Crystallization conditions of peraluminous charnockites: constraints from mineral thermometry and thermodynamic modelling

Original Paper

Abstract

Most igneous charnockites are interpreted to have crystallized at hot and dry conditions, i.e. at >800 °C and <3 wt.% H2O and with an important CO2 component in the system. These charnockites are metaluminous to weakly peraluminous and their formation involves a significant mantle-derived component. This study, in contrast, investigates the crystallization conditions of strongly peraluminous, metasediment-sourced charnockites from the Qinzhou Bay Granitic Complex, South China. To constrain the temperature-melt H2O crystallization paths for the studied peraluminous charnockites, petrographic characterization was combined with fluid inclusion compositional data, mineral thermometry, and thermodynamic modelling. The uncertainties of the thermodynamic modelling in reconstructing the crystallization conditions of the granitic magmas have been evaluated by comparison between modelled and experimental phase relations for a moderately evolved, peraluminous granite (~70 wt.% SiO2). The comparison suggests that the modelling reproduces the experimentally derived phase saturation boundaries with uncertainties of 20–60 °C and 0.5–1 wt.% H2O for systems with ≤1–2 wt.% initial melt H2O at ~0.2 GPa. For the investigated natural systems, the thermometric estimates and modelling indicate that orthopyroxene crystallized at relatively low temperature (750–790 ± 30 °C) and moderately high to high melt H2O content (3.5–5.6 ± 0.5 wt.%). The charnockites finally solidified at relatively “cold” and “wet” conditions. This suggests that thermodynamic modelling affords a possible approach to constrain charnockite crystallization as tested here for peraluminous, moderately low pressure (≤0.3 GPa), and overall H2O-poor systems (≤1–2 wt.% H2O total), but yields results with increasing uncertainty for high-pressure or H2O-rich granitic systems.

Keywords

Igneous charnockite Orthopyroxene Melt H2O content CH4-dominant melt inclusions Thermodynamic modelling 

Supplementary material

410_2017_1344_MOESM1_ESM.pdf (197 kb)
Supplementary material 1 (PDF 197 KB)
410_2017_1344_MOESM2_ESM.pdf (285 kb)
Supplementary material 2 (PDF 285 KB)
410_2017_1344_MOESM3_ESM.pdf (223 kb)
Supplementary material 3 (PDF 223 KB)
410_2017_1344_MOESM4_ESM.pdf (181 kb)
Supplementary material 4 (PDF 181 KB)

