Skip to main content

Experimental melting of phlogopite-peridotite in the garnet stability field

Abstract

Melting experiments have been performed at 3 GPa, between 1150 and 1450 °C, on a phlogopite-peridotite source in the garnet stability field. We succeeded to extract and determine the melt compositions of both phlogopite-bearing lherzolite and harzburgite from low to high degrees of melting (ϕ = 0.008–0.256). Accounting for the presence of small amounts of F in the mantle, we determined that phlogopite coexists with melt >150 °C above the solidus position (1150–1200 °C). Fluorine content of phlogopite continuously increases during partial melting from 0.2 to 0.9 wt% between 1000 and 1150 °C and 0.5 to 0.6 wt% between 1150 and 1300 °C at 1 and 3 GPa, respectively. The phlogopite continuous breakdown in the lherzolite follows the reaction: 0.59 phlogopite + 0.52 clinopyroxene + 0.18 garnet = 0.06 olivine + 0.23 orthopyroxene + 1.00 melt. In the phlogopite-harzburgite, the reaction is: 0.93 phlogopite + 0.46 garnet = 0.25 olivine + 0.14 orthopyroxene + 1.00 melt. Melts from phlogopite-peridotite sources at 3 GPa are silica-undersaturated and are foiditic to trachybasaltic in composition from very low (0.8 wt%) to high (25.6 wt%) degrees of melting. As observed at 1 GPa, the potassium content of primary mantle melts is buffered by the presence of phlogopite, but the buffering values are higher, from 6.0 to 8.0 wt% depending on the source fertility. We finally show that phlogopite garnet-peridotite melts are very close to the composition of the most primitive post-collisional lavas described worldwide.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Adam J, Green T (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib Mineral Petrol 152:1–17

    Article  Google Scholar 

  • Albarède F, Provost A (1977) Petrological and geochemical mass-balance equations: an algorithm for least-square fitting and general error analysis. Comput Geosci 3(2):309–326

    Article  Google Scholar 

  • Aoki K, Kanisawa S (1979) Fluorine contents of some hydrous minerals derived from upper mantle and lower crust. Lithos 12(3):167–171

    Article  Google Scholar 

  • Aoki K, Ishiwaka K, Kanisawa S (1981) Fluorine geochemistry of basaltic rocks from continental and oceanic regions and petrogenetic application. Contrib Miner Petrol 76(1):53–59

    Article  Google Scholar 

  • Avanzinelli R, Lustrino M, Mattei M, Melluso L, Conticelli S (2009) Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 113(1–2):213–227

    Article  Google Scholar 

  • Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58(13):2811–2827

    Article  Google Scholar 

  • Balta JB, Asimow PD, Mosenfelder JL (2011) Hydrous, low-carbon melting of garnet peridotite. J Petrol 52(11):2079–2105

    Article  Google Scholar 

  • Barr JA, Grove TL (2010) AuPdFe ternary solution model and applications to understanding the fO2 of hydrous, high-pressure experiments. Contrib Miner Petrol 160(5):631–643

    Article  Google Scholar 

  • Beyer C, Klemme S, Wiedenbeck M, Stracke A, Vollmer C (2012) Fluorine in nominally fluorine-free mantle minerals: experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes. Earth Planet Sci Lett 337–338:1–9

    Article  Google Scholar 

  • Bézos A, Humler E (2005) The Fe3 +/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69(3):711–725

    Article  Google Scholar 

  • Borom MP, Hanneman RE (1967) Local compositional changes in alkali silicate glasses during electron microprobe analysis. J Appl Phys 38(5):2406–2407

    Article  Google Scholar 

  • Bravo MS, O’Hara MJ (1975) Partial melting of phlogopite-bearing synthetic spinel- and garnet-lherzolites. Phys Chem Earth 9:845–854

    Article  Google Scholar 

  • Chung S-L, Yang TF, Lee C-Y, Chen C-H (1995) The igneous provinciality in Taiwan: consequence of continental rifting superimposed by Luzon and Ryukyu subduction systems. J Southeast Asian Earth Sci 11(2):73–80

    Article  Google Scholar 

  • Chung S-L, Wang K-L, Crawford AJ, Kamenetsky VS, Chen C-H, Lan C-Y, Chen C-H (2001) High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas. Lithos 59:153–170

    Article  Google Scholar 

  • Conceição RV, Green DH (2004) Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite. Lithos 72(3–4):209–229

    Article  Google Scholar 

  • Condamine P, Médard E (2014) Experimental melting of phlogopite-bearing mantle at 1 GPa: implications for potassic magmatism. Earth Planet Sci Lett 397:80–92

    Article  Google Scholar 

  • Conticelli S, D’Antonio M, Pinarelli L, Civetta L (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr-Nd-Pb isotope data from Roman Province and Southern Tuscany. Mineral Petrol 74:189–222

    Article  Google Scholar 

  • Dalou C, Koga KT, Shimizu N, Boulon J, Devidal J-L (2011) Experimental determination of F and Cl partitioning between lherzolite and basaltic melt. Contrib Miner Petrol 163:591–609

