Skip to main content
Log in

Rapid pre-eruptive thermal rejuvenation in a large silicic magma body: the case of the Masonic Park Tuff, Southern Rocky Mountain volcanic field, CO, USA

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Determining the mechanisms involved in generating large-volume eruptions (>100 km3) of silicic magma with crystallinities approaching rheological lock-up (~50 vol% crystals) remains a challenge for volcanologists. The Cenozoic Southern Rocky Mountain volcanic field, in Colorado and northernmost New Mexico, USA, produced ten such crystal-rich ignimbrites within 3 m.y. This work focuses on the 28.7 Ma Masonic Park Tuff, a dacitic (~62–65 wt% SiO2) ignimbrite with an estimated erupted volume of ~500 km3 and an average of ~45 vol% crystals. Near-absence of quartz, titanite, and sanidine, pronounced An-rich spikes near the rims of plagioclase, and reverse zoning in clinopyroxene record the reheating (from ~750 to >800 °C) of an upper crustal mush in response to hotter recharge from below. Zircon U–Pb ages suggest prolonged magmatic residence, while Yb/Dy vs temperature trends indicate co-crystallization with titanite which was later resorbed. High Sr, Ba, and Ti concentrations in plagioclase microlites and phenocryst rims require in-situ feldspar melting and concurrent, but limited, mass addition provided by the recharge, likely in the form of a melt-gas mixture. The larger Fish Canyon Tuff, which erupted from the same location ~0.7 m.y. later, also underwent pre-eruptive reheating and partial melting of quartz, titanite, and feldspars in a long-lived upper crustal mush following the underplating of hotter magma. The Fish Canyon Tuff, however, records cooler pre-eruptive temperatures (~710–760 °C) and a mineral assemblage indicative of higher magmatic water contents (abundant resorbed sanidine and quartz, euhedral amphibole and titanite, and absence of pyroxene). These similar pre-eruptive mush-reactivation histories, despite differing mineral assemblages and pre-eruptive temperatures, indicate that thermal rejuvenation is a key step in the eruption of crystal-rich silicic volcanics over a wide range of conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Albarede F, Bottinga Y (1972) Kinetic disequilibrium in trace element partitioning between phenocrysts and host lava. Geochim Cosmochim Acta 36(2):141–156. doi:10.1016/0016-7037(72)90003-8

    Article  Google Scholar 

  • Annen C (2009) From plutons to magma chambers: Thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet Sci Lett 284(3–4):409–416. doi:10.1016/j.epsl.2009.05.006

    Article  Google Scholar 

  • Askren RR, Whitney JA, Roden MF (1991) Petrology and geochemistry of the Huerto Andesite, San Juan volcanic field, Colorado. Contrib Mineral Petrol 107:373–386. doi:10.1007/BF00325105

    Article  Google Scholar 

  • Bachmann O (2010) The petrologic evolution and pre-eruptive conditions of the rhyolitic Kos Plateau Tuff (Aegean arc). Cent Eur J Geosci 2(3):270–305. doi:10.2478/V10085-010-0009-4

    Google Scholar 

  • Bachmann O, Bergantz GW (2003) Rejuvenation of the Fish Canyon magma body: a window into the evolution of large-volume silicic magma systems. Geology 31(9):789–792. doi:10.1130/G19764.1

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2006) Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. J Volcanol Geotherm Res 149(1–2):85–102. doi:10.1016/j.jvolgeores.2005.06.002

    Article  Google Scholar 

  • Bachmann O, Dungan MA (2002) Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. Am Mineral 87:1062–1076. doi:10.2138/am-2002-8-903

  • Bachmann O, Huber C (2016) Silicic magma reservoirs in the Earth’s crust. Am Mineral 101(11):2377–2404. doi:10.2138/am-2016-5675

    Article  Google Scholar 

  • Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. J Petrol 43(8):1469–1503. doi:10.1093/Petrology/43.8.1469

    Article  Google Scholar 

  • Bachmann O, Charlier BLA, Lowenstern JB (2007) Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean Arc). Geology 35(1):73–76. doi:10.1130/G23151A.1