References

  1. Almeev RR, Bolte T, Nash BP, Holtz F, Erdmann M, cathey he (2012) high-Temperature, low-H2O silicic magmas of the yellowstone hotspot: an experimental study of rhyolite from the Bruneau–Jarbidge eruptive center, central snake river plain, USA. J Petrol 53:1837–1866. doi:10.1093/petrology/egs035 CrossRefGoogle Scholar
  2. Anderson JL (1996) Status of thermobarometry in granitic batholiths. Trans R Soc Edinb Earth Sci 87:125–138. doi:10.1017/S0263593300006544 CrossRefGoogle Scholar
  3. Anderson IC, Frost CD, Frost BR (2003) Petrogenesis of the red mountain pluton, Laramie anorthosite complex, wyoming: implications for the origin of A-type granite. Precambrian Res 124:243–267. doi:10.1016/s0301-9268(03)00088-3 CrossRefGoogle Scholar
  4. Anderson JL, Barth AP, Wooden JL, Mazdab F (2008) Thermometers and thermobarometers in granitic systems. Rev Mineral Geochem 69:121–142. doi:10.2138/rmg.2008.69.4 CrossRefGoogle Scholar
  5. Barley ME (1987) Origin and evolution of mid-cretaceous, garnet-bearing, intermediate and silicic volcanics from Canterbury, New Zealand. J Volcanol Geotherm Res 32:247–267CrossRefGoogle Scholar
  6. Bartoli O, Cesare B, Remusat L, Acosta-Vigil A, Poli S (2014) The H2O content of granite embryos. Earth Planet Sci Lett 395:281–290. doi:10.1016/j.epsl.2014.03.031 CrossRefGoogle Scholar
  7. Behrens H, Meyer M, Holtz F, Benne D, Nowak M (2001) The effect of alkali ionic radius, temperature, and pressure on the solubility of water in MAlSi3O8 melts (M = Li, Na, K, Rb). Chem Geol 174:275–289. doi:10.1016/s0009-2541(00)00320-x CrossRefGoogle Scholar
  8. Berman RG (1991) Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications. Can Mineral 29:833–855Google Scholar
  9. Borg LE, Clynne MA (1998) The petrogenesis of felsic calc-alkaline magmas from the southernmost Cascades, California: origin by partial melting of basaltic lower crust. J Petrol 39:1197–1222CrossRefGoogle Scholar
  10. Bucher K, Frost BR (2006) Fluid transfer in high-grade metamorphic terrains intruded by anorogenic granites: the Thor Range, Antarctica. J Petrol 47:567–593. doi:10.1093/petrology/egi086 CrossRefGoogle Scholar
  11. Burnham CW (1979) The importance of volatile constituents. In: Yoder HS (ed) The evolution of the igneous rocks (fiftieth anniversary perspectives). Princeton University Press, New Jersey, pp 439–482Google Scholar
  12. Cadoux A, Scaillet B, Druitt TH, Deloule E (2014) Magma storage conditions of large Plinian eruptions of Santorini volcano (Greece). J Petrol 55:1129–1171. doi:10.1093/petrology/egu021 CrossRefGoogle Scholar
  13. Charoy B, Barbey P (2008) Ferromagnesian silicate association in S-type granites: the Darongshan granitic complex (Guangxi, South China). Bull Soc geol Fr 179:13–27CrossRefGoogle Scholar
  14. Chen B, Zhuang YX (1994) The petrology and petrogenesis of Yunlu charnockite and its granulite inclusion, west Guangdong, South China. Acta Petrol Sin 10:139–150 (In Chinese with English abstract)Google Scholar
  15. Clemens JD, Birch WD (2012) Assembly of a zoned volcanic magma chamber from multiple magma batches: the Cerberean Cauldron, Marysville Igneous Complex, Australia. Lithos 155:272–288. doi:10.1016/j.lithos.2012.09.007 CrossRefGoogle Scholar
  16. Clemens JD, Phillips GN (2014) Inferring a deep-crustal source terrane from a high-level granitic pluton: the Strathbogie Batholith, Australia. Contrib Mineral Petrol 168:1070. doi:10.1007/s00410-014-1070-y CrossRefGoogle Scholar
  17. Clemens J, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306CrossRefGoogle Scholar
  18. Clemens J, Wall VJ (1981) Origin and crystallization of some peraluminous (S-type) granitic magmas. Can Mineral 19:111–131Google Scholar
