Anisotropy of self-diffusion in forsterite grain boundaries derived from molecular dynamics simulations

  • Johannes Wagner
  • Omar Adjaoud
  • Katharina Marquardt
  • Sandro JahnEmail author
Original Paper


Diffusion rates and associated deformation behaviour in olivine have been subjected to many studies, due to the major abundance of this mineral group in the Earth’s upper mantle. However, grain boundary (GB) transport studies yield controversial results. The relation between transport rate, energy, and geometry of individual GBs is the key to understand transport in aggregates with lattice preferred orientation that favours the presence and/or alignment of specific GBs over random ones in an undeformed rock. In this contribution, we perform classical molecular dynamics simulations of a series of symmetric and one asymmetric tilt GBs of \(\hbox {Mg}_2\hbox {SiO}_4\) forsterite, ranging from 9.58° to 90° in misorientation and varying surface termination. Our emphasis lies on unravelling structural characteristics of high- and low-angle grain boundaries and how the atomic structure influences grain boundary excess volume and self-diffusion processes. To obtain diffusion rates for different GB geometries, we equilibrate the respective systems at ambient pressure and temperatures from 1900 to 2200 K and trace their evolution for run durations of at least 1000 ps. We then calculate the mean square displacement of the different atomic species within the GB interface to estimate self-diffusion coefficients in the individual systems. Grain boundary diffusion coefficients for Mg, Si and O range from \(10^{-18}\) to \(10^{-21}\,\hbox {m}^3\)/s, falling in line with extrapolations from lower temperature experimental data. Our data indicate that higher GB excess volumes enable faster diffusion within the GB. Finally, we discuss two types of transport mechanisms that may be distinguished in low- and high-angle GBs.


Forsterite Grain boundary Self-diffusion Mg 



This work has been funded by the Deutsche Forschungsgemeinschaft (DFG) in the framework of Research Unit FOR 741 (HE2015/11-1) as well as Grant Number MA 6287/3-1, and MA 6287/2-1 and the Project PD-043 within the Helmholtz Postdoc Programm. Parts of the simulations were performed at John von Neumann Institute for Supercomputing in the framework of NIC project HPO15. Financial support by the Helmholtz graduate school GEOSIM was gratefully acknowledged.


  1. Adjaoud O, Steinle-Neumann G, Jahn S (2008) \(\text{Mg}_2\text{SiO}_4\) liquid under high pressure from molecular dynamics. Chem Geol 256:185–192. doi: 10.1016/j.chemgeo.2008.06.031 CrossRefGoogle Scholar
  2. Adjaoud O, Steinle-Neumann G, Jahn S (2011) Transport properties of \(\text{Mg}_2\text{SiO}_4\) liquid at high pressure: physical state of a magma ocean. Earth Planet Sci Lett 312:463–470. doi: 10.1016/j.epsl.2011.10.025 CrossRefGoogle Scholar
  3. Adjaoud O, Marquardt K, Jahn S (2012) Atomic structures and energies of grain boundaries in \(\text{Mg}_2\text{SiO}_4\) forsterite from atomistic modeling. Phys Chem Miner 39:749–760. doi: 10.1007/s00269-012-0529-5 CrossRefGoogle Scholar
  4. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Clarendon Press, New YorkGoogle Scholar
  5. Ammann MW, Brodholt JP, Dobson DP (2010) Simulating diffusion. Rev Miner Geochem 71(1):201–224. doi: 10.2138/rmg.2010.71.10 CrossRefGoogle Scholar
