CO2 fluid inclusions in Jack Hills zircons

  • Martina MennekenEmail author
  • Thorsten Geisler
  • Alexander A. Nemchin
  • Martin J. Whitehouse
  • Simon A. Wilde
  • Biliana Gasharova
  • Robert T. Pidgeon
Original Paper


The discovery of Hadean to Paleoarchean zircons in a metaconglomerate from Jack Hills, Western Australia, has catalyzed intensive study of these zircons and their mineral inclusions, as they represent unique geochemical archives that can be used to unravel the geological evolution of early Earth. Here, we report the occurrence and physical properties of previously undetected CO2 inclusions that were identified in 3.36–3.47 Ga and 3.80–4.13 Ga zircon grains by confocal micro-Raman spectroscopy. Minimum P–T conditions of zircon formation were determined from the highest density of the inclusions, determined from the density-dependence of the Fermi diad splitting in the Raman spectrum and Ti-in-zircon thermometry. For both age periods, the CO2 densities and Ti-in-zircon temperatures correspond to high-grade metamorphic conditions (≥5 to ≥7 kbar/~670 to 770 °C) that are typical of mid-crustal regional metamorphism throughout Earth’s history. In addition, fully enclosed, highly disordered graphitic carbon inclusions were identified in two zircon grains from the older population that also contained CO2 inclusions. Transmission electron microscopy on one of these inclusions revealed that carbon forms a thin amorphous film on the inclusion wall, whereas the rest of the volume was probably occupied by CO2 prior to analysis. This indicates a close relationship between CO2 and the reduced carbon inclusions and, in particular that the carbon precipitated from a CO2-rich fluid, which is inconsistent with the recently proposed biogenic origin of carbon inclusions found in Hadean zircons from Jack Hills.


Jack Hills CO2 Zircon Early Earth Carbon 



Kilian Pollok is thanked for preparing the FIB foils and his support during the TEM analyses. We would also like to express gratitude to Petra Herms and Alfons van den Kerkhof for fruitful discussions about Raman spectroscopy of carbon inclusions. We would also like to thank Elizabeth Bell and an anonymous reviewer for their helpful comments. The NordSIMS facility is a Swedish-Icelandic infrastructure of which this is publication 516. This research was supported by a Grant from the Deutsche Forschungsgemeinschaft to TG (GE 1094/14-1).


  1. Amelin Y (2004) Sm–Nd systematics of zircon. Chem Geol 211(3–4):375–387. doi: 10.1016/j.chemgeo.2004.07.004 CrossRefGoogle Scholar
  2. Amelin Y, Lee DC, Halliday AN, Pidgeon RT (1999) Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399(6733):252–255CrossRefGoogle Scholar
  3. Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194:3–23CrossRefGoogle Scholar
  4. Bakker RJ, Jansen JBH (1991) Experimental post-entrapment water loss from synthetic CO2–H2O inclusions in natural quartz. Geochim Cosmochim Acta 55(8):2215–2230. doi: 10.1016/0016-7037(91)90098-P CrossRefGoogle Scholar
  5. Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. PNAS 112(47):14518–14521. doi: 10.1073/pnas.1517557112 CrossRefGoogle Scholar
  6. Bell EA, Boehnke P, Harrison TM (2016) Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration. Geochim Cosmochim Acta 191:187–202. doi: 10.1016/j.gca.2016.07.016 CrossRefGoogle Scholar
  7. Blichert-Toft J, Albarède F (2008) Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. ‎Earth Planet Sci Lett 265(3–4):686–702. doi: 10.1016/j.epsl.2007.10.054 CrossRefGoogle Scholar
