CO2 content of andesitic melts at graphite-saturated upper mantle conditions with implications for redox state of oceanic basalt source regions and remobilization of reduced carbon from subducted eclogite

  • James EguchiEmail author
  • Rajdeep Dasgupta
Original Paper


We have performed experiments to determine the effects of pressure, temperature and oxygen fugacity on the CO2 contents in nominally anhydrous andesitic melts at graphite saturation. The andesite composition was specifically chosen to match a low-degree partial melt composition that is generated from MORB-like eclogite in the convective, oceanic upper mantle. Experiments were performed at 1–3 GPa, 1375–1550 °C, and fO2 of FMQ −3.2 to FMQ −2.3 and the resulting experimental glasses were analyzed for CO2 and H2O contents using FTIR and SIMS. Experimental results were used to develop a thermodynamic model to predict CO2 content of nominally anhydrous andesitic melts at graphite saturation. Fitting of experimental data returned thermodynamic parameters for dissolution of CO2 as molecular CO2: ln(K 0) = −21.79 ± 0.04, ΔV 0 = 32.91 ± 0.65 cm3mol−1, ΔH 0 = 107 ± 21 kJ mol−1, and dissolution of CO2 as CO3 2−: ln(K 0 ) = −21.38 ± 0.08, ΔV 0 = 30.66 ± 1.33 cm3 mol−1, ΔH 0 = 42 ± 37 kJ mol−1, where K 0 is the equilibrium constant at some reference pressure and temperature, ΔV 0 is the volume change of reaction, and ΔH 0 is the enthalpy change of reaction. The thermodynamic model was used along with trace element partition coefficients to calculate the CO2 contents and CO2/Nb ratios resulting from the mixing of a depleted MORB and the partial melt of a graphite-saturated eclogite. Comparison with natural MORB and OIB data suggests that the CO2 contents and CO2/Nb ratios of CO2-enriched oceanic basalts cannot be produced by mixing with partial melts of graphite-saturated eclogite. Instead, they must be produced by melting of a source containing carbonate. This result places a lower bound on the oxygen fugacity for the source region of these CO2-enriched basalts, and suggests that fO2 measurements made on cratonic xenoliths may not be applicable to the convecting upper mantle. CO2-depleted basalts, on the other hand, are consistent with mixing between depleted MORB and partial melts of a graphite-saturated eclogite. Furthermore, calculations suggest that eclogite can remain saturated in graphite in the convecting upper mantle, acting as a reservoir for C.


Eclogite partial melting Redox Deep carbon cycle Graphite-present melting 



The authors thank Anne Peslier and Kent Ross for their assistance on the electron probe, Megan Duncan for her help on the FTIR, Kyusei Tsuno for his patient instruction on the use of high-pressure equipment, and Brian Monteleone for completing the SIMS analysis. The authors also thank an anonymous reviewer for his/her constructive comments, which helped the authors to improve the manuscript. This work received support from a National Science Foundation Grant OCE-1338842, a Packard Fellowship for Science and Engineering to R.D. and the Deep Carbon Observatory.

