Petrogenesis of the granitic Donkerhuk batholith in the Damara Belt of Namibia: protracted, syntectonic, short-range, crustal magma transfer

  • J. D. Clemens
  • I. S. Buick
  • A. F. M. Kisters
  • D. Frei
Original Paper


The areally extensive (>5000 km2), syn-tectonic, ca. 520 Ma, mainly S-type Donkerhuk batholith was constructed through injection of thousands of mainly sheet-like magma pulses over 20–25 Myr. It intruded schists of the Southern Zone accretionary prism in the Damara Belt of Namibia. Each magma pulse had at least partly crystallised prior to the arrival of the following batch. However, much of the batholith may have remained partially molten for long periods, close to the H2O-saturated granite solidus. The batholith shows extreme variation in chemistry, while having limited mineralogical variation, and seems to be the world’s most heterogeneous granitic mass. The Nd model ages of ~2 Ga suggest that Eburnean rocks of the former magmatic arc, structurally overlain by the accretionary wedge, are the most probable magma sources. Crustal melting was initiated by mantle heat flux, probably introduced by thermal diffusion rather than magma advection. The granitic magmas were transferred from source to sink, with minimal intermediate storage; the whole process having occurred in the middle crust, resulting in feeble crustal differentiation despite the huge volume of silicic magma generated. Source heterogeneity controlled variation in the magmas and neither mixing nor fractionation was prominent. However, due to the transpressional emplacement régime, local filter pressing formed highly silicic liquids, as well as felsic cumulate rocks. The case of the Donkerhuk batholith demonstrates that emplacement-level tectonics can significantly influence compositional evolution of very large syn-tectonic magma bodies.


Granite Petrogenesis Crustal melting Middle crust Heterogeneity Source terrane Damara Belt Namibia 



The research reported here was funded through South African NRF research Grant Number 87822 (Evolution of the African Lithosphere: A Case Study in the Donkerhuk Batholith), awarded to JC, IB and AK. The work of several honours students from Stellenbosch (Matthew Baleta, Jonathan Gloyn-Jones, Sabine Henry, Laubser Pepler and Warwick Watt) also made contributions, particularly to the structural aspects of the study. Prof. S. Jung (University of Hamburg) kindly provided the chemical analysis and tracer isotope data for our sample DH02. Comments by two anonymous reviewers resulted material improvements in the paper.

Supplementary material

410_2017_1370_MOESM1_ESM.pdf (33.5 mb)
Supplementary material 1 (PDF 34339 kb)
410_2017_1370_MOESM2_ESM.pdf (6.5 mb)
Supplementary material 2 (PDF 6677 kb)
410_2017_1370_MOESM3_ESM.pdf (42 kb)
Supplementary material 3 (PDF 42 kb)
410_2017_1370_MOESM4_ESM.xlsx (63 kb)
Supplementary material 4 (XLSX 63 kb)
410_2017_1370_MOESM5_ESM.pdf (74 kb)
Supplementary material 5 (PDF 74 kb)
410_2017_1370_MOESM6_ESM.pdf (9.2 mb)
Supplementary material 6 (PDF 9375 kb)
410_2017_1370_MOESM7_ESM.xlsx (118 kb)
Supplementary material 7 (XLSX 117 kb)
410_2017_1370_MOESM8_ESM.xlsx (91 kb)
Supplementary material 8 (XLSX 90 kb)


  1. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214CrossRefGoogle Scholar
  2. Barbey P, Marignac C, Montel JM, Macaudière J, Gasquet D, Jabbori J (1999) Cordierite growth textures and the conditions of genesis and emplacement of crustal granitic magmas: the Velay Granite Complex (Massif Central, France). J Petrol 40(9):1425–1441. doi: 10.1093/petroj/40.9.1425 CrossRefGoogle Scholar
  3. Blaxland A, Gohn E, Haack U, Hoffer E (1979) Rb/Sr ages of late-tectonic granites in the Damara Orogen, Southwest Africa/Namibia. N Jb Mineral Monatsh 11:498–508Google Scholar