  19. Clemens J, Wall VJ (1984) Origin and evolution of a peraluminous silicic ignimbrite suite: the violet town volcanics. Contrib Mineral Petrol 88:354–371CrossRefGoogle Scholar
  20. Clemens JD, Birch WD, Dudley RA (2011) S-type ignimbrites with polybaric crystallisation histories: the Tolmie Igneous Complex, Central Victoria, Australia. Contrib Mineral Petrol 162:1315–1337. doi:10.1007/s00410-011-0652-1 CrossRefGoogle Scholar
  21. Collins WJ, Huang H-Q, Jiang X (2016) Water-fluxed crustal melting produces Cordilleran batholiths. Geology 44:143–146. doi:10.1130/g37398.1 CrossRefGoogle Scholar
  22. Connolly JAD (2005) Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541CrossRefGoogle Scholar
  23. Dall’Agnol R, Scaillet B, Pichavant M (1999) An Experimental study of a lower proterozoic A-type granite from the Eastern Amazonian Craton, Brazil. J Petrol 40:1673–1698CrossRefGoogle Scholar
  24. de Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95:1006–1016. doi:10.2138/am.2010.3354 CrossRefGoogle Scholar
  25. Drivenes K, Larsen RB, Müller A, Sørensen BE (2016) Crystallization and uplift path of late Variscan granites evidenced by quartz chemistry and fluid inclusions: Example from the Land’s End granite, SW England. Lithos 252–253:57–75. doi:10.1016/j.lithos.2016.02.011 CrossRefGoogle Scholar
  26. Eggins S, Hensen BJ (1987) Evolution of mantle-derived, augite-hypersthene granodiorites by crystal-liquid fractionation: barrington Tops Batholith, eastern Australia. Lithos 20:295–310. doi:10.1016/s0024-4937(87)80003-8 CrossRefGoogle Scholar
  27. Frost CD, Frost BR, Chamberlain KR, Edeards BR (1999) Petrogenesis of the 1·43 Ga Sherman Batholith, SE Wyoming, USA: a Reduced, Rapakivi-type Anorogenic Granite. J Petrol 40:1771–1802CrossRefGoogle Scholar
  28. Frost BR, Frost CD, Hulsebosch TP, Swapp SM (2000) Origin of the Charnockites of the Louis Lake Batholith, Wind River Range, Wyoming. J Petrol 41:1759–1776CrossRefGoogle Scholar
  29. Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215Google Scholar
  30. Gardner JE, Befus KS, Gualda GAR, Ghiorso MS (2014) Experimental constraints on rhyolite MELTS and the Late Bishop Tuff magma body. Contrib Mineral Petrol 168:1051. DOI:10.1007/s00410-014-1051-1 CrossRefGoogle Scholar
  31. Goswami B, Bhattacharyya C (2014) Petrogenesis of shoshonitic granitoids, eastern India: Implications for the late Grenvillian post-collisional magmatism. Geosci Front 5:821–843. doi:10.1016/j.gsf.2013.09.003 CrossRefGoogle Scholar
  32. Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for Silica-rich, Fluid-bearing magmatic systems. J Petrol 53:875–890. doi:10.1093/petrology/egr080 CrossRefGoogle Scholar
  33. Gualda GAR, Ghiorso MS (2015) MELTS_Excel: A Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution. Geochem, Geophys Geosyst 16(1):315–324CrossRefGoogle Scholar
  34. Harlov DE, Van Den Kerkhof A, Johansson L (2013) The Varberg-Torpa Charnockite-Granite Association, SW Sweden: mineralogy, petrology, and fluid inclusion chemistry. J Petrol 54:3–40. doi:10.1093/petrology/egs060 CrossRefGoogle Scholar
  35. Henry DJ, Guidotti CV, Thomson JA (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. Am Mineral 90:316–328. doi:10.2138/am.2005.1498 CrossRefGoogle Scholar
  36. Holland T, Powell R (1996) Thermodynamics of order-disorder in minerals. 2. Symmetric formalism applied to solid solutions. Am Mineral 81:1425–1437CrossRefGoogle Scholar
  37. Holland T, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343CrossRefGoogle Scholar
  38. Holtz F, Behrens H, Dingwell DB, Johannes W (1995) H2O solubility in haplogranitic melts: Compositional, pressure, and temperature dependence. Am Mineral 80:94–108CrossRefGoogle Scholar