  8. Caro G, Bennett VC, Bourdon B, Harrison TM, von Quadt A, Mojzsis SJ, Harris JW (2008) Application of precise 142Nd/144Nd analysis of small samples to inclusions in diamonds (Finsch, South Africa) and Hadean Zircons (Jack Hills, Western Australia). Chem Geol 247(1–2):253–265. doi: 10.1016/j.chemgeo.2007.10.018 CrossRefGoogle Scholar
  9. Cavosie AJ, Wilde SA, Liu DY, Weiblen PW, Valley JW (2004) Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precambium Res 135(4):251–279. doi: 10.1016/j.precamres.2004.09.001 CrossRefGoogle Scholar
  10. Cavosie AJ, Valley JW, Wilde SA, E.I.M.F (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet Sci Lett 235(3–4):663–681. doi: 10.1016/j.epsl.2005.04.028 CrossRefGoogle Scholar
  11. Cesare B (1995) Graphite precipitation in C–O–H fluid inclusions: closed system compositional and density changes, and thermobarometric implications. Contrib Minerol Petrol 122(1):25–33. doi: 10.1007/s004100050110 CrossRefGoogle Scholar
  12. Compston W, Pidgeon RT (1986) Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321(6072):766–769. doi: 10.1038/321766a0 CrossRefGoogle Scholar
  13. Compston W, Williams IS, Meyer C (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res Solid Earth 89(S02):B525–B534. doi: 10.1029/JB089iS02p0B525 CrossRefGoogle Scholar
  14. Dobrzhinetskaya L, Wirth R, Green H (2014) Diamonds in Earth’s oldest zircons from Jack Hills conglomerate, Australia, are contamination. ‎Earth Planet. Sci. Lett 387:212–218. doi: 10.1016/j.epsl.2013.11.023 Google Scholar
  15. Fermi E (1931) Über den Ramaneffekt des Kohlendioxyds. Zeitschrift für Physik 71(3):250–259. doi: 10.1007/bf01341712 CrossRefGoogle Scholar
  16. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107CrossRefGoogle Scholar
  17. Ferriss EDA, Essene EJ, Becker U (2008) Computational study of the effect of pressure on the Ti-in-zircon geothermometer. Eur J Mineral 20(5):745–755. doi: 10.1127/0935-1221/2008/0020-1860 CrossRefGoogle Scholar
  18. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Miner Petrol 154(4):429–437. doi: 10.1007/s00410-007-0201-0 CrossRefGoogle Scholar
  19. Frost BR, Chacko T (1989) The granulite uncertainty principle: limitations on thermobarometry in granulites. J Geol 97(4):435–450CrossRefGoogle Scholar
  20. Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3(1):43–50. doi: 10.2113/gselements.3.1.43 CrossRefGoogle Scholar
  21. Grange ML, Nemchin AA, Pidgeon RT, Timms N, Muhling JR, Kennedy AK (2009) Thermal history recorded by the Apollo 17 impact melt breccia 73217. Geochim Cosmochim Acta 73(10):3093–3107. doi: 10.1016/j.gca.2009.02.032 CrossRefGoogle Scholar
  22. Harrison TM, Schmitt AK (2007) High sensitivity mapping of Ti distributions in Hadean zircons. ‎Earth Planet Sci Lett 261(1–2):9–19. doi: 10.1016/j.epsl.2007.05.016 CrossRefGoogle Scholar
  23. Harrison TM, Blichert-Toft J, Müller W, Albarede F, Holden P, Mojzsis SJ (2005) Geochemistry: heterogeneous hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310(5756):1947–1950. doi: 10.1126/science.1117926 CrossRefGoogle Scholar
  24. Harrison TM, Schmitt AK, McCulloch MT, Lovera OM (2008) Early (≥4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. ‎Earth Planet Sci Lett 268(3-4):476–486. doi: 10.1016/j.epsl.2008.02.011 CrossRefGoogle Scholar
  25. Hartmann LA, Takehara L, Leite JAD, McNaughton NJ, Vasconcellos MAZ (1997) Fracture sealing in zircon as evaluated by electron microprobe analyses and back-scattered electron imaging. Chem Geol 141(1–2):67–72. doi: 10.1016/S0009-2541(97)00059-4 CrossRefGoogle Scholar
