Skip to main content

Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents

Abstract

Silicate melt inclusions (MI) commonly provide the best record of pre-eruptive H2O and CO2 contents of subvolcanic melts, but the concentrations of CO2 and H2O in the melt (glass) phase within MI can be modified by partitioning into a vapor bubble after trapping. Melt inclusions may also enclose vapor bubbles together with the melt (i.e., heterogeneous entrapment), affecting the bulk volatile composition of the MI, and its post-entrapment evolution. In this study, we use numerical modeling to examine the systematics of post-entrapment volatile evolution within MI containing various proportions of trapped vapor from zero to 95 volume percent. Modeling indicates that inclusions that trap only a vapor-saturated melt exhibit significant decrease in CO2 and moderate increase in H2O concentrations in the melt upon nucleation and growth of a vapor bubble. In contrast, inclusions that trap melt plus vapor exhibit subdued CO2 depletion at equivalent conditions. In the extreme case of inclusions that trap mostly the vapor phase (i.e., CO2–H2O fluid inclusions containing trapped melt), degassing of CO2 from the melt is negligible. In the latter scenario, the large fraction of vapor enclosed in the MI during trapping essentially serves as a buffer, preventing post-entrapment modification of volatile concentrations in the melt. Hence, the glass phase within such heterogeneously entrapped, vapor-rich MI records the volatile concentrations of the melt at the time of trapping. These numerical modeling results suggest that heterogeneously entrapped MI containing large vapor bubbles represent amenable samples for constraining pre-eruptive volatile concentrations of subvolcanic melts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Almeev RR, Holtz F, Koepke J, Parat F, Botcharnikov RE (2007) The effect of H2O on olivine crystallization in MORB: Experimental calibration at 200 MPa. Am Mineral 92:670–674

    Article  Google Scholar 

  2. Anderson AT (1991) Hourglass inclusions: theory and application to the Bishop Rhyolitic Tuff. Am Mineral 76:530–547

    Google Scholar 

  3. Anderson AT, Brown GG (1993) CO2 contents and formation pressures of some Kilauean melt inclusions. Am Mineral 78:794–803

    Google Scholar 

  4. Aster EM, Wallace PJ, Moore LR, Watkins J, Gazel E, Bodnar RJ (2016) Reconstructing CO2 concentrations in basaltic melt inclusions using Raman analysis of vapor bubbles. J Volcanol Geoth Res 323:148–162

    Article  Google Scholar 

  5. Belkin HE, De Vivo B (1993) Fluid inclusion studies of ejected nodules from plinian eruptions of Mt. Somma-Vesuvius. J Volcanol Geoth Res 58:89–100

    Article  Google Scholar 

  6. Belkin HE, De Vivo B, Roedder E, Cortini M (1985) Fluid inclusion geobarometry from ejected Mt. Somma-Vesuvius nodules. Am Mineral 70:288–303

    Google Scholar 

  7. Bodnar RJ, Binns PR, Hall DL (1989) Synthetic fluid inclusions – VI. Quantitative evaluation of the decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure. J Metamorphic Geol 7:229–242

    Article  Google Scholar 

  8. Bodnar RJ, Student JJ (2006) Melt inclusions in plutonic rocks: Petrography and microthermometry. In: Webster JD (ed) Melt Inclusions in Plutonic Rocks, Mineralogical Association of Canada Short Course Series Volume 36. pp 1–26

  9. Bucholz CE, Gaetani GA, Behn MD, Shimizu N (2013) Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet Sci Lett 374:145–155

    Article  Google Scholar 

  10. Burnham CW, Davis NF (1971) The role of H2O in silicate melts: I. P-V-T relations in the system NaAlSi3O8–H2O to 10 kilobars and 1000 °C. Am J Sci 270:54–79

    Article  Google Scholar 

  11. Burnham CW, Davis NF (1974) The role of H2O in silicate melts: II. Thermodynamic and phase relations in the system NaAlSi3O8-H2O to 10 kilobars, 700° to 1100 °C. Am J Sci 274:902–940

    Article  Google Scholar 

  12. Cannatelli C, Doherty AL, Esposito R, Lima A, De Vivo B (2016) Understanding a volcano through a droplet: A melt inclusion approach. J Geochem Explor 171:4–19

    Article  Google Scholar 

  13. Connolly JAD, Bodnar RJ (1983) A modified Redlich-Kwong equation of state for H2O-CO2 mixtures: application to fluid inclusion studies. EOS Trans 64:350

    Google Scholar 

  14. Danyushevsky LV, Della Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas; petrological implications. Contrib Mineral Petr 138:68–83

    Article  Google Scholar 

  15. Diamond LW (2001) Review of the systematics of CO2–H2O fluid inclusions. Lithos 55:69–99

  16. Diamond LW (2003) Introduction to gas-bearing, aqueous fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid Inclusions Analysis and Interpretation, Mineralogical Association of Canada Short Course Series Volume 32. pp 101–158