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48(11):2093–2124

    Article  Google Scholar 

  • Davis FA, Hirschmann MM (2013) The effects of K2O on the compositions of near-solidus melts of garnet peridotite at 3 GPa and the origin of basalts from enriched mantle. Contrib Miner Petrol 166:1029–1046

    Article  Google Scholar 

  • Davis FA, Hirschmann MM, Humayun M (2011) The composition of the incipient partial melt of garnet peridotite at 3 GPa and the origin of OIB. Earth Planet Sci Lett 308:380–390

    Article  Google Scholar 

  • Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80(3–4):319–328

    Article  Google Scholar 

  • Edgar AD, Arima M (1985) Fluorine and chlorine contents of phlogopites crystallized from ultrapotassic rock compositions in high pressure experiments; implication for halogen reservoirs in source regions. Am Mineral 70(5–6):529–536

    Google Scholar 

  • Edgar AD, Vukadinovic D (1992) Implications of experimental petrology to the evolution of ultrapotassic rocks. Lithos 28:205–220

    Article  Google Scholar 

  • Edgar AD, Pizzolato LA, Sheen J (1996) Fluorine in igneous rocks and minerals with emphasis on ultrapotassic mafic and ultramafic magmas and their mantle source regions. Mineral Mag 60(2):243–257

    Article  Google Scholar 

  • Elkins-Tanton LT, Grove TL (2003) Evidence for deep melting of hydrous metasomatized mantle: pliocene high-potassium magmas from the Sierra Nevadas. J Geophys Res Solid Earth 108(B7):2350

    Article  Google Scholar 

  • Ersoy YE, Palmer MR, Uysal İ, Gündoğan İ (2014) Geochemistry and petrology of the Early Miocene lamproites and related volcanic rocks in the Thrace Basin, NW Anatolia. J Volcanol Geoth Res 283:143–158

    Article  Google Scholar 

  • Falloon TJ, Green DH (1987) Anhydrous partial melting of MORB pyrolite and other peridotite compositions at 10 kbar: implications for the origin of primitive MORB glasses. Mineral Petrol 37:181–219

    Article  Google Scholar 

  • Falloon TJ, Danyushevsky LV, Green DH (2001) Peridotite melting at 1 GPa: reversal experiments on partial melt compositions produced by peridotite-basalt sandwich experiments. J Petrol 42(12):2363–2390

    Article  Google Scholar 

  • Feldstein SN, Lange RA (1999) Pliocene potassic magmas from the Kings River region, Sierra Nevada, California: evidence for melting of a subduction-modified mantle. J Petrol 40(8):1301–1320

    Article  Google Scholar 

  • Flanagan FJ (1984) Three USGS mafic rock reference samples. W-2, DNC-1, and BIR-1. US Government Printing Office

  • Foley S (1991) High-pressure stability of the fluor- and hydroxy-endmembers of pargasite and K-richterite. Geochim Cosmochim Acta 55(9):2689–2694

    Article  Google Scholar 

  • Foley S (1992a) Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28(3–6):187–204

    Article  Google Scholar 

  • Foley S (1992b) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28(3–6):435–453

    Article  Google Scholar 

  • Foley S, Peccerillo A (1992) Potassic and ultrapotassic magmas and their origin. Lithos 28(3–6):181–185

    Article  Google Scholar 

  • Foley SF, Taylor WR, Green DH (1986a) The effect of fluorine on phase relationships in the system KAlSiO4–Mg2SiO4–SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts. Contrib Miner Petrol 93(1):46–55

    Article  Google Scholar 

  • Foley SF, Taylor WR, Green DH (1986b) The role of fluorine and oxygen fugacity in the genesis of the ultrapotassic rocks. Contrib Miner Petrol 94:183–192

    Article  Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth Sci Rev 24(2):81–134

    Article  Google Scholar 

  • Frost DJ (2006) The stability of hydrous mantle phases. Rev Mineral Geochem 62(1):243–271

    Article  Google Scholar 

  • Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420

    Article  Google Scholar 

  • Fumagalli P, Zanchetta S, Poli S (2009) Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study. Contrib Miner Petrol 158(6):723–737

    Article  Google Scholar 

  • Funk SP, Luth RW (2013) Melting phase relations of a mica–clinopyroxenite from the Milk River area, southern Alberta, Canada. Contrib Mineral Petrol 1–17

  • Gaeta M, Freda C, Marra F, Di Rocco T, Gozzi F, Arienzo I, Giaccio B, Scarlato P (2011) Petrology of the most recent ultrapotassic magmas from the Roman Province (Central Italy). Lithos 127(1–2):298–308

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Miner Petrol 131:323–346

    Article  Google Scholar 

  • Gagnon JE, Fryer BJ, Samson IM, Williams-Jones AE (2008) Quantitative analysis of silicate certified reference materials by LA-ICPMS with and without an internal standard. J Anal At Spectrom 23(11):1529–1537

    Article  Google Scholar 

  • Giannetti B, Luhr JF (1990) Phlogopite-clinopyroxenite nodules from high-K magmas, Roccamonfina Volcano, Italy: evidence for a low-pressure metasomatic origin. Earth Planet Sci Lett 101(2–4):404–424

