On-line bulletin. International Seismological Centre. Accessed 19 Dec 2012
  70. Ito E, Harris DM, Anderson AT Jr (1983) Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim Cosmochim Acta 47(9):1613–1624. CrossRefGoogle Scholar
  71. Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4(1):43–47. CrossRefGoogle Scholar
  72. Jenner FE, O’Neill HSC (2012) Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem Geophys Geosyst 13(2):Q02005CrossRefGoogle Scholar
  73. Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7(2).
  74. Jokat W, Ritzmann O, Schmidt-Aursch MC, Drachev S, Gauger S, Snow J (2003) Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature 423(6943):962–965.
  75. Kawahata H, Nohara M, Ishizuka H, Hasebe S, Chiba H (2001) Sr isotope geochemistry and hydrothermal alteration of the Oman ophiolite. J Geophys Res Solid Earth 106(B6):11083–11099. CrossRefGoogle Scholar
  76. Kelemen PB, Aharonov E (1998) Periodic formation of magma fractures and generation of layered gabbros in the lower crust beneath oceanic spreading ridges. In: Buck WR, Delaney PT, Karson JA, Lagabrielle Y (eds) Faulting and magmatism at Mid-Ocean ridges. American Geophysical Union, pp 267–289Google Scholar
  77. Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375(6534):747–753CrossRefGoogle Scholar
  78. Kelemen PB, Koga K, Shimizu N (1997) Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth Planet Sci Lett 146(3–4):475–488. CrossRefGoogle Scholar
  79. Kendrick MA, Arculus R, Burnard P, Honda M (2013) Quantifying brine assimilation by submarine magmas: examples from the Galápagos Spreading Centre and Lau Basin. Geochim Cosmochim Acta 123:150–165. CrossRefGoogle Scholar
  80. Kendrick MA, Hemond C, Kamenetsky VS, Danyushevsky L, Devey CW, Rodemann T, Jackson MG, Perfit MR (2017) Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere. Nat Geosci 10:222–228. CrossRefGoogle Scholar
  81. Kent AJR, Norman MD, Hutcheon ID, Stolper EM (1999) Assimilation of seawater-derived components in an oceanic volcano: evidence from matrix glasses and glass inclusions from Loihi seamount, Hawaii. Chem Geol 156(1–4):299–319. CrossRefGoogle Scholar
  82. Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res Solid Earth 92(B8):8089–8115. CrossRefGoogle Scholar
  83. Klügel A (1998) Reactions between mantle xenoliths and host magma beneath La Palma (Canary Islands): constraints on magma ascent rates and crustal reservoirs. Contrib Miner Petrol 131(2–3):237–257Google Scholar
  84. Kovalenko VI, Naumov VB, Girnis AV, Dorofeeva VA, Yarmolyuk VV (2006) Estimation of the average contents of H2O, Cl, F, and S in the depleted mantle on the basis of the compositions of melt inclusions and quenched glasses of mid-ocean ridge basalts. Geochem Int 44(3):209–231. CrossRefGoogle Scholar
  85. Kvassnes AS, Grove T (2008) How partial melts of mafic lower crust affect ascending magmas at oceanic ridges. Contrib Miner Petrol 156(1):49–71. CrossRefGoogle Scholar
  86. Labidi J, Cartigny P, Hamelin C, Moreira M, Dosso L (2014) Sulfur isotope budget (32S, 33S, 34S and 36S) in Pacific-Antarctic ridge basalts: a record of mantle source heterogeneity and hydrothermal sulfide assimilation. Geochim Cosmochim Acta 133:47–67. CrossRefGoogle Scholar
  87. le Roux PJ, Shirey SB, Hauri EH, Perfit MR, Bender JF (2006) The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth Planet Sci Lett 251(3–4):209–231. Google Scholar
  88. Lecuyer C, Reynard B (1996) High-temperature alteration of oceanic gabbros by seawater (Hess Deep, Ocean Drilling Program Leg 147): evidence from oxygen isotopes and elemental fluxes. J Geophys Res Solid Earth 101(B7):15883–15897. CrossRefGoogle Scholar