  17. Esposito R, Bodnar RJ, Danyushevsky LV, De Vivo B, Fedele L, Hunter J, Lima A, Shimizu N (2011) Volatile evolution of magma associated with the Solchiaro eruption in the Phlegrean Volcanic District (Italy). J Petrol 52:2431–2460

    Article  Google Scholar 

  18. Esposito R, Hunter J, Schiffbauer JD, Shimizu N, Bodnar RJ (2014) An assessment of the reliability of melt inclusions as recorders of the pre-eruptive volatile content of magmas. Am Mineral 99:976–998

    Article  Google Scholar 

  19. Esposito R, Lamadrid HM, Redi D, Steele-MacInnis M, Bodnar RJ, Manning CE, De Vivo B, Cannatelli C, Lima A (2016) Detection of liquid H2O in vapor bubbles in reheated melt inclusions: implications for magmatic fluid composition and volatile budgets of magmas. Am Mineral 101:1691–1695

    Article  Google Scholar 

  20. Gaetani GA, O’Leary JA, Shimizu N, Bucholz CE, Newville M (2012) Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40:915–918

    Article  Google Scholar 

  21. Giordano D, Potuzak M, Romano C, Dingwell DB, Nowak M (2008) Viscosity and glass transition temperature of hydrous melts in the system CaAl2Si2O8–CaMgSi2O6. Chem Geol 256:203–215

    Article  Google Scholar 

  22. Harris AC, Kamenetsky VS, White NC, van Achterbergh E, Ryan CG (2003) Melt incluions in veins: Linking magmas and porphyry Cu deposits. Science 302:2109–2111

    Article  Google Scholar 

  23. Hartley ME, Maclennan J, Edmonds M, Thordarson T (2014) Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth Planet Sci Lett 393:120–131

    Article  Google Scholar 

  24. Hartley ME, Neave DA, Maclennan J, Edmonds M, Thordarson T (2015) Diffusive over-hydration of olivine-hosted melt inclusions. Earth Planet Sci Lett 425:168–178

    Article  Google Scholar 

  25. Holloway JR (1977) Fugacity and activity of molecular species in supercritical fluids. In: Fraser DG (ed) Thermodynamics in Geology. Reidel, Dordrecht, pp 161–181

    Chapter  Google Scholar 

  26. Holloway JR (1987) Igneous fluids. Rev Mineral 17:211–233

    Google Scholar 

  27. Holloway JR, Blank JG (1994) Application of experimental results to C–O–H species in natural melts. Rev Mineral 30:187–230

    Google Scholar 

  28. Iacovino K (2014) Glass Density Calc v.3.0. http://www.kaylaiacovino.com/tools-for-petrologists/. Accessed 28 January 2017.

  29. Kamenetsky VS, Binns RA, Gemmell JB, Crawford AJ, Mernagh TP, Maas R, Steele D (2001) Parental basaltic melts and fluids in eastern Manus backarc Basin: implications for hydrothermal mineralisation. Earth Planet Sci Lett 184:685–702

    Article  Google Scholar 

  30. Lange RL, Carmichael ISE (1987) Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–TiO2–SiO2 liquids: new measurements and derived partial molar volumes. Geochim Cosmochim Acta 53:2195–2946

    Article  Google Scholar 

  31. Lange RL, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. Rev Mineral 24:25–64

    Google Scholar 

  32. Lowenstern JB (1994) Dissolved volatile concentrations in an ore-forming magma. Geology 22:893–896

    Article  Google Scholar 

  33. Lowenstern JB (1995) Applications of silicate-melt inclusions to the study of magmatic volatiles. In: Thompson JFH (ed) Magmas, fluids and ore deposition, Mineralogical Association of Canada Short Course Series Volume 23. pp 71–99

  34. Lowenstern JB (2003) Melt inclusions come of age; volatiles, volcanoes, and Sorby’s legacy. In: De Vivo B, Bodnar RJ (eds) Melt Inclusions in Volcanic Systems: Methods, Applications and Problems. Elsevier, Amsterdam, pp 1–21

    Chapter  Google Scholar 

  35. Maclennan J (2017) Bubble formation and decrepitation control the CO2 content of olivine-hosted melt inclusions. Geochem, Geophys, Geosyst (in press) doi:10.1002/2016GC006633

  36. Métrich N, Wallace PJ (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Rev Mineral Geochem 69:363–402

    Article  Google Scholar 

  37. Mironov N, Portnyagin M (2011) H2O and CO2 in parental magmas of Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine. Russ Geol Geophys 52:1353–1367

    Article  Google Scholar 

  38. Mironov N, Portnyagin M, Botcharnikov R, Gurenko A, Hoernle K, Holtz F (2015) Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure. Earth Planet Sci Lett 425:1–11