  4. Bons PD, Arnold J, Elburg MA, Kalda J, Soesoo A, van Milligen BP (2004) Melt extraction and accumulation from partially molten rocks. Lithos 78(1–2):25–42. doi: 10.1016/j.lithos.2004.04.041 CrossRefGoogle Scholar
  5. Cahen L, Snelling NJ, Delhal J, Vail JR (1984) Geochronology and evolution of Africa. Clarendon Press, Oxford, p 512Google Scholar
  6. Chappell BW, White AJR (1974) Two contrasting granite types. Pacific Geol 8:173–174Google Scholar
  7. Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48:489–499CrossRefGoogle Scholar
  8. Cherniak DJ, Watson EB, Grove M, Harrison TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Acta 68:829–840CrossRefGoogle Scholar
  9. Chesley JT, Halliday AN, Snee LW, Mezger K, Shepherd TJ, Scrivener RC (1993) Thermochronology of the Cornubian batholith in southwest England: implications for pluton emplacement and protracted hydrothermal mineralization. Geochim Cosmochim Acta 57:1817–1835CrossRefGoogle Scholar
  10. Clemens JD (1990) The granulite–granite connexion. In: Vielzeuf D, Vidal P (eds) Granulites and crustal differentiation. Kluwer Academic Publishers, Dordrecht, pp 25–36CrossRefGoogle Scholar
  11. Clemens JD (2014) Element concentrations in granitic magmas: ghosts of textures past? J Geol Soc Lond 171:13–19. doi: 10.1144/jgs2013-008 CrossRefGoogle Scholar
  12. Clemens JD, Droop GTR (1998) Fluids, P-T paths and the fates of anatectic melts in the Earth’s crust. Lithos 44:21–36CrossRefGoogle Scholar
  13. Clemens JD, Mawer CK (1992) Granitic magma transport by fracture propagation. Tectonophysics 204:339–360CrossRefGoogle Scholar
  14. Clemens JD, Phillips GN (2014) Inferring a deep crustal source terrane from a high-level granitic pluton: the Strathbogie batholith, Australia. Contrib Mineral Petrol 168(5):1070. doi: 10.1007/s00410-014-1070-y CrossRefGoogle Scholar
  15. Clemens JD, Stevens G (2012) What controls chemical variation in granitic magmas? Lithos 134–135:317–329. doi: 10.1016/j.lithos.2012.01.001 CrossRefGoogle Scholar
  16. Clemens JD, Birch WD, Dudley RJ (2011) S-type ignimbrites with polybaric crystallisation histories: the Tolmie Igneous Complex, Central Victoria, Australia (and erratum). Contrib Mineral Petrol 162(6):1315–1337, 1339. doi: 10.1007/s00410-011-0652-1. doi: 10.1007/s00410-011-0666-8
  17. Clemens JD, Buick IS, Kisters AFM (2017) The Donkerhuk batholith, Namibia: a giant S-type granite emplaced in the mid crust, in a fore-arc setting. J Geol Soc Lond 174:157–169. doi: 10.1144/jgs2016-028 CrossRefGoogle Scholar
  18. Clifford TN (1970) The structural framework of Africa. In: Clifford TN, Gass IG (eds) African magmatism and tectonics. Oliver & Boyd, Edinburgh, pp 1–26Google Scholar
  19. Cooper MA, Brück PM (2007) Tectonic relationships of the Leinster granite, Ireland. Geol J 18(4):351–360. doi: 10.1002/gj.3350180407 CrossRefGoogle Scholar
  20. Cross CB, Diener JFA, Fagereng Å (2015) Metamorphic imprint of accretion and ridge subduction in the Pan-African Damara Belt, Namibia. J Metamorph Geol 33:633–648. doi: 10.1111/jmg.12139 CrossRefGoogle Scholar
  21. de Kock GS (1989) A geotectonic study of the Damara orogen in an area southeast of Karibib, South West Africa. PhD thesis, University of Orange Free State, Bloemfontein [in Afrikaans]Google Scholar
  22. de Kock GS (1992) Forearc basin evolution in the Pan-African Damara Belt, central Namibia: the Hureb formation of the Khomas zone. Precambrian Res 57:169–194. doi: 10.1016/0301-9268(92)90001-5 CrossRefGoogle Scholar
  23. de Kock GS, Armstrong R (2014) SHRIMP dating on magmatic rocks from the Karibib–Otjimbingwe region, Namibia. In: Roy Miller Symposium, Windhoek, Namibia, p 41Google Scholar