    Article  Google Scholar 

  • Bachmann O, Deering CD, Lipman PW, Plummer C (2014) Building zoned ignimbrites by recycling silicic cumulates: insight from the 1000 km3 Carpenter Ridge Tuff, CO. Contrib Mineral Petrol. doi:10.1007/s00410-014-1025-3

    Google Scholar 

  • Barboni M, Boehnke P, Schmitt AK, Harrison TM, Shane P, Bouvier A-S, Baumgartner L (2016) Warm storage for arc magmas. Proc Natl Acad Sci USA. doi:10.1073/pnas.1616129113

    Google Scholar 

  • Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62(7):1175–1193. doi:10.1016/S0016-7037(98)00047-7

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS (2004) Improved 206 Pb/238 U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205(1):115–140. doi:10.1016/j.chemgeo.2004.01.003

    Article  Google Scholar 

  • Brown SJA, Fletcher IR (1999) SHRIMP U–Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: Evidence for>250 k.y. magma residence times. Geology 27(11):1035–1038. doi:10.1130/0091-7613(1999)027<1035:SUP.>2.3.CO;2

    Article  Google Scholar 

  • Browne BL, Eichelberger JC, Patino LC, Vogel TA, Uto K, Hoshizumi H (2006) Magma mingling as indicated by texture and Sr/Ba ratios of plagioclase phenocrysts from Unzen volcano, SW Japan. J Volcanol Geotherm Res 154(1–2):103–116. doi:10.1016/j.jvolgeores.2005.09.022

    Article  Google Scholar 

  • Burgisser A, Bergantz GW (2011) A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471(7337):212–215. doi:10.1038/nature09799

    Article  Google Scholar 

  • Chamberlain KJ, Morgan DJ, Wilson CJN (2014) Timescales of mixing and mobilisation in the Bishop Tuff magma body: perspectives from diffusion chronometry. Contrib Mineral Petrol 168(1):1–24. doi:10.1007/s00410-014-1034-2

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, Van Calsteren PW, Davidson JP (2005) Magma Generation at a Large, Hyperactive Silicic Volcano (Taupo, New Zealand) Revealed by U–Th and U–Pb Systematics in Zircons. J Petrol 46(1):3–32. doi:10.1093/petrology/egh060

    Article  Google Scholar 

  • Charlier BLA, Bachmann O, Davidson JP, Dungan MA, Morgan D (2007) The upper crustal evolution of a large silicic magma body: evidence from crystal-scale Rb/Sr Isotopic Heterogeneities in the Fish Canyon Magmatic System, Colorado. J Petrol 48(10):1875–1894. doi:10.1093/petrology/egm043

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Flanagan DM, Clynne MA, Wooden JL (2010) Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology 38(11):1011–1014. doi:10.1130/g31285.1

    Article  Google Scholar 

  • Colucci MT, Dungan MA, Ferguson KM, Lipman PW, Moorbath S (1991) Precaldera lavas of the Southeast San-Juan volcanic field—parent magmas and crustal interactions. J Geophys Res Solid Earth 96(B8):13413–13434. doi:10.1029/91JB00282

    Article  Google Scholar 

  • Cooper KM, Kent AJR (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature 506(7489):480–483. doi:10.1038/nature12991

    Article  Google Scholar 

  • Costa F, Chakraborty S (2004) Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine. Earth Planet Sci Lett 227:517–530. doi:10.1016/j.epsl.2004.08.011

    Article  Google Scholar 

  • Costa F, Scaillet B, Pichavant M (2004) Petrological and experimental constraints on the pre-eruption conditions of Holocene dacite from Volcan San Pedro (36 degrees S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. J Petrol 45(4):855–881. doi:10.1093/petrology/egg114

    Article  Google Scholar 

  • Crabtree SM, Lange RA (2011) Complex phenocryst textures and zoning patterns in andesites and dacites: evidence of degassing-induced rapid crystallization? J Petrol 52(1):3–38. doi:10.1093/petrology/egq067

    Article  Google Scholar 

  • Crowley JL, Schoene B, Bowring SA (2007) U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35:1123–1126. doi:10.1130/G24017A.1