Supplementary material

410_2017_1330_MOESM1_ESM.pdf (557 kb)
Supplementary material 1 (PDF 553 KB)


  1. Alt JC, Teagle DAH (1999) The uptake of carbon during alteration of ocean crust. Geochim Cosmochim Acta 63:1527–1535. doi: 10.1016/S0016-7037(99)00123-4 CrossRefGoogle Scholar
  2. Aubaud C, Pineau F, Hékinian R, Javoy M (2006) Carbon and hydrogen isotope constraints on degassing of CO2 and H2O in submarine lavas from the Pitcairn hotspot (South Pacific). Geophys Res Lett 33:L02308. doi: 10.1029/2005GL024907 CrossRefGoogle Scholar
  3. Behrens H, Ohlhorst S, Holtz F, Champenois M (2004) CO2 solubility in dacitic melts equilibrated with H2O–CO2 fluids: implications for modeling the solubility of CO2 in silicic melts. Geochim Cosmochim Acta 68:4687–4703. doi: 10.1016/j.gca.2004.04.019 CrossRefGoogle Scholar
  4. Berner RA (1991) A model for atmospheric CO2 over Phanerozoic time. Am J Sci 291:339–376. doi: 10.2475/ajs.291.4.339 CrossRefGoogle Scholar
  5. Botcharnikov RE, Behrens H, Holtz F (2006) Solubility and speciation of C–O–H fluids in andesitic melt at T = 1100–1300 °C and P = 200 and 500 MPa. Chem Geol 229:125–143. doi: 10.1016/j.chemgeo.2006.01.016 CrossRefGoogle Scholar
  6. Buseck PR, Beyssac O (2014) From organic matter to graphite: graphitization. Elements 10:421–426. doi: 10.2113/gselements.10.6.421 CrossRefGoogle Scholar
  7. Cartigny P, Pineau F, Aubaud C, Javoy M (2008) Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14° N and 34° N). Earth Planet Sci Lett 265:672–685. doi: 10.1016/j.epsl.2007.11.011 CrossRefGoogle Scholar
  8. Chi H, Dasgupta R, Duncan MS, Shimizu N (2014) Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean – Implications for the abundance and origin of volatiles in Earth, Mars, and the Moon. Geochim Cosmochim Acta 139:447–471. doi: 10.1016/j.gca.2014.04.046 CrossRefGoogle Scholar
  9. Dasgupta R (2013) Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem 75:183–229. doi: 10.2138/rmg.2013.75.7 CrossRefGoogle Scholar
  10. Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440:659–662. doi: 10.1038/nature04612 CrossRefGoogle Scholar
  11. Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13. doi: 10.1016/j.epsl.2010.06.039 CrossRefGoogle Scholar
  12. Dasgupta R, Hirschmann MM, Withers AC (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett 227:73–85. doi: 10.1016/j.epsl.2004.08.004 CrossRefGoogle Scholar
  13. Dasgupta R, Hirschmann MM, Dellas N (2005) The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol 149:288–305. doi: 10.1007/s00410-004-0649-0
  14. Dasgupta R, Hirschmann MM, McDonough WF et al (2009) Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem Geol 262:57–77. doi: 10.1016/j.chemgeo.2009.02.004 CrossRefGoogle Scholar
  15. Dasgupta R, Mallik A, Tsuno K et al (2013) Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493:211–215. doi: 10.1038/nature11731 CrossRefGoogle Scholar
  16. Day HW (2012) A revised diamond-graphite transition curve. Am Mineral 97:52–62. doi: 10.2138/am.2011.3763 CrossRefGoogle Scholar
  17. Dixon JE, Clague DA (2001) Volatiles in basaltic glasses from Loihi Seamount, Hawaii: evidence for a relatively dry plume component. J Petrol 42:627–654. doi: 10.1093/petrology/42.3.627 CrossRefGoogle Scholar
  18. Dixon JE, Pan V (1995) Determination of the molar absorptivity of dissolved carbonate in basanitic glass. Am Mineral 80:1339–1342CrossRefGoogle Scholar
  19. Duncan MS, Dasgupta R (2014) CO2 solubility and speciation in rhyolitic sediment partial melts at 1.5–3.0 GPa—implications for carbon flux in subduction zones. Geochim Cosmochim Acta 124:328–347. doi: 10.1016/j.gca.2013.09.026 CrossRefGoogle Scholar