  26. Hollister LS (1990) Enrichment of CO2 in fluid inclusions in quartz by removal of H2O during crystal-plastic deformation. J Struct Geol 12(7):895–901. doi: 10.1016/0191-8141(90)90062-4 CrossRefGoogle Scholar
  27. Hopkins M, Harrison TM, Manning CE (2008) Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456(7221):493–496. doi: 10.1038/nature07465 CrossRefGoogle Scholar
  28. Hopkins MD, Harrison TM, Manning CE (2010) Constraints on Hadean geodynamics from mineral inclusions in >4Ga zircons. Earth Planet Sci Lett 298(3-4):367–376CrossRefGoogle Scholar
  29. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211(1–2):47–69. doi: 10.1016/j.chemgeo.2004.06.017 CrossRefGoogle Scholar
  30. Jochum KP, Nohl L, Herwig K, Lammel E, Toll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29(3):333–338CrossRefGoogle Scholar
  31. Kamber BS, Whitehouse MJ, Bolhar R, Moorbath S (2005) Volcanic resurfacing and the early terrestrial crust: Zircon U?Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland. Earth PlanetSci Lett 240(2):276–290CrossRefGoogle Scholar
  32. Kawakami Y, Yamamoto J, Kagi H (2003) Micro-raman densimeter for CO2 inclusions in mantle-derived minerals. Appl Spectrosc 57(11):1333–1339CrossRefGoogle Scholar
  33. Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort JD, DuFrane SA (2010) Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296(1–2):45–56. doi: 10.1016/j.epsl.2010.04.043 CrossRefGoogle Scholar
  34. Kennedy AK, de Laeter JR (1994) The performance characteristics of the WA SHRIMP II ion microprobe. In: 8th International Conference on Geochronology, Cosmochronology, and Isotope Geology US Geological Survey Circular 1107, p 166Google Scholar
  35. Laetsch T, Downs RT (2006) Software for identification and refinement of cell parameters from powder diffraction data of minerals using the RRUFF Project and American Mineralogist Crystal Structure Databases. In: Abstracts from the 19th General Meeting of the International Mineralogical Association, Kobe, Japan, 23–28 July 2006Google Scholar
  36. Lamb W, Valley JW (1984) Metamorphism of reduced granulites in low-CO2 vapour-free environment. Nature 312(5989):56–58CrossRefGoogle Scholar
  37. Lespade P, Al-Jishi R, Dresselhaus MS (1982) Model for Raman scattering from incompletely graphitized carbons. Carbon 20(5):427–431. doi: 10.1016/0008-6223(82)90043-4 CrossRefGoogle Scholar
  38. Ludwig K (2001a) Users manual for isoplot/Ex rev. 2.49. Berkeley Geochronology Center, BerkeleyGoogle Scholar
  39. Ludwig K (2001b) Users manual for squid 1.02. Berkeley Geochronology Center, BerkeleyGoogle Scholar
  40. Maas R, McCulloch MT (1991) The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, Western Australia: trace element geochemistry, Nd isotopes, and U–Pb ages for detrital zircons. Geochim Cosmochim Acta 55(7):1915–1932. doi: 10.1016/0016-7037(91)90033-2 CrossRefGoogle Scholar
  41. Maas R, Kinny PD, Williams IS, Froude DO, Compston W (1992) The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim Cosmochim Acta 56(3):1281–1300. doi: 10.1016/0016-7037(92)90062-N CrossRefGoogle Scholar
  42. Menneken M, Nemchin AA, Geisler T, Pidgeon RT, Wilde SA (2007) Hadean diamonds in zircon from Jack Hills, Western Australia. Nature 448(7156):917–920. doi: 10.1038/nature06083 CrossRefGoogle Scholar