    Article  Google Scholar 

  • De Maisonneuve CB, Dungan MA, Bachmann O, Burgisser A (2013) Petrological insights into shifts in Eruptive Styles at Volcan Llaima (Chile). J Petrol 54(2):393–420. doi:10.1093/petrology/egs073

    Article  Google Scholar 

  • Druitt TH, Costa F, Deloule E, Dungan M, Scaillet B (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482(7383):77–80. doi:10.1038/nature10706

    Article  Google Scholar 

  • Dunkl I, Mikes T, Simon K, von Eynatten H (2008) Laser ablation ICP-MS in the earth sciences: current practices and outstanding issues. In: Sylvester P (ed) Short Course, vol 40. Mineralogical Association of Canada, pp 334–340

  • Ferry J, Watson E (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154(4):429–437. doi:10.1007/s00410-007-0201-0

    Article  Google Scholar 

  • Gelman SE, Gutierrez FJ, Bachmann O (2013) On the longevity of large upper crustal silicic magma reservoirs. Geology 41:759–762. doi:10.1130/G34241.1

    Article  Google Scholar 

  • Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe–Ti oxide geothermometer and oxygen-barometer. Am J Sci 308(9):957–1039. doi:10.2475/09.2008.01

    Article  Google Scholar 

  • Ghiorso MS, Gualda GA (2013) A method for estimating the activity of titania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron–titanium oxides. Contrib Mineral Petrol 165(1):73–81. doi:10.1007/s00410-012-0792-y

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV: a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212. doi:10.1007/BF00307281

    Article  Google Scholar 

  • Gottsmann J, Lavallee Y, Marti J, Aguirre-Diaz G (2009) Magma-tectonic interaction and the eruption of silicic batholiths. Earth Planet Sci Lett 284(3–4):426–434. doi:10.1016/j.epsl.2009.05.008

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53(5):875–890. doi:10.1093/petrology/egr080

    Article  Google Scholar 

  • Gutierrez FJ, Bachmann O, Parada MA, Payacán I, Gelman SE (2013) Late-stage magma flow in a shallow felsic reservoir: merging the anisotropy of magnetic susceptibility record with numerical simulations in La Gloria Pluton, central Chile. J Geophys Res 118:1–15. doi:10.1002/jgrb.50164

    Article  Google Scholar 

  • Hildreth W (1981) Gradients in silicic magma chambers: Implications for lithospheric magmatism. J Geophys Res 86(B11):10153–10192. doi:10.1029/JB086iB11p10153

    Article  Google Scholar 

  • Horstwood MS, Košler J, Gehrels G, Jackson SE, McLean NM, Paton C, Pearson NJ, Sircombe K, Sylvester P, Vermeesch P (2016) Community-derived standards for LA-ICP-MS U-(Th-) Pb geochronology–uncertainty propagation, age interpretation and data reporting. Geostand Geoanal Res. doi:10.1111/j.1751-908X.2016.00379.x

    Google Scholar 

  • Huber C, Bachmann O, Manga M (2009) Homogenization processes in silicic magma chambers by stirring and latent heat buffering. Earth Planet Sci Lett 283:38–47. doi:10.1016/j.epsl.2009.03.029

    Article  Google Scholar 

  • Huber C, Bachmann O, Dufek J (2011) Thermo-mechanical reactivation of locked crystal mushes: melting-induced internal fracturation and assimilation processes in magmas. Earth Planet Sci Lett 304:443–454. doi:10.1016/j.epsl.2011.02.022

    Article  Google Scholar 

  • Huber C, Bachmann O, Dufek J (2012) Crystal-poor vs. crystal-rich ignimbrites: a competition between stirring and reactivation. Geology 40:115–118. doi:10.1130/G32425.1

    Article  Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211(1):47–69. doi:10.1016/j.chemgeo.2004.06.017

    Article  Google Scholar 

  • Jaffey A, Flynn K, Glendenin L, Bentley Wt, Essling A (1971) Precision measurement of half-lives and specific activities of U 235 and U 238. Phys Rev C 4(5):1889. doi:10.1103/PhysRevC.4.1889