  20. Duncan MS, Dasgupta R (2015) Pressure and temperature dependence of CO2 solubility in hydrous rhyolitic melt: implications for carbon transfer to mantle source of volcanic arcs via partial melt of subducting crustal lithologies. Contrib to Mineral Petrol 169:54. doi: 10.1007/s00410-015-1144-5 CrossRefGoogle Scholar
  21. Falloon TJ, Green DH (1989) The solidus of carbonated, fertile peridotite. Earth Planet Sci Lett 94:364–370. doi: 10.1016/0012-821X(89)90153-2 CrossRefGoogle Scholar
  22. Fine G, Stolper E (1985) The speciation of carbon dioxide in sodium aluminosilicate glasses. Contrib Mineral Petrol 91:5–121CrossRefGoogle Scholar
  23. Fine G, Stolper E (1986) Dissolved carbon dioxide in basaltic glasses: concentrations and speciation. Earth Planet Sci Lett 76:263–278. doi: 10.1016/0012-821X(86)90078-6 CrossRefGoogle Scholar
  24. Frost DJ, McCammon C a (2008) The redox state of earth’s mantle. Annu Rev Earth Planet Sci 36:389–420. doi: 10.1146/ CrossRefGoogle Scholar
  25. Galvez ME, Gaillardet J (2012) Historical constraints on the origins of the carbon cycle concept. Comptes Rendus Geosci 344:549–567. doi: 10.1016/j.crte.2012.10.006 CrossRefGoogle Scholar
  26. Galvez ME, Beyssac O, Martinez I et al (2013) Graphite formation by carbonate reduction during subduction. Nat Geosci 6:473–477. doi: 10.1038/ngeo1827 CrossRefGoogle Scholar
  27. Galvez ME, Connolly JAD, Manning CE (2016) Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature 539:420–424. doi: 10.1038/nature20103 CrossRefGoogle Scholar
  28. Garapić G, Mallik A, Dasgupta R, Jackson MG (2015) Oceanic lavas sampling the high—3He/4He mantle reservoir: primitive, depleted, or re-enriched? Am Mineral 100:2066–2081. doi: 10.2138/am-2015-5154 CrossRefGoogle Scholar
  29. Gerbode C, Dasgupta R (2010) Carbonate-fluxed Melting of MORB-like Pyroxenite at 2.9 GPa and Genesis of HIMU Ocean Island Basalts. J Petrol 51:2067–2088. doi: 10.1093/petrology/egq049 CrossRefGoogle Scholar
  30. Gorman PJ, Kerrick DM, Connolly JAD (2006) Modeling open system metamorphic decarbonation of subducting slabs. Geochem Geophys Geosyst 7:1–21. doi: 10.1029/2005GC001125 CrossRefGoogle Scholar
  31. Grove TL (1981) Use of FePt alloys to eliminate the iron loss problem in 1 atmosphere gas mixing experiments: theoretical and practical considerations. Contrib Mineral Petrol 78:298–304. doi: 10.1007/BF00398924 CrossRefGoogle Scholar
  32. Hammouda T (2003) High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett 214:357–368. doi: 10.1016/S0012-821X(03)00361-3 CrossRefGoogle Scholar
  33. Hartley ME, Maclennan J, Edmonds M, Thordarson T (2014) Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth Planet Sci Lett 393:120–131. doi: 10.1016/j.epsl.2014.02.031 CrossRefGoogle Scholar
  34. Hekinian R, Cheminée J, Dubois J et al (2003) The Pitcairn hotspot in the South Pacific: distribution and composition of submarine volcanic sequences. J Volcanol Geotherm Res 121:219–245. doi: 10.1016/S0377-0273(02)00427-4 CrossRefGoogle Scholar
  35. Helo C, Longpré M-A, Shimizu N, et al (2011) Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nat Geosci 4:260–263. doi: 10.1038/ngeo1104 CrossRefGoogle Scholar
  36. Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Mineral Petrol 124:185–208. doi: 10.1007/s004100050184 CrossRefGoogle Scholar
  37. Hoernle K, Tilton G, Le Bas MJ et al (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Mineral Petrol 142:520–542. doi: 10.1007/s004100100308 CrossRefGoogle Scholar