  43. Millhollen GL, Wyllie PJ, Burnham CW (1971) Melting relations of NaAlSi3O8 to 30 Kb in the presence of H2O:CO2 = 50:50 vapor. Am J Sci 271(5):473–480CrossRefGoogle Scholar
  44. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature 409(6817):178–181CrossRefGoogle Scholar
  45. Morgan GB, Chou IM, Pasteris JD, Olsen SN (1993) Re-equilibration of CO2 fluid inclusions at controlled hydrogen fugacities. J Metamorph Geol 11(1):155–164. doi: 10.1111/j.1525-1314.1993.tb00137.x CrossRefGoogle Scholar
  46. Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircon: a Raman spectroscopic study. Eur J Mineral 7(3):471–478CrossRefGoogle Scholar
  47. Nemchin AA, Pidgeon RT, Whitehouse MJ (2006) Re-evaluation of the origin and evolution of >4.2 Ga zircons from the Jack Hills metasedimentary rocks. Earth Planet Sci Lett 244(1–2):218–233. doi: 10.1016/j.epsl.2006.01.054 CrossRefGoogle Scholar
  48. Nemchin AA, Whitehouse MJ, Menneken M, Geisler T, Pidgeon RT, Wilde SA (2008) A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature 454(7200):92–95. doi: 10.1038/nature07102 CrossRefGoogle Scholar
  49. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandard Newsl 21(1):115–144CrossRefGoogle Scholar
  50. Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high delta O-18 continental crust and oceans in the Early Archean. Geochim Cosmochim Acta 65(22):4215–4229CrossRefGoogle Scholar
  51. Pidgeon RT (1994) Calibration of zircon standards for the Curtin SHRIMP. In: 8th International Conference on Geochronology, Cosmochronology and Isotope Geology, Berkeley, US Geological Survey Circular 1107, p 251Google Scholar
  52. Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66(5):689–708. doi: 10.1180/0026461026650056 CrossRefGoogle Scholar
  53. Rasmussen B, Fletcher IR, Muhling JR, Gregory CJ, Wilde SA (2011) Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills, Australia: implications for the Hadean Earth. Geology 39(12):1143–1146. doi: 10.1130/g32554.1 CrossRefGoogle Scholar
  54. Rimša A, Johansson L, Whitehouse MJ (2007) Constraints on incipient charnockite formation from zircon geochronology and rare earth element characteristics. Contrib Miner Petrol 154(3):357. doi: 10.1007/s00410-007-0197-5 CrossRefGoogle Scholar
  55. Roedder E (1984) Fluid inclusions. Mineralogical Society of America, Washington, D.C., p 43Google Scholar
  56. Soman A, Geisler T, Tomaschek F, Grange M, Berndt J (2010) Alteration of crystalline zircon solid solutions: a case study on zircon from an alkaline pegmatite from Zomba-Malosa, Malawi. Contrib Miner Petrol 160(6):909–930. doi: 10.1007/s00410-010-0514-2 CrossRefGoogle Scholar
  57. Spaggiari CV, Pidgeon RT, Wilde SA (2007) The Jack Hills greenstone belt, Western Australia: Part 2: lithological relationships and implications for the deposition of ≥4.0 Ga detrital zircons. Precambrian Res 155(3-4):261–286CrossRefGoogle Scholar
  58. Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25(6):1509–1596CrossRefGoogle Scholar
  59. Sylvester PJ, Ghaderi M (1997) Trace element analysis of scheelite by excimer laser ablation inductively coupled plasma mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chem Geol 141(1–2):49–65CrossRefGoogle Scholar
  60. Trail D, Mojzsis SJ, Harrison TM (2004) Inclusion mineralogy of pre-4.0 Ga zircons from Jack Hills, Western Australia: a progress report. Geochim Cosmochim Acta 68:A743Google Scholar
  61. Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB, Young ED (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem Geophys Geosyst. doi: 10.1029/2006GC001449 Google Scholar