  24. de Saint Blanquat M, Horsman E, Habert G, Morgan S, Vanderhaeghe O, Law R, Tikoff B (2011) Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500:20–33. doi: 10.1016/j.tecto.2009.12.009 CrossRefGoogle Scholar
  25. Deniel C, Vidal P, Fernandez A, Lefort P, Peucat J-J (1987) Isotopic study of the Manaslu granite (Himalaya, Nepal)—inferences on the age and source of Himalayan leucogranites. Contrib Mineral Petrol 96(1):78–92. doi: 10.1007/bf00375529 CrossRefGoogle Scholar
  26. Flood RH, Shaw SE (1977) Two “S-type” granite suites with low initial 87Sr/86Sr ratios from the New England Batholith, Australia. Contrib Mineral Petrol 61:163–173CrossRefGoogle Scholar
  27. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048CrossRefGoogle Scholar
  28. Gardés E, Jaoul O, Montel J, Seydoux-Guillaume A, Wirth R (2006) Pb diffusion in monazite: an experimental study of Pb2+ Th4+⇔ 2Nd3+ interdiffusion. Geochim Cosmochim Acta 70(9):2325–2336. doi: 10.1016/j.gca.2006.01.018 CrossRefGoogle Scholar
  29. Gardés E, Montel J-M, Seydoux-Guillaume AM, Wirth R (2007) Pb diffusion in monazite: new constraints from an experimental study of Pb2+ ⇔ Ca2+ interdiffusion. Geochim Cosmochim Acta 71(16):4036–4043. doi: 10.1016/j.gca.2007.06.036 CrossRefGoogle Scholar
  30. Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14(4):4–11. doi: 10.1130/1052-5173(2004)014<0004:apaomo>;2 CrossRefGoogle Scholar
  31. Hall D, Kisters A (2016) Episodic granite accumulation and extraction from the midcrust. J Metamorph Geol 34:483–500. doi: 10.1111/jmg.12190 CrossRefGoogle Scholar
  32. Harris N, Massey J (1994) Decompression and anatexis of Himalayan metapelites. Tectonics 3:1537–1546CrossRefGoogle Scholar
  33. Hervé F, Pankhurst RJ, Fanning CM, Calderón M, Yaxley GM (2007) The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos 97:373–394. doi: 10.1016/j.lithos.2007.01.007 CrossRefGoogle Scholar
  34. Hoffer E (1977) Petrologische Untersuchungen zur Regionalmetamorphose Al-reicher Metapelite im südlichen Damara-Orogen (Südwest-Afrika). Universität Göttigen, Habilitationsschrift, p 150Google Scholar
  35. Hollister LS, Crawford ML (1986) Melt-enhanced deformation: a major tectonic process. Geology 14:558–561CrossRefGoogle Scholar
  36. Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Min Geol 27:293–305Google Scholar
  37. Jacob RE, Moore JM, Armstrong RA (2000) Zircon and titanite age determination from igneous rocks in the Karibib District, Namibia: implications for Navachab vein-style gold mineralization. Commun Geol Surv Namb 12:157–166Google Scholar
  38. Johnson SD, Poujol M, Kisters AFM (2006) Constraining the timing and migration of collisional tectonics in the Damara Belt, Namibia: U-Pb zircon ages for the syntectonic Salem-type Stinkbank granite. S Afr J Geol 109:611–624CrossRefGoogle Scholar
  39. Jung S, Mezger K (2001) Geochronology in migmatites—a Sm–Nd, U–Pb and Rb–Sr study from the Proterozoic Damara Belt (Namibia)—implications for polyphase development of migmatites in high-grade terranes. J Metamorph Geol 19:77–97CrossRefGoogle Scholar
  40. Jung S, Hoernes S, Mezger K (2001) Trace element and isotopic (Sr, Nd, Pb, O) arguments for a midcrustal origin of Pan-African garnet-bearing S-type granites from the Damara orogen (Namibia). Precambr Res 110:325–355CrossRefGoogle Scholar
  41. Kasch KW (1983) Regional P-T variations in the Damara Orogen with particular reference to early high-pressure metamorphism along the southern margin. Spec Publ Geol Soc S Afr 11:243–253Google Scholar
  42. Kasch KW (1986) Tectonic subdivision, lithostratigraphy and structural geology of the Upper Black Nossob River area. Commun Geol Soc Namibia 2:117–129Google Scholar
  43. Kasch KW (1987) Metamorphism of pelites in the Upper Black Nossob River area of the Damara Orogen. Commun Geol Soc Namibia 3:63–82Google Scholar