    Article  Google Scholar 

  • Johnson M, Rutherford M (1989) Experimentally determined conditions in the Fish Canyon Tuff, Colorado, magma chamber. J Petrol 30:711–737. doi:10.1093/petrology/30.3.711

    Article  Google Scholar 

  • Kaiser JF, de Silva S, Schmitt AK, Economos R, Sunagua M (2016) Million-year melt–presence in monotonous intermediate magma for a volcanic–plutonic assemblage in the Central Andes: contrasting histories of crystal-rich and crystal-poor super-sized silicic magmas. Earth Planet Sci Lett. doi:10.1016/j.epsl.2016.09.048

    Google Scholar 

  • Klemetti EW, Clynne MAe (2014) Localized rejuvenation of a crystal mush recorded in zircon temporal and compositional variation at the Lassen Volcanic Center, Northern California. PLoS ONE 9(12):e113157. doi:10.1371/journal.pone.0113157

    Article  Google Scholar 

  • Liebske C (2015) iSpectra: an open source toolbox for the analysis of spectral images recorded on scanning electron microscopes. Microscop Microanal 21(04):1006–1016. doi:10.1017/S1431927615014336

    Article  Google Scholar 

  • Lipman PW (1967) Mineral and chemical variations within an ash-flow sheet from Aso caldera, South Western Japan. Contrib Mineral Petrol 16:300–327. doi:10.1007/BF00371528

    Article  Google Scholar 

  • Lipman PW (2000) The central San Juan caldera cluster: Regional volcanic framework. in PM Bethke and RL Hay, eds, Ancient Lake Creede: Its Volcano-Tectonic Setting, History of Sedimentation, and Relation of Mineralization in the Creede Mining District. Geol Soc Am Spec Pap 346:9–69. doi:10.1130/0-8137-2346-9.9

    Google Scholar 

  • Lipman PW (2006) Geologic map of the central San Juan caldera cluster, southwestern Colorado. US Department of the Interior, US Geological Survey

  • Lipman PW (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain Volcanic Field. Geosphere 3(1):1–29. doi:10.1130/GES00061.1

    Article  Google Scholar 

  • Lipman PW, Bachmann O (2015) Ignimbrites to batholiths: Integrating perspectives from geological, geophysical, and geochronological data. Geosphere 11(3):705–743. doi:10.1130/GES01091.1

    Article  Google Scholar 

  • Lipman PW, McIntosh WC (2008) Eruptive and noneruptive calderas, northeastern San Juan Mountains, Colorado: Where did the ignimbrites come from? Geol Soc Am Mem 120(7–8):771–795. doi:10.1130/b26330.1

    Article  Google Scholar 

  • Lipman PW, Doe B, Hedge C (1978) Petrologic evolution of the San Juan volcanic field, Southwestern Colorado: Pb and Sr isotope evidence. Geol Soc Am Mem 89:59–82 doi:10.1130/0016-7606(1978)89<59:PEOTSJ>2.0.CO;2

    Article  Google Scholar 

  • Lipman PW, Dungan MA, Brown LL, Deino AL (1996) Recurrent eruption and subsidence at the Platoro Caldera complex, southeastern San Juan volcanic field, Colorado; new tales from old tuffs. Geol Soc Am Mem 108(8):1039–1055. doi:10.1130/0016-7606(1996)108<1039:REASAT>2.3.CO;2

    Article  Google Scholar 

  • Mahood GA (1990) Second reply to comment of R.S.J. Sparks, H.E. Huppert, and C.J.N. Wilson on “Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: the isotopic record in precaldera lavas of Glass Mountain”. Earth Planet Sci Lett 99:395–399. doi:10.1016/0012-821X(90)90145-N

    Article  Google Scholar 

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78:85–98. doi:10.1007/BF00371146

    Article  Google Scholar 

  • Martin VM, Morgan DJ, Jerram DA, Caddick MJ, Prior DJ, Davidson JP (2008) Bang! Month-Scale eruption triggering at Santorini Volcano. Science 321(5893):1178. doi:10.1126/science.1159584