    Article  Google Scholar 

  39. Moore LR, Gazel E, Tuohy R, Lloyd AS, Esposito R, Steele-MacInnis M, Hauri EH, Wallace PJ, Plank T, Bodnar RJ (2015) Bubbles matter: an assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. Am Mineral 100:806–823

    Article  Google Scholar 

  40. Newman S, Lowenstern JB (2002) VolatileCalc: A silicate melt-H2O–CO2 solution model written in visual basic for excel. Chem Geol 28:597–604

    Google Scholar 

  41. Ochs FA, Lange RA (1999) The density of hydrous magmatic liquids. Science 283:1314–1317

    Article  Google Scholar 

  42. Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95

    Article  Google Scholar 

  43. Portnyagin M, Almeev R, Matveev S, Holtz F (2008) Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet Sci Lett 272:541–552

    Article  Google Scholar 

  44. Qin Z, Lu F, Anderson AT (1992) Diffusive reequilibration of melt and fluid inclusions. Am Mineral 77:565–576

    Google Scholar 

  45. Redlich O, Kwong JNS (1949) On the thermodynamics of solutions. Chem Rev 44:233–244

    Article  Google Scholar 

  46. Schiavi F, Provost A, Schiano P, Cluzel N (2016) P-V-T-X evolution of olivine-hosted melt inclusions during high-temperature homogenization treatment. Geochim Cosmochim Acta 172:1–21

    Article  Google Scholar 

  47. Shishkina TA, Botcharnikov RE, Holtz F, Almeev R, Jazwa AM, Jakubiak AA (2014) Compositional and pressure effects on the solubility of H2O and CO2 in mafic melts. Chem Geol 388:112–129

    Article  Google Scholar 

  48. Steele-MacInnis M, Esposito R, Bodnar RJ (2011) Thermodynamic model for the effect of post-entrapment crystallization on the H2O–CO2 systematics of vapor-saturated, silicate melt inclusions. J Petrol 52:2461–2482

    Article  Google Scholar 

  49. Stefanova E, Driesner T, Zajacz Z, Heinrich CA, Petrov P, Vasilev Z (2014) Melt and fluid inclusions in hydrothermal veins: The magmatic to hydrothermal evolution of the Elatsite porphyry Cu-Au deposit, Bulgaria. Econ Geol 109:1359–1381

    Article  Google Scholar 

  50. Sterner SM, Bodnar RJ (1991) Synthetic fluid inclusions. X: Experimental determination of P-V-T-X properties in the CO2–H2O system to 6 kb and 700 °C. Am J Sci 291:1–54

    Article  Google Scholar 

  51. Student JJ, Bodnar RJ (1996) Melt inclusion microthermometry; petrologic constraints from the H2O-saturated haplogranite system. Petrology 4:291–306

    Google Scholar 

  52. Tuohy, RM, Wallace PJ, Loewen MW, Swanson DA K en t AJR (2016) Magma transport and olivine crystallization depths in Kīlauea’s east rift zone inferred from experimentally rehomogenized melt inclusions. Geochim Cosmochim Acta 185:232–250

    Article  Google Scholar 

  53. Wallace PJ, Kamenetsky VS, Cervantes P (2015) Melt inclusion CO2 contents, pressures of olivine crystallization, and the problem of shrinkage bubbles. Am Mineral 100:787–794

    Article  Google Scholar 

  54. Zajacz Z, Halter WE, Pettke T, Guillong M (2008) Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning. Geochim Cosmochim Acta 72:2169–2197

    Article  Google Scholar 

  55. Zanon V, Frezzotti ML (2013) Magma storage and ascent conditions beneath Pico and Faial islands (Azores archipelago): A study on fluid inclusions. Geochem Geophys Geosyst 14:3494–3514

    Article  Google Scholar 

  56. Zanon V, Pimentel A (2015) Spatio-temporal constraints on magma storage and ascent conditions in a transtensional setting: the case of Terceira Island (Azores). Am Mineral 100:795–805

    Article  Google Scholar 

Download references

Acknowledgements

We thank Esteban Gazel and Robert J. Bodnar for discussions that led to this research. We thank Paul J. Wallace and Robin Tuohy for providing samples from Kilauea. We thank the two anonymous reviewers and editor Mark Ghiorso for their constructive comments that contributed ideas towards interpretation of MI-volatile data, and helped significantly improve this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthew Steele-MacInnis.

Additional information

Communicated by Mark S. Ghiorso.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steele-MacInnis, M., Esposito, R., Moore, L.R. et al. Heterogeneously entrapped, vapor-rich melt inclusions record pre-eruptive magmatic volatile contents. Contrib Mineral Petrol 172, 18 (2017). https://doi.org/10.1007/s00410-017-1343-3

Download citation

Keywords

  • Silicate melt
  • Melt inclusions
  • Fluid inclusions
  • Vapor bubbles
  • H2O
  • CO2
  • Degassing