  38. Holloway J, Blank J (1994) Application of experimental results to C-O-H species in natural melts. Rev Mineral 30:187–230Google Scholar
  39. Holloway JR (1998) Graphite-melt equilibria during mantle melting: constraints on CO2 in MORB magmas and the carbon content of the mantle. Chem Geol 147:89–97. doi: 10.1016/S0009-2541(97)00174-5 CrossRefGoogle Scholar
  40. Holloway JR, Pan V, Gudmundsson G (1992) High-Pressure fluid-absent melting experiments in the presence of graphite—oxygen fugacity, ferric ferrous ratio and dissolved CO2. Eur J Mineral 4:105–114CrossRefGoogle Scholar
  41. Holzheid A, Palme H, Chakraborty S (1997) The activities of NiO, CoO and FeO in silicate melts. Chem Geol 139:21–38. doi: 10.1016/S0009-2541(97)00030-2 CrossRefGoogle Scholar
  42. Jackson MG, Dasgupta R (2008) Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett 276:175–186. doi: 10.1016/j.epsl.2008.09.023 CrossRefGoogle Scholar
  43. Kerrick DM, Connolly JAD (1998) Subduction of ophicarbonates and recycling of CO2 and H2O. Geology 26:375–378. doi: 10.1130/0091-7613(1998)026<0375:SOOARO>2.3.CO CrossRefGoogle Scholar
  44. Kerrick DM, Connolly JAD (2001a) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411:293–296. doi: 10.1038/35077056 CrossRefGoogle Scholar
  45. Kerrick DM, Connolly JAD (2001b) Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett 189:19–29. doi: 10.1016/S0012-821X(01)00347-8 CrossRefGoogle Scholar
  46. Kessel R, Beckett JR, Stolper EM (2001) Thermodynamic properties of the Pt–Fe system. Am Mineral 86:1003–1014CrossRefGoogle Scholar
  47. King PL, Vennemann TW, Holloway JR et al (2002) Analytical techniques for volatiles: a case study using intermediate (andesitic) glasses. Am Mineral 87:1077–1089CrossRefGoogle Scholar
  48. Kiseeva ES, Yaxley GM, Hermann J et al (2012) An experimental study of carbonated eclogite at 3.5–5.5 GPa—implications for silicate and carbonate metasomatism in the cratonic mantle. J Petrol 53:727–759. doi: 10.1093/petrology/egr078 CrossRefGoogle Scholar
  49. Kogiso T, Tatsumi Y, Shimoda G, Barsczus HG (1997) High $\mu$ (HIMU) ocean island basalts in southern Polynesia: new evidence for whole mantle scale recycling of subducted oceanic crust. J Geophys Res 102:8085–8103. doi: 10.1029/96JB03892 CrossRefGoogle Scholar
  50. Koleszar AM, Saal AE, Hauri EH et al (2009) The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior in melt inclusions. Earth Planet Sci Lett 287:442–452. doi: 10.1016/j.epsl.2009.08.029 CrossRefGoogle Scholar
  51. Konschak A, Keppler H (2014) The speciation of carbon dioxide in silicate melts. Contrib to Mineral Petrol 167:998. doi: 10.1007/s00410-014-0998-2 CrossRefGoogle Scholar
  52. le Roux PJ, Shirey SB, Hauri EH et al (2006) The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): Evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth Planet Sci Lett 251:209–231. doi: 10.1016/j.epsl.2006.09.012 CrossRefGoogle Scholar
  53. Li Y, Dasgupta R, Tsuno K (2015) The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600 °C: Implications for core–mantle differentiation and degassing of magma oceans and reduced planet. Earth Planet Sci Lett 415:54–66. doi: 10.1016/j.epsl.2015.01.017 CrossRefGoogle Scholar
  54. Li Y, Dasgupta R, Tsuno K, Monteleone B, Shimizu N (2016) Carbon and sulfur budget of the silicate Earth explained by accretion of differentiated planetary embryos. Nature Geoscience 9(10):781–785CrossRefGoogle Scholar
  55. Mallik A, Dasgupta R (2012) Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet Sci Lett 329–330:97–108. doi: 10.1016/j.epsl.2012.02.007 CrossRefGoogle Scholar