    Article  Google Scholar 

  • Matthews N, Pyle D, Smith V, Wilson C, Huber C, van Hinsberg V (2012) Quartz zoning and the pre-eruptive evolution of the ~340-ka Whakamaru magma systems, New Zealand. Contrib Mineral Petrol 163(1):87–107. doi:10.1007/s00410-011-0660-1

    Article  Google Scholar 

  • Mattinson JM (2005) Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220(1):47–66. doi:10.1016/j.chemgeo.2005.03.011

    Article  Google Scholar 

  • Miller CF, Wark DA (2008) Supervolcanoes and their explosive supereruptions. Elements 4:11–16. doi:10.2113/GSELEMENTS.4.1.11

    Article  Google Scholar 

  • Molloy C, Shane P, Nairn I (2008) Pre-eruption thermal rejuvenation and stirring of a partly crystalline rhyolite pluton revealed by the Earthquake Flat Pyroclastics deposits, New Zealand. J Geol Soc Lon 165:435–447. doi:10.1144/0016-76492007-071

    Article  Google Scholar 

  • Munoz JL (1984) F–OH and Cl–OH exchange in micas with applications to hydrothermal ore deposits. In: Bailey SW (ed) Reviews in Mineralogy and Geochemistry, vol 13. Mineralogical Society of America, Chantilly, VA, pp 469–493

    Google Scholar 

  • Murphy M, Sparks R, Barclay J, Carroll M, Brewer T (2000) Remobilization of andesite magma by intrusion of mafic magma at the Soufriere Hills Volcano, Montserrat, West Indies. J Petrol 41(1):21–42. doi:10.1093/petrology/41.1.21

    Article  Google Scholar 

  • Pallister JS, Hoblitt RP, Meeker GP, Knight RJ, Siems DF (1996) Magma mixing at mount pinatubo: petrographic and chemical evidence from the 1991 Deposits. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines, vol. Univ. Washington Press, Seattle, pp 687–731

    Google Scholar 

  • Parat F, Dungan MA, Lipman PW (2005) Contemporaneous trachyandesitic and calc-alkaline volcanism of the Huerto Andesite, San Juan Volcanic Field, Colorado, USA. J Petrol 46(5):859–891. doi:10.1093/petrology/egi003

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26(12):2508–2518. doi:10.1039/C1JA10172B

    Article  Google Scholar 

  • Petrus JA, Kamber BS (2012) VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand Geoanal Res 36(3):247–270. doi:10.1111/j.1751-908X.2012.00158.x

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. In: Putirka K, Tepley F (eds) Minerals, Inclusions and Volcanic Processes, vol 69. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, pp 61–120

  • Reid MR, Coath CD, Harrison TM, McKeegan KD (1997) Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera; 230Th–238U ion microprobe dating of young zircons. Earth Planet Sci Lett 150(1–2):27–39. doi:10.1016/S0012-821X(97)00077-0

    Article  Google Scholar 

  • Riciputi LR (1991) Petrology and Nd, Sr and Pb isotopes of the central San Juan caldera cluster, Colorado. PhD Thesis. University of Wisconsin, Madison

  • Ruprecht P, Bachmann O (2010) Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. Geology 38:919–922. doi:10.1130/G31110.1

    Article  Google Scholar 

  • Ruprecht P, Bergantz GW, Dufek J (2008) Modeling of gas-driven magmatic overturn: tracking of phenocryst dispersal and gathering during magma mixing. Geochem Geophys Geosyst. doi:10.1029/2008GC002022

    Google Scholar 

  • Ruprecht P, Bergantz GW, Cooper KM, Hildreth W (2012) The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity. J Petrol. doi:10.1093/petrology/egs002

    Google Scholar 

  • Scaillet B, Holtz F, Pichavant M (1998) Phase equilibrium constraints on the viscosity of silicic magmas 1. Volcanic-plutonic comparison. J Geophys Res 103(B11):27257–27266. doi:10.1029/98JB02469

    Article  Google Scholar 

  • Schärer U (1984) The effect of initial 230Th disequilibrium on young UPb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67(2):191–204. doi:10.1016/0012-821X(84)90114-6