  89. Lehnert K, Su Y, Langmuir C, Sarbas B, Nohl U (2000) A global geochemical database structure for rocks. Geochem Geophys Geosyst 1(5):1012. CrossRefGoogle Scholar
  90. Lissenberg CJ, Dick HJB (2008) Melt–rock reaction in the lower oceanic crust and its implications for the genesis of mid-ocean ridge basalt. Earth Planet Sci Lett 271(1–4):311–325. CrossRefGoogle Scholar
  91. Lissenberg CJ, Bédard JH, van Staal CR (2004) The structure and geochemistry of the gabbro zone of the Annieopsquotch ophiolite, newfoundland: implications for lower crustal accretion at spreading ridges. Earth Planet Sci Lett 229(1–2):105–123. CrossRefGoogle Scholar
  92. Lissenberg CJ, Rioux M, Shimizu N, Bowring SA, Mével C (2009) Zircon dating of oceanic crustal accretion. Science 323(5917):1048–1050. CrossRefGoogle Scholar
  93. Maclennan J, Hulme T, Singh SC (2005) Cooling of the lower oceanic crust. Geology 33(5):357–366. CrossRefGoogle Scholar
  94. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253. CrossRefGoogle Scholar
  95. Melchert B, Devey CW, German C, Lackschewitz K, Seifert R, Walter M, Mertens C, Yoerger D, Baker E, Paulick H (2008) First evidence for high-temperature off-axis venting of deep crustal/mantle heat: the Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth Planet Sci Lett 275(1):61–69CrossRefGoogle Scholar
  96. Mével C, Cannat M (1991) Lithospheric stretching and hydrothermal processes in oceanic gabbros from slow-spreading ridges. In: Peters TJ, Nicolas A, Coleman R (eds) Ophiolite genesis and evolution of the oceanic lithosphere. Springer, pp 293–312Google Scholar
  97. Meyer P, Dick HB, Thompson G (1989) Cumulate gabbros from the Southwest Indian ridge, 54°S–7°16′E: implications for magmatic processes at a slow spreading ridge. Contrib Miner Petrol 103(1):44–63. CrossRefGoogle Scholar
  98. Michael P (1995) Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O. Earth Planet Sci Lett 131(3–4):301–320. CrossRefGoogle Scholar
  99. Michael PJ, Cornell WC (1998) Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J Geophys Res 103(B8):18325–18356. CrossRefGoogle Scholar
  100. Michael PJ, Graham DW (2015) The behavior and concentration of CO2 in the suboceanic mantle: inferences from undegassed ocean ridge and ocean island basalts. Lithos 236–237:338–351. CrossRefGoogle Scholar
  101. Morgan JP, Chen YJ (1993) The genesis of oceanic crust: Magma injection, hydrothermal circulation, and crustal flow. J Geophys Res Solid Earth 98(B4):6283–6297CrossRefGoogle Scholar
  102. Michael PJ, Schilling J-G (1989) Chlorine in mid-ocean ridge magmas: evidence for assimilation of seawater-influenced components. Geochim Cosmochim Acta 53(12):3131–3143. CrossRefGoogle Scholar
  103. Michael P, Langmuir C, Dick H, Snow J, Goldstein S, Graham D, Lehnert K, Kurras G, Jokat W, Mühe R (2003) Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel Ridge, Arctic Ocean. Nature 423(6943):956–961CrossRefGoogle Scholar
  104. Minshull T, Bruguier N, Brozena J (1998) ridge-plume interactions or mantle heterogeneity near Ascension Island? Geology 26(2):115–118CrossRefGoogle Scholar
  105. Wise SA, Watters RL (2012) Certificate of Analysis, Standard Reference Material 610. National Institute of Standards and Technology.
  106. Möller H (2002) Magma Genesis and Mantle Source at the Mid-Atlantic Ridge East of Ascension Island. Dissertation at Christian-Albrechts-Univeristät zu KielGoogle Scholar
  107. Montési LG, Behn MD (2007) Mantle flow and melting underneath oblique and ultraslow Mid-Ocean ridges. Geophys Res Lett 34(24).