  56. Mallik A, Dasgupta R (2013) Reactive infiltration of MORB-Eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas. J Petrol 54:2267–2300. doi: 10.1093/petrology/egt047 CrossRefGoogle Scholar
  57. Mallik A, Dasgupta R (2014) Effect of variable CO2 on eclogite-derived andesite and lherzolite reaction at 3 GPa—implications for mantle source characteristics of alkalic ocean island basalts. Geochem Geophys Geosyst 15:1533–1557. doi: 10.1002/2014GC005251 CrossRefGoogle Scholar
  58. Mandeville CW, Webster JD, Rutherford MJ et al (2002) Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses. Am Mineral 87:813–821CrossRefGoogle Scholar
  59. Medard E, McCammon CA, Barr JA, Grove TL (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93:1838–1844. doi: 10.2138/am.2008.2842 CrossRefGoogle Scholar
  60. Morizet Y, Kohn SC, Brooker RA (2001) Annealing experiments on CO2-bearing jadeite glass: an insight into the true temperature dependence of CO2 speciation in silicate melts. Mineral Mag 65:701–707. doi: 10.1180/0026461016560001 CrossRefGoogle Scholar
  61. Mysen BO, Arculus RJ, Eggler DH (1975) Solubility of carbon dioxide in melts of andesite, tholeiite, and olivine nephelinite composition to 30 kbar pressure. Contrib to Mineral Petrol 53:227–239. doi: 10.1007/BF00382441 CrossRefGoogle Scholar
  62. Mysen BO, Eggler DH, Seitz MG, Holloway JR (1976) Carbon dioxide in silicate melts and crystals. Part I. Solubulity Measurements. Am J Sci 276:455–479CrossRefGoogle Scholar
  63. Nowak M, Porbatzki D, Spickenbom K, Diedrich O (2003) Carbon dioxide speciation in silicate melts: a restart. Earth Planet Sci Lett 207:131–139. doi: 10.1016/S0012-821X(02)01145-7 CrossRefGoogle Scholar
  64. Pan V, Holloway JR, Hervig RL (1991) The pressure and temperature dependence of carbon dioxide solubility in tholeiitic basalt melts. Geochim Cosmochim Acta 55:1587–1595. doi:  10.1016/0016-7037(91)90130-W CrossRefGoogle Scholar
  65. Rosenthal A, Hauri EH, Hirschmann MM (2015) Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions. Earth Planet Sci Lett 412:77–87. doi: 10.1016/j.epsl.2014.11.044 CrossRefGoogle Scholar
  66. Royer DL, Berner RA, Montanez IP et al (2004) CO2 as a primary driver of Phanerozoic climate. Geol Soc Am Today 14:4–10Google Scholar
  67. Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455. doi: 10.1038/nature01073 CrossRefGoogle Scholar
  68. Schulze DJ, Valley JW, Viljoen KS et al (1997) Carbon isotope composition of graphite in mantle eclogites. J Geol 105:379–386CrossRefGoogle Scholar
  69. Shaw AM, Behn MD, Humphris SE et al (2010) Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: Evidence from olivine-hosted melt inclusions and glasses. Earth Planet Sci Lett 289:311–322. doi: 10.1016/j.epsl.2009.11.018 CrossRefGoogle Scholar
  70. Shimizu K, Saal AE, Myers CE et al (2016) Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: Implications for the volatile content of the Pacific upper mantle. Geochim Cosmochim Acta 176:44–80. doi: 10.1016/j.gca.2015.10.033 CrossRefGoogle Scholar
  71. Shirey SB, Cartigny P, Frost DJ et al (2013) Diamonds and the Geology of Mantle Carbon. Rev Mineral Geochem 75:355–421. doi: 10.2138/rmg.2013.75.12 CrossRefGoogle Scholar
  72. Shorttle O, Maclennan J, Lambart S (2014) Quantifying lithological variability in the mantle. Earth Planet Sci Lett 395:24–40. doi: 10.1016/j.epsl.2014.03.040 CrossRefGoogle Scholar
  73. Silver LA (1988) Water in silicate glasses. California Institute of TechnologyGoogle Scholar
  74. Simakov SK (2006) Redox state of eclogites and peridotites from sub-cratonic upper mantle and a connection with diamond genesis. Contrib Mineral Petrol 151:282–296. doi: 10.1007/s00410-005-0058-z CrossRefGoogle Scholar