    Article  Google Scholar 

  • Schmitt AK, Lindsay JM, de Silva S, Trumbull RB (2003) U-Pb zircon chronostratigraphy of early-Pliocene ignimbrites from La Pacana, north Chile: implications for the formation of stratified magma chambers. J Volcanol Geotherm Res 120(1–2):43–53. doi:10.1016/S0377-0273(02)00359-1

    Article  Google Scholar 

  • Schoene B, Schaltegger U, Brack P, Latkoczy C, Stracke A, Gunther D (2012) Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet Sci Lett 355–356:162–173. doi:10.1016/j.epsl.2012.08.019

    Article  Google Scholar 

  • Simon JI, Renne PR, Mundil R (2008) Implications of pre-eruptive magmatic histories of zircons for U–Pb geochronology of silicic extrusions. Earth Planet Sci Lett 266(1–2):182–194. doi:10.1016/j.epsl.2007.11.014

    Article  Google Scholar 

  • Steven TA, Lipman PW (1976) Calderas of the San Juan volcanic field, southwestern Colorado. US Geol Surv Prof Pap 958:1–35

    Google Scholar 

  • Storm S, Shane P, Schmitt A, Lindsay J (2012) Decoupled crystallization and eruption histories of the rhyolite magmatic system at Tarawera volcano revealed by zircon ages and growth rates. Contrib Mineral Petrol. doi:10.1007/s00410-011-0682-8

    Google Scholar 

  • Sugawara T (2001) Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and petrological applications. Contrib Mineral Petrol 141(6):659–686. doi:10.1007/s004100100267

    Article  Google Scholar 

  • Tappa MJ, Coleman DS, Mills RD, Samperton KM (2011) The plutonic record of a silicic ignimbrite from the Latir volcanic field, New Mexico. Geochem Geophys Geosyst 12(10):Q10011. doi:10.1029/2011gc003700

    Article  Google Scholar 

  • Turner S, Costa F (2007) Measuring timescales of magmatic evolution. Elements 3:267–272. doi:10.2113/gselements.3.4.267

    Article  Google Scholar 

  • Vazquez JA, Reid MR (2004) Probing the accumulation history of the voluminous Toba Magma. Science 305:991–994. doi:10.1126/science.1096994

    Article  Google Scholar 

  • Walker GPL (1972) Crystal concentration in ignimbrites. Contrib Mineral Petrol 36:135–146. doi:10.1007/BF00371184

    Article  Google Scholar 

  • Walker BJ, Miller CF, Lowery LE, Wooden JL, Miller JS (2007) Geology and geochronology of the Spirit Mountain batholith, southern Nevada: implications for timescales and physical processes of batholith construction. J Volcanol Geotherm Res 167:239–262. doi:10.1016/j.jvolgeores.2006.12.008

    Article  Google Scholar 

  • Waters LE, Lange RA (2015) An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites. Am Mineral 100(10):2172–2184. doi:10.2138/am-2015-5232

    Article  Google Scholar 

  • Wolff JA et al (2015) Remelting of cumulates as a process for producing chemical zoning in silicic tuffs: a comparison of cool, wet and hot, dry rhyolitic magma systems. Lithos 236(2015):275–286. doi:10.1016/j.lithos.2015.09.002

    Google Scholar 

  • Wotzlaw J-F, Schaltegger U, Frick DA, Dungan MA, Gerdes A, Gunther D (2013) Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. Geology 41:867–870. doi:10.1130/g34366.1

    Article  Google Scholar 

  • Zellmer GF, Blake S, Vance D, Hawkesworth C, Turner S (1999) Plagioclase residence times at two island arc volcanoes (Kameni Islands, Santorini and Soufrière, St. Vincent) determined by Sr diffusion systematics. Contrib Mineral Petrol 136:345–357. doi:10.1007/s004100050543

    Article  Google Scholar 

  • Zellmer G, Sparks R, Hawkesworth C, Wiedenbeck M (2003) Magma emplacement and remobilization timescales beneath Montserrat: insights from Sr and Ba zonation in plagioclase phenocrysts. J Petrol 44(8):1413–1431. doi:10.1093/petrology/44.8.1413