  108. Mottl M (2003) Partitioning of energy and mass fluxes between mid-ocean ridge axes and flanks at high and low temperature. In: Halbach P, Tunnicliffe V, Hein JR (eds) Energy and mass transfer in marine hydrothermal systems. Dahlem University Press, Berlin, pp 271–286Google Scholar
  109. Nehlig P, Juteau T (1988) Flow porosities, permeabilities and preliminary data on fluid inclusions and fossil thermal gradients in the crustal sequence of the Sumail ophiolite (Oman). Tectonophysics 151(1–4):199–221. CrossRefGoogle Scholar
  110. Nicolas A, Mainprice D, Boudier F (2003) High-temperature seawater circulation throughout crust of oceanic ridges: a model derived from the Oman ophiolites. J Geophys Res Solid Earth 108(B8):2371. CrossRefGoogle Scholar
  111. Niu Y, Hekinian R (1997) Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385:326–329CrossRefGoogle Scholar
  112. Palme H, O’Neill HSC (2003) Cosmochemical estimates of mantle composition. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry, vol 2. Pergamon, Oxford, pp 1–38Google Scholar
  113. Paulick H, Münker C, Schuth S (2010) The influence of small-scale mantle heterogeneities on Mid-Ocean Ridge volcanism: evidence from the southern Mid-Atlantic Ridge (7 30′S to 11 30′S) and Ascension Island. Earth Planet Sci Lett 296(3–4):299–310. CrossRefGoogle Scholar
  114. Pontbriand CW, Soule SA, Sohn RA, Humphris SE, Kunz C, Singh H, Nakamura Ki, Jakobsson M, Shank T (2012) Effusive and explosive volcanism on the ultraslow-spreading Gakkel Ridge, 85°E. Geochem Geophys Geosyst 13(10).
  115. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Miner Geochem 69(1):61–120CrossRefGoogle Scholar
  116. Putirka K, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Miner Petrol 123(1):92–108CrossRefGoogle Scholar
  117. Reid I, Jackson H (1981) Oceanic spreading rate and crustal thickness. Mar Geophys Res 5(2):165–172Google Scholar
  118. Ridley WI, Perfit MR, Smith MC, Fornari DJ (2006) Magmatic processes in developing oceanic crust revealed in a cumulate xenolith collected at the East Pacific Rise, 9°50′N. Geochem Geophys Geosyst 7(12):Q12O04. CrossRefGoogle Scholar
  119. Roeder P, Emslie R (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29(4):275–289CrossRefGoogle Scholar
  120. Rubin KH, Sinton JM (2007) Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions. Earth Planet Sci Lett 260(1–2):257–276. CrossRefGoogle Scholar
  121. Rutherford MJ (2008) Magma ascent rates. Rev Miner Geochem 69(1):241–271CrossRefGoogle Scholar
  122. Ryabchikov ID (2001) Deep geospheres and ore genesis. Geol Rudn Mestorozhd 43:195–207Google Scholar
  123. Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour under saturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419(6906):451–455.
  124. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5):Q05B07
  125. Sanfilippo A, Tribuzio R, Tiepolo M (2014) Mantle–crust interactions in the oceanic lithosphere: constraints from minor and trace elements in olivine. Geochim Cosmochim Acta 141:423–439. CrossRefGoogle Scholar
  126. Sano T, Miyoshi M, Ingle S, Banerjee NR, Ishimoto M, Fukuoka T (2008) Boron and chlorine contents of upper oceanic crust: Basement samples from IODP Hole 1256D. Geochem Geophys Geosyst 9(12):Q12O15. CrossRefGoogle Scholar
  127. Sauter D, Cannat M, Rouméjon S, Andreani M, Birot D, Bronner A, Brunelli D, Carlut J, Delacour A, Guyader V (2013) Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nat Geosci 6(4):314CrossRefGoogle Scholar
  128. Schramm B, Devey CW, Gillis KM, Lackschewitz K (2005) Quantitative assessment of chemical and mineralogical changes due to progressive low-temperature alteration of East Pacific Rise basalts from 0 to 9 Ma. Chem Geol 218(3–4):281–313. CrossRefGoogle Scholar
  129. Shaw C, Klügel A (2002) The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel, Germany: the case for amphibole breakdown, lava infiltration and mineral-melt reaction. Miner Petrol 74(2–4):163–187CrossRefGoogle Scholar
  130. Shaw AM, Behn MD, Humphris SE, Sohn RA, Gregg PM (2010) Deep pooling of low degree melts and volatile fluxes at the 85 E segment of the Gakkel Ridge: evidence from olivine-hosted melt inclusions and glasses. Earth Planet Sci Lett 289(3):311–322CrossRefGoogle Scholar