  75. Spandler C, Yaxley G, Green DH, Rosenthal A (2008) Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600 °C and 3 to 5 GPa. J Petrol 49:771–795. doi: 10.1093/petrology/egm039 CrossRefGoogle Scholar
  76. Stagno V, Ojwang DO, McCammon C a, Frost DJ (2013) The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493:84–88. doi: 10.1038/nature11679 CrossRefGoogle Scholar
  77. Stagno V, Frost DJ, McCammon CA et al (2015) The oxygen fugacity at which graphite or diamond forms from carbonate-bearing melts in eclogitic rocks. Contrib Mineral Petrol 169:16. doi: 10.1007/s00410-015-1111-1 CrossRefGoogle Scholar
  78. Stanley BD, Hirschmann MM, Withers AC (2011) CO2 solubility in Martian basalts and Martian atmospheric evolution. Geochim Cosmochim Acta 75:5987–6003. doi: 10.1016/j.gca.2011.07.027 CrossRefGoogle Scholar
  79. Stanley BD, Hirschmann MM, Withers AC (2014) Solubility of COH volatiles in graphite-saturated martian basalts. Geochim Cosmochim Acta 129:54–76. doi: 10.1016/j.gca.2013.12.013 CrossRefGoogle Scholar
  80. Stolper E, Holloway JR (1988) Experimental determination of the solubility of carbon dioxide in molten basalt at low pressure. Earth Planet Sci Lett 87:397–408. doi: 10.1016/0012-821X(88)90004-0 CrossRefGoogle Scholar
  81. Thibault Y, Holloway JR (1994) Solubility of CO2 in a Ca-rich leucitite: effects of pressure, temperature, and oxygen fugacity. Contrib Mineral Petrol 116:216–224. doi:  10.1007/BF00310701 CrossRefGoogle Scholar
  82. Thomson AR, Walter MJ, Kohn SC, Brooker RA (2016) Slab melting as a barrier to deep carbon subduction. Nature 529:76–79. doi: 10.1038/nature16174 CrossRefGoogle Scholar
  83. Tsuno K, Dasgupta R (2011) Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon. Contrib Mineral Petrol 161:743–763. doi: 10.1007/s00410-010-0560-9 CrossRefGoogle Scholar
  84. Tsuno K, Dasgupta R (2015) Fe–Ni–Cu–C–S phase relations at high pressures and temperatures—the role of sulfur in carbon storage and diamond stability at mid- to deep-upper mantleGoogle Scholar
  85. Wanless VD, Shaw AM (2012) Lower crustal crystallization and melt evolution at mid-ocean ridges. Nat Geosci 5:651–655. doi: 10.1038/ngeo1552 CrossRefGoogle Scholar
  86. Wanless VD, Behn MD, Shaw AM, Plank T (2014) Variations in melting dynamics and mantle compositions along the Eastern Volcanic Zone of the Gakkel Ridge: Insights from olivine-hosted melt inclusions. Contrib Mineral Petrol 167:1005. doi: 10.1007/s00410-014-1005-7 CrossRefGoogle Scholar
  87. White WM (1985) Sources of oceanic basalts: radiogenic isotopic evidence. Geology 13:115–118CrossRefGoogle Scholar
  88. Yasuda A, Fujii T, Kurita K (1994) Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: implications for the behavior of subducted oceanic crust in the mantle. J Geophys Res 99:9401–9414CrossRefGoogle Scholar
  89. Yaxley GM, Brey GP (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib Mineral Petrol 146:606–619. doi: 10.1007/s00410-003-0517-3 CrossRefGoogle Scholar
  90. Yaxley GM, Berry AJ, Kamenetsky VS et al (2012) An oxygen fugacity profile through the Siberian Craton—Fe K-edge XANES determinations of Fe3+/∑Fe in garnets in peridotite xenoliths from the Udachnaya East kimberlite. Lithos 140–141:142–151. doi: 10.1016/j.lithos.2012.01.016 CrossRefGoogle Scholar
  91. Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571. doi: 10.1146/ CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Earth ScienceRice UniversityHoustonUSA

Personalised recommendations