    Article  Google Scholar 

  • Zellmer GF, Sakamoto N, Hwang S-L, Matsuda N, Iizuka Y, Moebis A, Yurimoto H (2016) Inferring the effects of compositional boundary layers on crystal nucleation, growth textures, and mineral chemistry in natural volcanic tephras through submicron-resolution imaging. Front. Earth Sci 4:88. doi:10.3389/feart.2016.00088

    Article  Google Scholar 

  • Zielinsky RA, Lipman PW (1976) Trace-element variations at Summer Coon volcano, San Juan Mountains, Colorado, and the origin of continental-interior andesite. Geol Soc Am Mem 87:1477–1485 doi:10.1130/0016-7606(1976)87<1477:TVASCV>2.0.CO;2

    Article  Google Scholar 

  • Zimmerer MJ, McIntosh WC (2012) The geochronology of volcanic and plutonic rocks at the Questa caldera: constraints on the origin of caldera-related silicic magmas. Geol Soc Am Mem. doi:10.1130/b30544.1

    Google Scholar 

Download references

Acknowledgements

We thank Charles Plummer for his help on early phases of this project. Further assistance was provided by Tim Teague (UC Berkeley; XRF analyses), Dr. Scott Kuehner (University of Washington, EPMAA), Dr. Charles Knaack (Washington State University; LA-ICPMS), and Dr. Katharina Pfaff (CSM, Phase maps, QEMSCAN). This work was supported by fellowships received by Charles Plummer from the GO-MAP program (University of Washington), ARCS-Seattle Chapter, and the National Science Foundation [DGE-0718124]. Field and analytical work were funded by the Larsen Fund (UC Berkeley to Chris Huber) and by the National Science Foundation [EAR 0809828] to Olivier Bachmann. Zircon CL images were obtained at the Scientific Center for Optical and Electron Microscopy (ScopeM) at ETHZ. We thank Anita Grunder and Georg Zellmer for constructive reviews, and Othmar Müntener for editorial handling. We also thank George Bergantz, Bruce Nelson, Bob Wiebe, Colin Wilson, and Gail Mahood for constructive criticism on previous versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Sliwinski.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2017_1351_MOESM1_ESM.xlsx

Supplementary material 1 (XLSX 55 KB): Sample names, locations, coordinates and whole rock major and trace element data for samples in this study

Supplementary material 2 (DOCX 14 KB): Representative plagioclase EPMA analyses from the MPT

Supplementary material 3 (DOCX 14 KB): Representative biotite EPMA analyses from the MPT

Supplementary material 4 (DOCX 15 KB): Representative clinopyroxene EPMA analyses from the MPT

Supplementary material 5 (DOCX 27 KB): Zircon U-Pb LA-ICP-MS data from the MPT

410_2017_1351_MOESM6_ESM.eps

Supplementary Figure S6: Phase maps for four thin sections of the Masonic Park Tuff (Qemscans, Colorado School of Mines), showing modal proportion of minerals. Optical microscope photo shows small quartz crystals in MPT08-7. The modal abundance of quartz averages 6–7%, but quartz does not form phenocrysts, only microlites. (EPS 59650 KB)

410_2017_1351_MOESM7_ESM.eps

Supplementary Figure S7: Phase maps for thin sections from the MPT and FCT (ETHZ SEM), including modal estimates and differences in modal abundances. Modified after Bachmann and Huber (2016) (EPS 11546 KB)

410_2017_1351_MOESM8_ESM.eps

Supplementary Figure S8: PhasePlot output (App of Rhyolite-MELTS; Gualda et al. 2012), showing the most appropriate P–T conditions for the MPT based on phase equilibria. (EPS 7960 KB)

Supplementary material 9 (DOCX 57 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sliwinski, J.T., Bachmann, O., Dungan, M.A. et al. Rapid pre-eruptive thermal rejuvenation in a large silicic magma body: the case of the Masonic Park Tuff, Southern Rocky Mountain volcanic field, CO, USA. Contrib Mineral Petrol 172, 30 (2017). https://doi.org/10.1007/s00410-017-1351-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1351-3

Keywords

Navigation