  39. Jian P, Liu D, Kröner A, Zhang Q, Wang Y, Sun X, Zhang W (2009) Devonian to permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos 113:767–784. doi:10.1016/j.lithos.2009.04.006 CrossRefGoogle Scholar
  40. Jiao SJ, Guo JH, Peng SB (2013) Petrogenesis of garnet in the Darongshan-Shiwandashan granitic suite of the South China Block and the metamorphism of the granulite enclave. Acta Petrol Sin 29:1740–1758 (In Chinese with English abstract)CrossRefGoogle Scholar
  41. Jiao SJ, Li XH, Huang HQ, Deng XG (2015) Metasedimentary melting in the formation of charnockite: petrological and zircon U-Pb-Hf-O isotope evidence from the Darongshan S-type granitic complex in southern China. Lithos 239:217–233. doi:10.1016/j.lithos.2015.10.004 CrossRefGoogle Scholar
  42. Klimm K, Holtz F, King PL (2008) Fractionation vs. magma mixing in the Wangrah suite A-type granites, Lachlan Fold Belt, Australia: experimental constraints. Lithos 102:415–434. doi:10.1016/j.lithos.2007.07.018 CrossRefGoogle Scholar
  43. Lajoie J (1979) Facies models 15. volcaniclastic rocks. Geosci Can 6:129–138Google Scholar
  44. Liang XQ, Li XH (2005) Late permian to middle triassic sedimentary records in shiwandashan basin: implication for the Indosinian Yunkai Orogenic belt, South China. Sediment Geol 177:297–320. doi:10.1016/j.sedgeo.2005.03.009 CrossRefGoogle Scholar
  45. Lindsley DH, Nekvasil H (1989) A ternary feldspar model for all reasons. Eos 70:506Google Scholar
  46. Naney MT (1983) Phase equilibrium of rock-forming ferromagnesian silicates in granitic systems. Am J Sci 283:993–1033CrossRefGoogle Scholar
  47. Newton RC, Charlu TV, Kleppa OJ (1980) Thermochemistry of the high structural state plagioclases. Geochem Cosmochim Acta 44:933–941CrossRefGoogle Scholar
  48. Ormaasen DE (1977) Petrology of the Hopen mangerite-charnockite intrusion, Loften, north Norway. Lithos 10:291–310CrossRefGoogle Scholar
  49. Potter J, Konnerup-Madsen J (2003) A review of the occurrence and origin of abiogenic hydrocarbons in igneous rocks. Geol Soc Lond Spec Publ 214:151–173CrossRefGoogle Scholar
  50. Powell R, Holland T (1988) An internally consistent thermodynamic dataset with uncertainties and correlations III. Application methods, worked examples and a computer program. J Metamorph Geol 6:173–204CrossRefGoogle Scholar
  51. Powell R, Holland T (1999) Relating formulations of the thermodynamics of mineral solid solutions: activity modeling of pyroxenes, amphiboles, and micas. Am Mineral 84:1–14CrossRefGoogle Scholar
  52. Qi CS, Deng XG, Li WX, Yang YH, Xie LW (2007) Origin of the Darongshan-Shiwandashan S-type granitoid belt from southeastern Guangxi: geochemical and Sr-Nd-Hf isotopic constraints. Acta Petrol Sin 23:403–412 (In Chinese with English abstract)Google Scholar
  53. Qin X, Wang Z, Zhang Y, Pan L, Hu G, Zhou F (2011) Geochronology and geochemistry of Early Mesozoic acid volcanic rocks from Southwest Guangxi: Constraints on tectonic evolution of the southwestern segment of Qinzhou-Hangzhou jonit belt. Acta Petrol Sin 27:794–808 (In Chinese with English abstract)Google Scholar
  54. Rajesh HM (2004) The igneous charnockite—high-K alkali-calcic I-type granite—incipient charnockite association in Trivandrum Block, southern India. Contrib Mineral Petrol 147:346–362. doi:10.1007/s00410-004-0561-7 CrossRefGoogle Scholar
  55. Rajesh HM, Santosh M, Yoshikura S (2011) The nagercoil charnockite: a magnesian, calcic to calc-alkalic granitoid dehydrated during a granulite-facies metamorphic event. J Petrol 52:375–400. doi:10.1093/petrology/egq084 CrossRefGoogle Scholar