  131. Shishkina T, Botcharnikov R, Holtz F, Almeev R, Portnyagin MV (2010) Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem Geol 277(1):115–125CrossRefGoogle Scholar
  132. Soule SA, Fornari DJ, Perfit MR, Ridley WI, Reed MH, Cann JR (2006) Incorporation of seawater into mid-ocean ridge lava flows during emplacement. Earth Planet Sci Lett 252(3–4):289–307. CrossRefGoogle Scholar
  133. Stakes D, Vanko DA (1986) Multistage hydrothermal alteration of gabbroic rocks from the failed Mathematician ridge. Earth Planet Sci Lett 79(1–2):75–92. CrossRefGoogle Scholar
  134. Stein CA, Stein S (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J Geophys Res Solid Earth 99(B2):3081–3095CrossRefGoogle Scholar
  135. Stolper E (1982) The speciation of water in silicate melts. Geochim Cosmochim Acta 46(12):2609–2620CrossRefGoogle Scholar
  136. Stroncik NA, Haase KM (2004) Chlorine in oceanic intraplate basalts: constraints on mantle sources and recycling processes. Geology 32(11):945–948. CrossRefGoogle Scholar
  137. Stroncik NA, Niedermann S (2016) Atmospheric contamination of the primary Ne and Ar signal in mid-ocean ridge basalts and its implications for ocean crust formation. Geochim Cosmochim Acta 172:306–321. CrossRefGoogle Scholar
  138. Sun WD, Binns RA, Fan AC, Kamenetsky VS, Wysoczanski R, Wei GJ, Hu YH, Arculus RJ (2007) Chlorine in submarine volcanic glasses from the eastern manus basin. Geochim Cosmochim Acta 71(6):1542–1552. CrossRefGoogle Scholar
  139. Urann BM, Le Roux V, Hammond K, Marschall HR, Lee C-TA, Monteleone BD (2017) Fluorine and chlorine in mantle minerals and the halogen budget of the Earth’s mantle. Contrib Miner Petrol 172(7):51. CrossRefGoogle Scholar
  140. van der Zwan FM, Fietzke J, Devey CW (2012) Precise measurement of low (< 100 ppm) chlorine concentrations in submarine basaltic glass by electron microprobe. J Anal At Spectrom 27:1966–1974CrossRefGoogle Scholar
  141. van der Zwan FM, Devey CW, Augustin N, Almeev RR, Bantan RA, Basaham A (2015) Hydrothermal activity at the ultraslow- to slow-spreading Red Sea Rift traced by chlorine in basalt. Chem Geol 405:63–81. CrossRefGoogle Scholar
  142. Vine F, Moores E (1972) A model for the gross structure, petrology, and magnetic properties of oceanic crust. Geol Soc Am Mem 132:195–206CrossRefGoogle Scholar
  143. Wanless V, Perfit M, Ridley W, Klein E (2010) Dacite petrogenesis on mid-ocean ridges: evidence for oceanic crustal melting and assimilation. J Petrol 51(12):2377–2410CrossRefGoogle Scholar
  144. Wanless V, Perfit M, Ridley W, Wallace P, Grimes C, Klein E (2011) Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: the role of assimilation at spreading centers. Chem Geol 287(1):54–65CrossRefGoogle Scholar
  145. Weaver SJ, Langmuir CH (1990) Calculation of phase equilibrium in mineral-melt systems. Comput Geosci 16(1):1–19CrossRefGoogle Scholar
  146. Yamashita S, Kitamura T, Kusakabe M (1997) Infrared spectroscopy of hydrous glasses of arc magma compositions. Geochem J Jpn 31:169–174CrossRefGoogle Scholar
  147. Zhang C, Wang L-X, Marks MAW, France L, Koepke J (2017) Volatiles (CO2, S, F, Cl, Br) in the dike-gabbro transition zone at IODP Hole 1256D: magmatic imprint versus hydrothermal influence at fast-spreading mid-ocean ridge. Chem Geol 459:43–60. CrossRefGoogle Scholar
  148. Zhao M, Canales JP, Sohn RA (2012) Three-dimensional seismic structure of a Mid-Atlantic Ridge segment characterized by active detachment faulting (Trans-Atlantic Geotraverse, 25°55′N–26°20′N). Geochem Geophys Geosyst 13(11).

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Geomar Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.Leibniz Universität Hannover, Institute of MineralogyHannoverGermany
  3. 3.GeoZentrum Nordbayern, Universität Erlangen-NürnbergErlangenGermany
  4. 4.Faculty of Marine ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  5. 5.Department of Earth and Atmospheric SciencesUniversity of HoustonHoustonUSA
  6. 6.Institute für Geowissenschaften, Christian-Albrechts-Universität KielKielGermany

Personalised recommendations