  44. King PL, White AJR, Chappell BW, Allen CM (1997) Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia. J Petrol 38(3):371–391CrossRefGoogle Scholar
  45. Kisters AFM, Jordaan LS, Neumaier K (2004) Thrust-related dome structures in the Karibib district and the origin of orthogonal fabric domains in the south Central Zone of the Pan-African Damara Belt, Namibia. Precamb Res 133:283–303CrossRefGoogle Scholar
  46. Kisters AFM, Ward RA, Anthonissen CJ, Vietze ME (2009) Melt segregation and far-field melt transfer in the mid-crust. J Geol Soc 166(5):905–918. doi: 10.1144/0016-76492009-012 CrossRefGoogle Scholar
  47. Kisters AFM, Vietze M, Buick I (2012) Deformation and age of the Stinkbank pluton and implications for the correlation of tectonometamorphic episodes in the Damara Belt. S Afr J Geol 115:309–326CrossRefGoogle Scholar
  48. Kitt S, Kisters A, Buick I, Kramers J, Frei D (2017) Structural, geochronological and P-T constraints on subduction-accretion processes in a Pan-African accretionary wedge—the Deep Level Southern Zone of the Damara Belt in Namibia. Precambr Res (in prep)Google Scholar
  49. Kukla PA (1992) Tectonics and sedimentation of a late Proterozoic Damaran convergent continental margin, Khomas Hochland. Mem. Geol. Surv. Nam. 12Google Scholar
  50. Kukla C (1993) Strontium isotope heterogeneities in amphibolite facies, banded metasediments—a case study from the Late Proterozoic Kuiseb Formation of the southern Damara Orogen, central Namibia. Mem Geol Surv Namib 15:1–139Google Scholar
  51. Kukla C, Kramm U, Kukla PA, Okrusch M (1991) U–Pb monazite data relating to metamorphism and granite intrusion in the northwestern Khomas Trough, Damara Orogen, central Namibia. Commun Geol Surv Namib 7:49–54Google Scholar
  52. LeFort P (1981) Manaslu leucogranite: a collision signature of the Himalaya. J Geophys Res Solid Earth B86:10545–10568CrossRefGoogle Scholar
  53. Lefort P, Cuney M, Deniel C, France-Lanord C, Sheppard SMF, Upreti BN, Vidal P (1987) Crustal generation of the Himalayan leucogranites. Tectonophysics 134:39–57CrossRefGoogle Scholar
  54. Lehtonen MI, Manninen TET, Schreiber UM (1996) Lithostratigraphy of the area between the Swakop, Khan and lower Omaruru Rivers, Namib Desert. Commun Geol Surv Namib 11:65–75Google Scholar
  55. Longridge L, Gibson RL, Kinnaird JA, Armstrong RA (2011) Constraining the timing of deformation in the southwestern Central Zone of the Damara Belt, Namibia. Geol Soc Lond Spec Publ 357:107–135CrossRefGoogle Scholar
  56. McDermott F (1986) Granite petrogenesis and crustal evolution studies in the Damara orogenic belt Namibia. PhD thesis (unpubl.), The Open University, Milton KeynesGoogle Scholar
  57. McDermott F, Harris NBW, Hawkesworth CJ (1996) Geochemical constraints on crustal anatexis: a case study from the Pan-African Damara granitoids of Namibia. Contrib Mineral Petrol 123:406–423CrossRefGoogle Scholar
  58. Meneghini F, Kisters A, Buick I, Fagereng Å (2014) Fingerprints of late Neoproterozoic ridge subduction in the Pan-African Damara belt, Namibia. Geology 42(10):903–906. doi: 10.1130/g35932.1 CrossRefGoogle Scholar
  59. Miller RMcG (1983) The Pan-African Damara Orogen of South West Africa/Namibia. In: Miller RMcG (ed), Evolution of the Damara Orogen of South West Africa/Namibia, vol 11. Geological Society of South Africa Special Publication, Johannesburg, pp 431–515Google Scholar
  60. Miller RMcG (2008) The Geology of Namibia. Vol. 2: Neoproterozoic to Lower Palaeozoic. Geological Survey of Namibia, Windhoek, NamibiaGoogle Scholar
  61. Mohr P (1991) Cryptic Sr and Nd isotopic variation across the Leinster granite, southeast Ireland. Geol Mag 128(3):251–256CrossRefGoogle Scholar