  56. Roger F, Maluski H, Leyreloup A, Lepvrier C, Truong Thi P (2007) U–Pb dating of high temperature metamorphic episodes in the Kon Tum Massif (Vietnam). J Asian Earth Sci 30:565–572. doi:10.1016/j.jseaes.2007.01.005 CrossRefGoogle Scholar
  57. Scaillet B, Evans BW (1999) The 15 June 1991 Eruption of Mount Pinatubo. I. Phase Equilibria and Pre-eruption P–T–fO2–fH2O Conditions of the Dacite Magma. J Petrol 40:381–411CrossRefGoogle Scholar
  58. Scaillet B, Holtz F, Pichavant M (2016) Experimental constraints on the formation of silicic magmas. Elements 12:109–114. doi:10.2113/gselements.12.2.109 CrossRefGoogle Scholar
  59. Scoates JS, Frost CD, Mitchell JN, Lindsley DH, Frost BR (1996) Residual-liquid origin for a monzonitic intrusion in a mid-Proterozoic anorthosite complex: The sybille intrusion, laramie anorthosite complex, wyoming. Geol Soc Am Bull 108:1357–1371CrossRefGoogle Scholar
  60. Shimura T, Komatsu M, Iiyama JT (1992) Genesis of the lower crustal garnet-orthopyroxene tonalites (S-type) of the Hidaka Metamorphic Belt, northern Japan. Trans R Soc Edinb Earth Sci 83:259–268. doi:10.1017/s026359330000794x CrossRefGoogle Scholar
  61. Tajčmanová L, Connolly JAD, Cesare B (2009) A thermodynamic model for titanium and ferric iron solution in biotite. J Metamorph Geol 27(2):153–165CrossRefGoogle Scholar
  62. Waldbaum DR, Thompson JB (1968) Mixing properties of sanidine crystalline solutions 0.2. Calculations based on volume data. Am Mineral 53:2000Google Scholar
  63. Wang D et al (1982) The characteristics and the origin of the autoclastic monzonitic granite-porphyry, Tonglu, Zhejiang. Acta Petrol Mineral Et Anal 1:16–24 (In Chinese with English abstract)Google Scholar
  64. Wang D, Zheng J, Ma Q, Griffin WL, Zhao H, Wong J (2013) Early Paleozoic crustal anatexis in the intraplate Wuyi–Yunkai orogen, South China Lithos 175–176:124–145. doi:10.1016/j.lithos.2013.04.024
  65. Weiss S, Troll G (1989) The Ballachulish igneous complex, Scotland: petrography, mineral chemistry, and order of crystallization in the monzodiorite-quartz diorite suite and in the granite. J Petrol 30:1069–1115CrossRefGoogle Scholar
  66. Wen S, Nekvasil H (1994) SOLVALC: An interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry. Comput Geosci 20:1025–1040CrossRefGoogle Scholar
  67. White RW, Powell R, Holland T (2001) Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). J Petrol 19:139–153Google Scholar
  68. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187. doi:10.2138/am.2010.3371 CrossRefGoogle Scholar
  69. Wilmart E, Clocchiatti R, Duchesne J-C, Touret LR (1991) Fluid inclusions in charnockites from the Bjerkreim-Sokndal massif (Rogaland, southwestern Norway): fluid origin and in situ evolution. Contrib Mineral Petrol 108:453–462CrossRefGoogle Scholar
  70. Wu CM, Pan Y, Wang K (1999) Refinement of the biotite-orthopyroxene geothermometer with applications. Acta Petrol Sin 15:463–468 (In Chinese with English abstract)Google Scholar
  71. Yang J, Cawood PA, Du Y, Huang H, Hu L (2014) A sedimentary archive of tectonic switching from Emeishan Plume to Indosinian orogenic sources in SW China. J Geol Soc 171(2):269–280CrossRefGoogle Scholar
  72. Zhao L, Guo F, Fan W, Li C, Qin X, Li H (2010) Crustal evolution of the Shiwandashan area in South China: Zircon U-Pb-Hf isotopic records from granulite enclaves in Indo-Sinian granites. Chin Sci Bull 55:2028–2038. doi:10.1007/s11434-010-3225-1 CrossRefGoogle Scholar
  73. Zhao L, Guo F, Fan W, Li C, Qin X, Li H (2012) Origin of the granulite enclaves in Indo-Sinian peraluminous granites, South China and its implication for crustal anatexis. Lithos 150:209–226. doi:10.1016/j.lithos.2012.02.015 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and EngineeringNanjing UniversityNanjingChina

Personalised recommendations