  62. Trail D, Thomas JB, Watson EB (2011) The incorporation of hydroxyl into zircon. Am Min 96:60–67. doi: 10.2138/am.2011.3506 CrossRefGoogle Scholar
  63. Turner G, Harrison TM, Holland G, Mojzsis SJ, Gilmour J (2004) Extinct 244Pu in ancient zircons. Science 306(5693):89–91. doi: 10.1126/science.1101014 CrossRefGoogle Scholar
  64. Turner G, Busfield A, Crowther SA, Harrison M, Mojzsis SJ, Gilmour J (2007) Pu–Xe, U–Xe, U–Pb chronology and isotope systematics of ancient zircons from Western Australia. Earth Planet Sci Lett 261(3–4):491–499. doi: 10.1016/j.epsl.2007.07.014 CrossRefGoogle Scholar
  65. Ushikubo T, Kita NT, Cavosie AJ, Wilde SA, Rudnick RL, Valley JW (2008) Lithium in Jack Hills zircons: evidence for extensive weathering of Earth’s earliest crust. Earth Planet Sci Lett 272(3–4):666–676. doi: 10.1016/j.epsl.2008.05.032 CrossRefGoogle Scholar
  66. Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30:351–354CrossRefGoogle Scholar
  67. Valley JW, Cavosie AJ, Ushikubo T, Reinhard DA, Lawrence DF, Larson DJ, Clifton PH, Kelly TF, Wilde SA, Moser DE, Spicuzza MJ (2014) Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci 7(3):219–223. doi: 10.1038/ngeo2075 CrossRefGoogle Scholar
  68. Van Achterbergh E, Ryan C, Jackson S, Griffin W (2001) “Appendix 3 Data reduction software for LA-ICP-MS”. Laser-Ablation-ICPMS in the Earth Sciences. Mineral Assoc Can Short Course 29:239–243Google Scholar
  69. Van den Kerkhof AM, Touret JLR, Maijer C, Jansen JBH (1991) Retrograde methane-dominated fluid inclusions from high-temperature granulites of Rogaland, southwestern Norway. Geochim Cosmochim Acta 55(9):2533–2544. doi: 10.1016/0016-7037(91)90371-B CrossRefGoogle Scholar
  70. Vavra G, Gebauer D, Schmid R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contrib Miner Petrol 122(4):337–358. doi: 10.1007/s004100050132 CrossRefGoogle Scholar
  71. Vonlanthen P, Fitz Gerald JD, Rubatto D, Hermann J (2012) Recrystallization rims in zircon (Valle d’Arbedo, Switzerland): an integrated cathodoluminescence, LA-ICP-MS, SHRIMP, and TEM study. Am Mineral 97(2–3):369–377. doi: 10.2138/am.2012.3854 CrossRefGoogle Scholar
  72. Whitehouse MJ, Ravindra Kumar GR, Rimša A (2014) Behaviour of radiogenic Pb in zircon during ultrahigh–temperature metamorphism: an ion imaging and ion tomography case study from the Kerala Khondalite Belt, southern India. Contrib Miner Petrol 168:1042CrossRefGoogle Scholar
  73. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC, Speigel W (1995) 3 natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analysis. Geostand Newsl 19(1):1–23CrossRefGoogle Scholar
  74. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409(6817):175–178. doi: 10.1038/35051550 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Martina Menneken
    • 1
    Email author return OK on get
  • Thorsten Geisler
    • 2
  • Alexander A. Nemchin
    • 3
  • Martin J. Whitehouse
    • 4
  • Simon A. Wilde
    • 3
  • Biliana Gasharova
    • 5
  • Robert T. Pidgeon
    • 3
  1. 1.Freie Universität BerlinBerlinGermany
  2. 2.Steinmann-Institut für Geologie, Mineralogie und PaläontologieRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  3. 3.Department of Applied GeologyCurtin UniversityPerthAustralia
  4. 4.Department of GeosciencesSwedish Museum of Natural HistoryStockholmSweden
  5. 5.Institut für Beschleunigerphysik und TechnologieKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations