Fluorine and chlorine in mantle minerals and the halogen budget of the Earth’s mantle

  • B. M. Urann
  • V. Le Roux
  • K. Hammond
  • H. R. Marschall
  • C.-T. A. Lee
  • B. D. Monteleone
Original Paper
  • 739 Downloads

Abstract

The fluorine (F) and chlorine (Cl) contents of arc magmas have been used to track the composition of subducted components, and the F and Cl contents of MORB have been used to estimate the halogen content of depleted MORB mantle (DMM). Yet, the F and Cl budget of the Earth’s upper mantle and their distribution in peridotite minerals remain to be constrained. Here, we developed a method to measure low concentrations of halogens (≥0.4 µg/g F and ≥0.3 µg/g Cl) in minerals by secondary ion mass spectroscopy. We present a comprehensive study of F and Cl in co-existing natural olivine, orthopyroxene, clinopyroxene, and amphibole in seventeen samples from different tectonic settings. We support the hypothesis that F in olivine is controlled by melt polymerization, and that F in pyroxene is controlled by their Na and Al contents, with some effect of melt polymerization. We infer that Cl compatibility ranks as follows: amphibole > clinopyroxene > olivine ~ orthopyroxene, while F compatibility ranks as follows: amphibole > clinopyroxene > orthopyroxene ≥ olivine, depending on the tectonic context. In addition, we show that F, Cl, Be and B are correlated in pyroxenes and amphibole. F and Cl variations suggest that interaction with slab melts and fluids can significantly alter the halogen content of mantle minerals. In particular, F in oceanic peridotites is mostly hosted in pyroxenes, and proportionally increases in olivine in subduction-related peridotites. The mantle wedge is likely enriched in F compared to un-metasomatized mantle, while Cl is always low (<1 µg/g) in all tectonic settings studied here. The bulk anhydrous peridotite mantle contains 1.4–31 µg/g F and 0.14–0.38 µg/g Cl. The bulk F content of oceanic-like peridotites (2.1–9.4 µg/g) is lower than DMM estimates, consistent with F-rich eclogite in the source of MORB. Furthermore, the bulk Cl budget of all anhydrous peridotites studied here is lower than previous DMM estimates. Our results indicate that nearly all MORB may be somewhat contaminated by seawater-rich material and that the Cl content of DMM could be overestimated. With this study, we demonstrate that the halogen contents of natural peridotite minerals are a unique tool to understand the cycling of halogens, from ridge settings to subduction zones.

Keywords

Fluorine and chlorine content of mantle minerals Halogen partitioning Halogen budget of DMM Peridotite 

Supplementary material

410_2017_1368_MOESM1_ESM.docx (8.3 mb)
Supplementary material 1 (DOCX 8449 kb)
410_2017_1368_MOESM2_ESM.xlsx (232 kb)
Supplementary material 2 (XLSX 232 kb)

References

  1. Bénard A, Koga KT, Shimizu N et al (2017) Chlorine and fluorine partition coefficients and abundances in sub-arc mantle xenoliths (Kamchatka, Russia): implications for melt generation and volatile recycling processes in subduction zones. Geochim Cosmochim Acta 199:324–350. doi:10.1016/j.gca.2016.10.035 CrossRefGoogle Scholar
  2. Bernini D, Wiedenbeck M, Dolejš D, Keppler H (2013) Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones. Contrib Mineral Petrol 165:117–128. doi:10.1007/s00410-012-0799-4 CrossRefGoogle Scholar
  3. Beyer C, Klemme S, Wiedenbeck M et al (2012) Fluorine in nominally fluorine-free mantle minerals: experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes. Earth Planet Sci Lett 337–338:1–9. doi:10.1016/j.epsl.2012.05.003 CrossRefGoogle Scholar
  4. Beyer C, Klemme S, Grützner T et al (2016) Fluorine partitioning between eclogitic garnet, clinopyroxene, and melt at upper mantle conditions. Chem Geol 437:88–97. doi:10.1016/j.chemgeo.2016.05.032 CrossRefGoogle Scholar
  5. Bonifacie M, Busigny V, Mével C et al (2008) Chlorine isotopic composition in seafloor serpentinites and high-pressure metaperidotites. Insights into oceanic serpentinization and subduction processes. Geochim Cosmochim Acta 72:126–139. doi:10.1016/j.gca.2007.10.010 CrossRefGoogle Scholar
  6. Bouvier AS, Métrich N, Deloule E (2008) Slab-derived fluids in the magma sources of St. Vincent (Lesser Antilles Arc): volatile and light element imprints. J Petrol 49:1427–1448CrossRefGoogle Scholar
  7. Bouvier AS, Deloule E, Métrich N (2010) Fluid inputs to magma sources of St. Vincent and Grenada (Lesser Antilles): new insights from trace elements in olivine-hosted melt inclusions. J Petrol 51:1597–1615CrossRefGoogle Scholar
  8. Brenan J (1994) Role of aqueous fluids in slab to mantle transfer of B, Be, Li during subduction. Chem Geol 110:195–210CrossRefGoogle Scholar
  9. Bromiley DW, Kohn SC (2007) Comparisons between fluoride and hydroxide incorporation in nominally anhydrous and fluorine-free mantle minerals. Geochim Cosmochim Acta 71:3570–3580CrossRefGoogle Scholar
  10. Cabral RA, Jackson MG, Koga KT et al (2014) Volatile cycling of H 2O, CO2, F, and Cl in the HIMU mantle: a new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands. Geochem Geophys Geosyst 15:4445–4467. doi:10.1002/2014GC005473 CrossRefGoogle Scholar
  11. Dalou C, Mysen BO (2015) The effect of H2O on F and Cl solubility and solution mechanisms of in aluminosilicate melts at high pressure and high temperature. Am Miner 100:633–643. doi:10.2138/am-2015-4814 CrossRefGoogle Scholar
  12. Dalou C, Koga KT, Shimizu N et al (2012) Experimental determination of F and Cl partitioning between lherzolite and basaltic melt. Contrib Mineral Petrol 163:591–609. doi:10.1007/s00410-011-0688-2 CrossRefGoogle Scholar
  13. Dalou C, Koga KT, Le-Voyer M, Shimizu N (2014) Contrasting partition behavior of F and Cl during hydrous mantle melting: implications for Cl/F signature in arc magmas. Prog Earth Planet Sci. doi:10.1186/s40645-014-0026-1 Google Scholar
  14. Debret B, Koga KT, Nicollet C et al (2013) F, Cl and S input via serpentinite in subduction zones: implications for the nature of the fluid released at depth. Terra Nova 26:96–101. doi:10.1111/ter.12074 CrossRefGoogle Scholar
  15. Dingwell DB (1989) Effect of fluorine on the viscosity of diopside liquid. Am Mineral 3–4:333–338Google Scholar
  16. Dixon JE, Dixon TH, Bell DR, Malservisi R (2004) Lateral variation in upper mantle viscosity: role of water. Earth Planet Sci Lett 222:451–467. doi:10.1016/j.epsl.2004.03.022 CrossRefGoogle Scholar
  17. Fabbrizio A, Stalder R, Hametner K et al (2013) Experimental partitioning of halogens and other trace elements between olivine, pyroxenes, amphibole and aqueous fluid at 2 GPa and 900–1,300°C. Contrib Mineral Petrol 166:639–653. doi:10.1007/s00410-013-0902-5 CrossRefGoogle Scholar
  18. Gaetani GA (2004) The influence of melt structure on trace element partitioning near the peridotite solidus. Contrib Mineral Petrol 147:511–527. doi:10.1007/s00410-004-0575-1 CrossRefGoogle Scholar
  19. Gale A, Dalton CA, Langmuir CH et al (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14:489–518. doi:10.1029/2012GC004334 CrossRefGoogle Scholar
  20. Giovanardi T, Morishita T, Zanetti A et al (2013) Igneous sapphirine as a product of melt-peridotite interactions in the Finero Phlogopite-Peridotite Massif, Western Italian Alps. Eur J Mineral 25:17–31. doi:10.1127/0935-1221/2013/0025-2251 CrossRefGoogle Scholar
  21. Guggino SN (2012) Fluorine partitioning between nominally anhydrous minerals (olivine, clinopyroxene, and plagioclase) and silicate melt using secondary ion mass spectrometry and newly synthesized basaltic fluorine microanalytical glass standards. Arizona State University, TempeGoogle Scholar
  22. Guggino SN, Hervig RL (2012) Fluorine partitioning between nominally anhydrous minerals (cpx, ol, plag) and silicate melt. In: AGU fall meeting abstractsGoogle Scholar
  23. Hauri E, Wang J, Dixon JE et al (2002) SIMS analysis of volatiles in silicate glasses. Chem Geol 183:99–114. doi:10.1016/S0009-2541(01)00375-8 CrossRefGoogle Scholar
  24. Hauri E, Gaetani G, Green T (2006) Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Lett 248:715–734. doi:10.1016/j.epsl.2006.06.014 CrossRefGoogle Scholar
  25. Humphreys ER, Niu Y (2009) On the composition of ocean island basalts (OIB): the effects of lithospheric thickness variation and mantle metasomatism. Lithos 112:118–136. doi:10.1016/j.lithos.2009.04.038 CrossRefGoogle Scholar
  26. Jenner FE, O’Neill HSC (2012) Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem Geophys Geosyst. doi:10.1029/2011GC004009 Google Scholar
  27. John T, Scambelluri M, Frische M et al (2011) Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci Lett 308:65–76. doi:10.1016/j.epsl.2011.05.038 CrossRefGoogle Scholar
  28. Kendrick MA, Jackson MG, Kent AJR et al (2014) Contrasting behaviours of CO2, S, H2O and halogens (F, Cl, Br, and I) in enriched-mantle melts from Pitcairn and Society seamounts. Chem Geol 370:69–81. doi:10.1016/j.chemgeo.2014.01.019 CrossRefGoogle Scholar
  29. Konzett J, Frost DJ (2009) The high P-T stability of hydroxyl-apatite in natural and simplified MORB—an experimental study to 15 GPa with Implications for transport and storage of phosphorus and halogens in subduction zones. J Petrol 50:2043–2062. doi:10.1093/petrology/egp068 CrossRefGoogle Scholar
  30. Le Roux P, Shirey S, Hauri E et al (2006) The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth Planet Sci Lett 251:209–231. doi:10.1016/j.epsl.2006.09.012 CrossRefGoogle Scholar
  31. Le Roux V, Dick HJB, Shimizu N (2014) Tracking flux melting and melt percolation in supra-subduction peridotites (Josephine ophiolite, USA). Contrib Mineral Petrol 168:1064. doi:10.1007/s00410-014-1064-9 CrossRefGoogle Scholar
  32. Le Voyer M, Rose-Koga EF, Shimizu N et al (2010) Two contrasting H2O-rich components in primary melt inclusions from Mount Shasta. J Petrol 51:1571–1595. doi:10.1093/petrology/egq030 CrossRefGoogle Scholar
  33. Le Voyer M, Cottrell E, Kelley KA et al (2015) The effect of primary versus secondary processes on the volatile content of MORB glasses: an example from the equatorial Mid-Atlantic Ridge (5°N-3°S). Journal of Geophysical Research: Solid Earth 120:125–144. doi:10.1002/2014JB011160 Google Scholar
  34. Lee CTA (2005) Trace element evidence for hydrous metasomatism at the base of the North American lithosphere and possible association with Laramide low-angle subduction. J Geol 113:673–685. doi:10.1086/449327 CrossRefGoogle Scholar
  35. Li Z-XA, Lee C-TA, Peslier AH et al (2008) Water contents in mantle xenoliths from the Colorado Plateau and vicinity: implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J Geophys Res 113:B09210–B09222. doi:10.1029/2007JB005540 CrossRefGoogle Scholar
  36. Luffi P, Saleeby JB, Lee C-TA, Ducea MN (2009) Lithospheric mantle duplex beneath the central Mojave Desert revealed by xenoliths from Dish Hill, California. J Geophys Res Solid Earth 114:B03202. doi:10.1029/2008JB005906 CrossRefGoogle Scholar
  37. Marschall HR, Altherr R, Gméling K, Kasztovszky Z (2009) Lithium, boron and chlorine as tracers for metasomatism in high-pressure metamorphic rocks: a case study from Syros (Greece). Miner Petrol 95:291–302. doi:10.1007/s00710-008-0032-3 CrossRefGoogle Scholar
  38. Michael PJ, Schilling JG (1989) Chlorine in mid-ocean ridge magmas: evidence for assimilation of seawater-influenced components. Geochim Cosmochim Acta 53:3131–3143. doi:10.1016/0016-7037(89)90094-X CrossRefGoogle Scholar
  39. Mosenfelder JL, Rossman GR (2013a) Analysis of hydrogen and fluorine in pyroxenes: I. Orthopyroxene. Am Mineral 98:1026–1041. doi:10.2138/am.2013.4291 CrossRefGoogle Scholar
  40. Mosenfelder JL, Rossman GR (2013b) Analysis of hydrogen and fluorine in pyroxenes: II. Clinopyroxene. Am Mineral 98:1042–1054. doi:10.2138/am.2013.4413 CrossRefGoogle Scholar
  41. Mysen B (2007a) Partitioning of calcium, magnesium, and transition metals between olivine and melt governed by the structure of the silicate melt at ambient pressure. Am Mineral 92:844–862. doi:10.2138/am.2007.2260 CrossRefGoogle Scholar
  42. Mysen BO (2007b) The solution behavior of H2O in peralkaline aluminosilicate melts at high pressure with implications for properties of hydrous melts. Geochim Cosmochim Acta 71:1820–1834. doi:10.1016/j.gca.2007.01.007 CrossRefGoogle Scholar
  43. Mysen BO, Cody GD (2004) Solubility and solution mechanism of H2O in alkali silicate melts and glasses at high pressure and temperature. Geochim Cosmochim Acta 68:5113–5126. doi:10.1016/j.gca.2004.07.021 CrossRefGoogle Scholar
  44. O’Leary JA, Gaetani GA, Hauri EH (2010) The effect of tetrahedral Al3+ on the partitioning of water between clinopyroxene and silicate melt. Earth Planet Sci Lett 297:111–120. doi:10.1016/j.epsl.2010.06.011 CrossRefGoogle Scholar
  45. Peslier A, Luhr J (2006) Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth Planet Sci Lett 242:302–319. doi:10.1016/j.epsl.2005.12.019 CrossRefGoogle Scholar
  46. Philippot P, Agrinier P, Scambelluri M (1998) Chlorine cycling during subduction of altered oceanic crust. Earth Planet Sci Lett 161:33–44. doi:10.1016/S0012-821X(98)00134-4 CrossRefGoogle Scholar
  47. Portnyagin M, Hoernle K, Plechov P et al (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255:53–69. doi:10.1016/j.epsl.2006.12.005 CrossRefGoogle Scholar
  48. Roden MF (1981) Origin of coexisting minette and ultramafic breccia, Navajo volcanic field. Contrib Mineral Petrol 77:195–206. doi:10.1007/BF00636523 CrossRefGoogle Scholar
  49. Rose-Koga EF, Shimizu N, Devidal J, et al (2008) Investigation of F, S, and Cl standards by ion probe and electron microprobe. In: AGU fall meeting abstractsGoogle Scholar
  50. Rose-Koga EF, Koga KT, Schiano P et al (2012) Mantle source heterogeneity for South Tyrrhenian magmas revealed by Pb isotopes and halogen contents of olivine-hosted melt inclusions. Chem Geol 334:266–279CrossRefGoogle Scholar
  51. Rose-Koga EF, Koga KT, Hamada M et al (2014) Volatile (F and Cl) concentrations in Iwate olivine-hosted melt inclusions indicating low-temperature subduction. Earth Planets Space 66:1–12. doi:10.1186/1880-5981-66-81 CrossRefGoogle Scholar
  52. Rose-Koga EF, Koga KT, Moreira M et al (2017) Geochemical systematics of Pb isotopes, fluorine, and sulfur in melt inclusions from São Miguel, Azores. Chem Geol 239:138–155Google Scholar
  53. Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455. doi:10.1038/nature01073 CrossRefGoogle Scholar
  54. Sadofsky SJ, Portnyagin M, Hoernle K, van den Bogaard P (2008) Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions. Contrib Mineral Petrol 155:433–456. doi:10.1007/s00410-007-0251-3 CrossRefGoogle Scholar
  55. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst. doi:10.1029/2003GC000597 Google Scholar
  56. Scambelluri M, Müntener O, Ottolini L et al (2004) The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth Planet Sci Lett 222:217–234. doi:10.1016/j.epsl.2004.02.012 CrossRefGoogle Scholar
  57. Selverstone J, Sharp ZD (2011) Chlorine isotope evidence for multicomponent mantle metasomatism in the Ivrea Zone. Earth Planet Sci Lett 310:429–440. doi:10.1016/j.epsl.2011.08.034 CrossRefGoogle Scholar
  58. Shaw AM, Behn MD, Humphris SE et al (2010) Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: evidence from olivine-hosted melt inclusions and glasses. Earth Planet Sci Lett 289:311–322. doi:10.1016/j.epsl.2009.11.018 CrossRefGoogle Scholar
  59. Shimizu K, Saal AE, Myers CE et al (2016) Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: implications for the volatile content of the Pacific upper mantle. Geochim Cosmochim Acta 176:44–80. doi:10.1016/j.gca.2015.10.033 CrossRefGoogle Scholar
  60. Silantyev SA, Bortnikov NS, Shatagin KN et al (2016) Petrogenetic conditions at 18°–20°N MAR: interaction between hydrothermal and magmatic systems. Petrology 24:336–366. doi:10.1134/S0869591116040044 CrossRefGoogle Scholar
  61. Smith DK, Schouten H, Dick HJB et al (2014) Development and evolution of detachment faulting along 50 km of the Mid-Atlantic Ridge near 16.5°N. Geochem Geophys Geosyst 15:4692–4711. doi:10.1002/2014GC005563 CrossRefGoogle Scholar
  62. Spilliaert N, Métrich N, Allard P (2006) S-Cl–F degassing pattern of water-rich alkali basalt: modelling and relationship with eruption styles on Mount Etna volcano. Earth Planet Sci Lett 248:772–786. doi:10.1016/j.epsl.2006.06.031 CrossRefGoogle Scholar
  63. Straub SM, Layne GD (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203. doi:10.1016/S0016-7037(03)00307-7 CrossRefGoogle Scholar
  64. Van den Bleeken G, Koga KT (2015) Experimentally determined distribution of fluorine and chlorine upon hydrous slab melting, and implications for F-Cl cycling through subduction zones. Geochim Cosmochim Acta 171:353–373. doi:10.1016/j.gca.2015.09.030 CrossRefGoogle Scholar
  65. Wanless VD, Shaw AM (2012) Lower crustal crystallization and melt evolution at mid-ocean ridges. Nat Geosci 5:651–655. doi:10.1038/ngeo1552 CrossRefGoogle Scholar
  66. Wanless VD, Behn MD, Shaw AM, Plank T (2014) Variations in melting dynamics and mantle compositions along the Eastern Volcanic Zone of the Gakkel Ridge: insights from olivine-hosted melt inclusions. Contrib Mineral Petrol 167:1005. doi:10.1007/s00410-014-1005-7 CrossRefGoogle Scholar
  67. Wanless VD, Shaw AM, Behn MD et al (2015) Magmatic plumbing at Lucky Strike volcano based on olivine-hosted melt inclusion compositions. Geochem Geophys Geosyst 16:126–147. doi:10.1002/2014GC005517 CrossRefGoogle Scholar
  68. Warren JM, Hauri EH (2014) Pyroxenes as tracers of mantle water variations. J Geophys Res Solid Earth 119:1851–1881. doi:10.1002/2013JB010328 CrossRefGoogle Scholar
  69. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72. doi:10.1016/j.epsl.2004.12.005 CrossRefGoogle Scholar
  70. Wu J, Koga KT (2013) Fluorine partitioning between hydrous minerals and aqueous fluid at 1GPa and 770–947°C: a new constraint on slab flux. Geochim Cosmochim Acta 119:77–92. doi:10.1016/j.gca.2013.05.025 CrossRefGoogle Scholar
  71. Zanetti A, Mazzucchelli M, Rivalenti G, Vannucci R (1999) The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism. Contrib Mineral Petrol 134:107–122. doi:10.1007/s004100050472 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • B. M. Urann
    • 1
  • V. Le Roux
    • 1
  • K. Hammond
    • 1
  • H. R. Marschall
    • 1
    • 2
  • C.-T. A. Lee
    • 3
  • B. D. Monteleone
    • 1
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Goethe Universität FrankfurtInstitut für GeowissenschaftenFrankfurt am MainGermany
  3. 3.Department of Earth ScienceRice UniversityHoustonUSA

Personalised recommendations