  6. Chakraborty S, Farver JR, Yund RA, Rubie DC (1994) Mg tracer diffusion in synthetic forsterite and San Carlos olivine as a function of P, T and fO\(_2\). Phys Chem Miner 21(8):489–500. doi: 10.1007/BF00203923 CrossRefGoogle Scholar
  7. Chuvil’deev VN (1996) Micromechanism of deformation-stimulated grain-boundary self-diffusion: I. Effect of excess free volume on the free energy and diffusion parameters of grain boundaries. Phys Met Metallogr 81:463–468Google Scholar
  8. Chuvil’deev VN, Kopylov VI, Zeiger W (2002) A theory of non-equilibrium grain boundaries and its applications to nano- and micro-crystalline materials processed by ECAP. Ann Chim Sci Mater 27(3):55–64CrossRefGoogle Scholar
  9. Condit RH, Weed HC, Piwinskii AJ (1985) A technique for observing oxygen diffusion along grain boundary regions in synthetic forsterite. Am Geophys Union. doi: 10.1029/GM031p0097 Google Scholar
  10. Dohmen R, Milke R (2010) Diffusion in polycrystalline materials: grain boundaries, mathematical models, and experimental data. Rev Miner Geochem 72(1):921–970. doi: 10.2138/rmg.2010.72.21 CrossRefGoogle Scholar
  11. Dohmen R, Chakraborty S, Becker HW (2002) Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle. Geophys Res Lett 29(21):26–1–26–4. doi: 10.1029/2002GL015480 CrossRefGoogle Scholar
  12. Dohmen R, Becker HW, Chakraborty S (2007) Fe–Mg diffusion in olivine I: experimental determination between 700 and 1,200 °C as a function of composition, crystal orientation and oxygen fugacity. Phys Chem Miner 34(6):389–407. doi: 10.1007/s00269-007-0157-7 CrossRefGoogle Scholar
  13. Farber DL, Williams Q, Ryerson FJ (1994) Diffusion in \(\text{Mg}_2\text{SiO}_4\) polymorphs and chemical heterogeneity in the mantle transition zone. Nature 371(6499):693–695. doi: 10.1038/371693a0 CrossRefGoogle Scholar
  14. Farver JR, Yund RA (2000) Silicon diffusion in forsterite aggregates: implications for diffusion accommodated creep. Geophys Res Lett 27(15):2337–2340. doi: 10.1029/2000GL008492 CrossRefGoogle Scholar
  15. Farver JR, Yund RA, Rubie DC (1994) Magnesium grain boundary diffusion in forsterite aggregates at 1000–1300 °C and 0.1 MPa to 10 GPa. J Geophys Res Solid 99(B10):19,809–19,819. doi: 10.1029/94JB01250 CrossRefGoogle Scholar
  16. Fei H, Hegoda C, Yamazaki D, Wiedenbeck M, Yurimoto H, Shcheka S, Katsura T (2012) High silicon self-diffusion coefficient in dry forsterite. Earth Planet Sci Lett 345348:95–103. doi: 10.1016/j.epsl.2012.06.044 CrossRefGoogle Scholar
  17. Fei H, Wiedenbeck M, Yamazaki D, Katsura T (2013) Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature 498(7453):213–215. doi: 10.1038/nature12193 CrossRefGoogle Scholar
  18. Fei H, Koizumi S, Sakamoto N, Hashiguchi M, Yurimoto H, Marquardt K, Miyajima N, Yamazaki D, Katsura T (2016) New constraints on upper mantle creep mechanism inferred from silicon grain-boundary diffusion rates. Earth Planet Sci Lett 433:350–359. doi: 10.1016/j.epsl.2015.11.014 CrossRefGoogle Scholar
  19. Finkelstein GJ, Dera PK, Jahn S, Oganov AR, Holl CM, Meng Y, Duffy TS (2014) Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling. Am Mineral 99:35–43. doi: 10.2138/am.2014.4526 CrossRefGoogle Scholar
  20. Fisler DK, Mackwell SJ (1994) Kinetics of diffusion-controlled growth of fayalite. Phys Chem Miner 21(3):156–165. doi: 10.1007/BF00203146 CrossRefGoogle Scholar
  21. Gardés E, Wunder B, Marquardt K, Heinrich W (2012) The effect of water on intergranular mass transport: new insights from diffusion-controlled reaction rims in the MgO-SiO2 system. Contrib Miner Pet 164(1):1–16. doi: 10.1007/s00410-012-0721-0 CrossRefGoogle Scholar
  22. Ghosh DB, Karki BB (2013) First principles simulations of the stability and structure of grain boundaries in \(\text{Mg}_2\text{SiO}_4\) forsterite. Phys Chem Miner 41(3):163–171. doi: 10.1007/s00269-013-0633-1 CrossRefGoogle Scholar
  23. Gurmani SF, Jahn S, Brasse H, Schilling FR (2011) Atomic scale view on partially molten rocks: molecular dynamics simulations of melt-wetted olivine grain boundaries. J Geophys Res 116:B12,209. doi: 10.1029/2011JB008519 CrossRefGoogle Scholar
  24. Hansen LN, Zimmerman ME, Kohlstedt DL (2012) The influence of microstructure on deformation of olivine in the grain-boundary sliding regime. J Geophys Res Solid. doi: 10.1029/2012JB009305 Google Scholar
  25. Hartmann K, Wirth R, Markl G (2008) P-T-X-controlled element transport through granulite-facies ternary feldspar from Lofoten, Norway. Contrib Miner Pet 156(3):359–375. doi: 10.1007/s00410-008-0290-4 CrossRefGoogle Scholar
  26. Hirth G, Kohlstedt D (2013) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Am Geophys Union. doi: 10.1029/138GM06 Google Scholar
  27. Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J (2014) CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip Rev Comput Mol Sci 4(1):15–25. doi: 10.1002/wcms.1159 CrossRefGoogle Scholar
  28. Ikuhara Y, Nishimura H, Nakamura A, Matsunaga K, Yamamoto T, Lagerlf KPD (2003) Dislocation structures of low-angle and near-\(\varSigma 3\) grain boundaries in alumina bicrystals. J Am Ceram Soc 86(4):595–602. doi: 10.1111/j.1151-2916.2003.tb03346.x CrossRefGoogle Scholar
  29. Jahn S (2010) Integral modeling approach to study the phase behavior of complex solids: application to phase transitions in \(\text{MgSiO}_3\) pyroxenes. Acta Crystallogr A 66:535–541. doi: 10.1107/S0108767310026449 CrossRefGoogle Scholar
  30. Jahn S, Madden PA (2007) Modeling Earth materials from crustal to lower mantle conditions: a transferable set of interaction potentials for the CMAS system. Phys Earth Planet Inter 162:129–139. doi: 10.1016/j.pepi.2007.04.002 CrossRefGoogle Scholar
  31. Jahn S, Madden PA (2008) Atomic dynamics of alumina melt: a molecular dynamics simulation study. Condens Matter Phys 11:169–178CrossRefGoogle Scholar
  32. Jahn S, Martoňák R (2008) Plastic deformation of orthoenstatite and the ortho- to high-pressure clinoenstatite transition: a metadynamics simulation study. Phys Chem Miner 35:17–23. doi: 10.1007/s00269-007-0194-2 CrossRefGoogle Scholar
  33. Karato S, Wu P (1993) Rheology of the upper mantle: a synthesis. Science 260(5109):771–778. doi: 10.1126/science.260.5109.771 CrossRefGoogle Scholar
  34. Keller LM, Wirth R, Rhede D, Kunze K, Abart R (2008) Asymmetrically zoned reaction rims: assessment of grain boundary diffusivities and growth rates related to natural diffusion-controlled mineral reactions. J Metamorph Geol 26(1):99–120. doi: 10.1111/j.1525-1314.2007.00747.x CrossRefGoogle Scholar
  35. Kubo T, Shimojuku A, Ohtani E (2004) Mg–Fe interdiffusion rates in wadsleyite and the diffusivity jump at the 410-km discontinuity. Phys Chem Miner 31(7):456–464. doi: 10.1007/s00269-004-0412-0 CrossRefGoogle Scholar
  36. Madden PA, Heaton R, Aguado A, Jahn S (2006) From first-principles to material properties. J Mol Struct THEOCHEM 771:9–18. doi: 10.1016/j.theochem.2006.03.015 CrossRefGoogle Scholar
  37. Marquardt K, Petrishcheva E, Gardés E, Wirth R, Abart R, Heinrich AJ (2011) Grain boundary and volume diffusion experiments in yttrium aluminium garnet bicrystals at 1,723 K: a miniaturized study. Contrib Miner Pet 162:739–749. doi: 10.1007/s00410-011-0622-7 CrossRefGoogle Scholar
  38. Marquardt K, Rohrer GS, Morales L, Rybacki E, Marquardt H, Lin B (2015) The most frequent interfaces in olivine aggregates: the GBCD and its importance for grain boundary related processes. Contrib Miner Pet 170(4):1–17. doi: 10.1007/s00410-015-1193-9 CrossRefGoogle Scholar
  39. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189. doi: 10.1063/1.467468 CrossRefGoogle Scholar
  40. Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076. doi: 10.1080/00268978300102851 CrossRefGoogle Scholar
  41. Petegem SV, Torre FD, Segers D, Swygenhoven HV (2003) Free volume in nanostructured Ni. Scr Mater 48(1):17–22. doi: 10.1016/S1359-6462(02)00322-6 CrossRefGoogle Scholar
  42. Pommier A, Leinenweber K, Kohlstedt DL, Qi C, Garnero EJ, Mackwell SJ, Tyburczy JA (2015) Experimental constraints on the electrical anisotropy of the lithosphere–asthenosphere system. Nature 522(7555):202–206. doi: 10.1038/nature14502 CrossRefGoogle Scholar
  43. Ricoult DL, Kohlstedt DL (1983) Structural width of low-angle grain boundaries in olivine. Phys Chem Miner 9(3):133–138. doi: 10.1007/BF00308370 CrossRefGoogle Scholar
  44. Shimojuku A, Kubo T, Ohtani E, Yurimoto H (2004) Silicon self-diffusion in wadsleyite: implications for rheology of the mantle transition zone and subducting plates. Geophys Res Lett 31(13):L13,606. doi: 10.1029/2004GL020002 CrossRefGoogle Scholar
  45. Shimojuku A, Kubo T, Ohtani E, Nakamura T, Okazaki R, Dohmen R, Chakraborty S (2009) Si and O diffusion in (Mg, Fe)\(_2\text{SiO}_4\) wadsleyite and ringwoodite and its implications for the rheology of the mantle transition zone. Earth Planet Sci Lett 284(12):103–112. doi: 10.1016/j.epsl.2009.04.014 CrossRefGoogle Scholar
  46. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model Simul Mater Sci 18(1):015,012. doi: 10.1088/0965-0393/18/1/015012 CrossRefGoogle Scholar
  47. Sun X, Cordier P, Taupin V, Fressengeas C, Jahn S (2016) Continuous description of a grain boundary in forsterite from atomic scale simulations: the role of disclinations. Philos Mag 96(17):1757–1772. doi: 10.1080/14786435.2016.1177232 CrossRefGoogle Scholar
  48. Tucker GJ, McDowell DL (2011) Non-equilibrium grain boundary structure and inelastic deformation using atomistic simulations. Int J Plast 27(6):841–857. doi: 10.1016/j.ijplas.2010.09.011 CrossRefGoogle Scholar
  49. Watson EB (1986) An experimental study of oxygen transport in dry rocks and related kinetic phenomena. J Geophys Res Solid 91(B14):14,117–14,131. doi: 10.1029/JB091iB14p14117 CrossRefGoogle Scholar
  50. Watson GW, Oliver PM, Parker SC (1997) Computer simulation of the structure and stability of forsterite surfaces. Phys Chem Miner 25:70–78. doi: 10.1007/s002690050088 CrossRefGoogle Scholar
  51. White S (1973) Syntectonic recrystallization and texture development in quartz. Nature 244:276–278. doi: 10.1038/244276a0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Institute of Materials ScienceTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Bayerisches Geoinstitut, BGIUniversity of BayreuthBayreuthGermany
  4. 4.Institute of Geology and MineralogyUniversity of CologneKölnGermany

Personalised recommendations