  62. Nieberding F (1976) Die Grenze der zentrale Granitzone südwestlich Otjimbingwe (Karibib-District, Südwestafrika): Intrusionsverband, Tektonik, Petrographie. Diplom Arbeit dissertation, Geologisch-Paläontologischen Instituts, Georg-August-Universität Göttingen, Göttinger Arb. Geol. Paläont. 19Google Scholar
  63. O’Connor PJ, Aftalion M, Kennan PS (1989) Isotopic U–Pb Ages of Zircon and Monazite from the Leinster Granite, Southeast Ireland. Geol Mag 126(6):725–728CrossRefGoogle Scholar
  64. Ostendorf J, Jung S, Berndt-Gerdes J, Hauff F (2014) Syn-orogenic high temperature crustal melting: geochronological and N–Sr–Pb isotope constraints from basement-derived granites (Central Damara Orogen, Namibia). Lithos 192–195:21–38. doi: 10.1016/j.lithos.2014.01.007 CrossRefGoogle Scholar
  65. Paterson SR, Vernon RH, Tobisch OT (1989) A review of criteria for the identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11:349–363CrossRefGoogle Scholar
  66. Patiño Douce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39:689–710CrossRefGoogle Scholar
  67. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  68. Petford N, Cruden AR, McCaffrey KJW, Vigneresse J-L (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669–673CrossRefGoogle Scholar
  69. Pfiffner OA, Ramsay JG (1982) Constraints on geological strain rates: arguments from finite strain states of naturally deformed rocks. J Geophys Res 87(B1):311–321CrossRefGoogle Scholar
  70. Phillips GN, Clemens JD (2013) Strathbogie batholith: field-based subdivision of a large granitic intrusion. Appl Earth Sci 122(1):36–55. doi: 10.1179/1743275813Y.0000000030 CrossRefGoogle Scholar
  71. Phillips RJ, Searle M (2007) Macrostructural and microstructural architecture of the Karakoram fault: relationship between magmatism and strike-slip faulting. Tectonics 26(3):1944–1994. doi: 10.1029/2006TC001946 CrossRefGoogle Scholar
  72. Sawyer EW (1981) Damaran structural and metamorphic geology of an area south-east of Walvis Bay, South West Africa/Namibia. Mem Geol Surv South West Afr 7:1–94Google Scholar
  73. Sawyer EW (1983) Structure in the contact strain aureole of the Donkerhuk Granite, Gross Barmen area, South West Africa/Namibia. Spec Publ Geol Soc S Afr 11:209–217Google Scholar
  74. Seydoux-Guillaume AM, Paquette J-L, Wiedenbeck M, Montel J-M, Heinrich W (2002) Experimental resetting of the U–Th–Pb systems in monazite. Chem Geol 191:165–181CrossRefGoogle Scholar
  75. Teufel S, Heinrich W (1997) Partial resetting of the U–Pb system in monazite through hydrothermal experiments: an SEM and U–Pb isotope study. Chem Geol 137:273–281CrossRefGoogle Scholar
  76. van Schijndel V, Cornell DH, Hoffmann K-H, Frei D (2011) Three episodes of crustal development in the Rehoboth Province, Namibia. In: Van Hinsbergen DJJ, Buiter SJH, Torsvik TH, Gaina C, Webb SJ (eds) The formation and evolution of Africa: a synopsis of 3.8 Ga of earth history, vol 357. The Geological Society of London Special Publications, London, pp 27–47Google Scholar
  77. van Schijndel V, Cornell DH, Frei D, Simonsen SL, Whitehouse MJ (2014) Crustal evolution of the Rehoboth Province from Archaean to Mesoproterozoic times: insights from the Rehoboth Basement Inlier. Precambrian Res 240:22–46. doi: 10.1016/j.precamres.2013.10.014 CrossRefGoogle Scholar
  78. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95(4):407–419CrossRefGoogle Scholar
  79. Whittington AG, Treloar PJ (2002) Crustal anatexis and its relation to the exhumation of collisional orogenic belts, with particular reference to the Himalaya. Mineral Mag 66(1):53–91CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of StellenboschMatielandSouth Africa
  2. 2.Department of Earth ScienceUniversity of the Western CapeBellvilleSouth Africa

Personalised recommendations