    Article  Google Scholar 

  • Giordano D, Romano C, Dingwell DB, Poe B, Behrens H (2004) The combined effects of water and fluorine on the viscosity of silicic magmas. Geochim Cosmochim Acta 68(24):5159–5168

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271(1–4):123–134

    Article  Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89

    Article  Google Scholar 

  • Grove TL, Holbig ES, Barr JA, Till CB, Krawczynski MJ (2013) Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite. Contrib Miner Petrol 166(3):887–910

    Article  Google Scholar 

  • Guo Z, Wilson M, Liu J, Mao Q (2006) Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J Petrol 47(6):1177–1220

    Article  Google Scholar 

  • Hall L (1999) The effect of water on mantle melting. PhD Thesis, University of Bristol, Bristol. 159

  • Hirose K (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res Lett 24(22):2837–2840

    Article  Google Scholar 

  • Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133:463–473

    Article  Google Scholar 

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114:477–489

    Article  Google Scholar 

  • Hirschmann MM, Dasgupta R (2007) A modified iterative sandwich method for determination of near-solidus partial melt compositions. I. Theoretical considerations. Contrib Miner Petrol 154(6):635–645

    Article  Google Scholar 

  • Hirschmann MM, Baker MB, Stolper EM (1998) The effect of alkalis on the silica content of mantle-derived melts. Geochim Cosmochim Acta 62(5):883–902

    Article  Google Scholar 

  • Hirschmann MM, Tenner T, Aubaud C, Withers AC (2009) Dehydration melting of nominally anhydrous mantle: The primacy of partitioning. Phys Earth Planet Inter 176(1–2):54–68

    Article  Google Scholar 

  • Holloway JR, Ford CE (1975) Fluid-absent melting of the fluoro-hydroxy amphibole pargasite to 35 kilobars. Earth Planet Sci Lett 25(1):44–48

    Article  Google Scholar 

  • Humayun M, Simon SB, Grossman L (2007) Tungsten and hafnium distribution in calcium–aluminum inclusions (CAIs) from Allende and Efremovka. Geochim Cosmochim Acta 71(18):4609–4627

    Article  Google Scholar 

  • Humayun M, Davis FA, Hirschmann MM (2010) Major element analysis of natural silicates by laser ablation ICP-MS. J Anal At Spectrom 25(7):998–1005

    Article  Google Scholar 

  • Ionov DA, Wood BJ (1992) The oxidation state of subcontinental mantle: oxygen thermobarometry of mantle xenoliths from central Asia. Contrib Miner Petrol 111(2):179–193

    Article  Google Scholar 

  • Jochum KP, Dingwell DB, Rocholl A, Stoll B, Hofmann AW, Becker S, Besmehn A, Bessette D, Dietze HJ, Dulski P, Erzinger J, Hellebrand E, Hoppe P, Horn I, Janssens K, Jenner GA, Klein M, McDonough WF, Maetz M, Mezger K, Müker C, Nikogosian IK, Pickhardt C, Raczek I, Rhede D, Seufert HM, Simakin SG, Sobolev AV, Spettel B, Straub S, Vincze L, Wallianos A, Weckwerth G, Weyer S, Wolf D, Zimmer M (2000) The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis. Geostand Newsl 24(1):87–133

    Article  Google Scholar 

  • Kägi R, Müntener O, Ulmer P, Ottolini L (2005) Piston-cylinder experiments on H2O undersaturated Fe-bearing systems: an experimental setup approaching fO2 conditions of natural calc-alkaline magmas. Am Mineral 90(4):708–717

    Article  Google Scholar 

  • Kamenetsky VS, Métrich N, Cioni R (1995) Potassic primary melts of Vulsini (Roman Province): evidence from mineralogy and melt inclusions. Contrib Miner Petrol 120(2):186–196

    Article  Google Scholar 

  • Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res Solid Earth 102(B1):853–874

    Article  Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Miner Petrol 108(1):82–92

    Article  Google Scholar 

  • Kushiro I (1972) Effect of water on the composition of magmas formed at high pressures. J Petrol 13(2):311–334

    Article  Google Scholar 

  • Kushiro I (1996) Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. In: Earth processes: reading the isotopic code, vol 95. AGU, Washington, DC, pp 109–122

  • Kushiro I, Syono Y, Akimoto S (1967) Stability of phlogopite at high pressures and possible presence of phlogopite in the Earth’s upper mantle. Earth Planet Sci Lett 3:197–203

    Article  Google Scholar 

  • Laporte D, Lambart S, Schiano P, Ottolini L (2014) Experimental derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites. Earth Planet Sci Lett 404:319–331

    Article  Google Scholar 

  • LaTourrette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135:13–30

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750

    Article  Google Scholar 

  • Lesher CE, Walker D (1988) Cumulate maturation and melt migration in a temperature gradient. J Geophys Res Solid Earth 93(B9):10295–10311

    Article  Google Scholar 

  • Lloyd FE, Arima M, Edgar AD (1985) Partial melting of a phlogopite-clinopyroxenite nodule from south-west Uganda: an experimental study bearing on the origin of highly potassic continental rift volcanics. Contrib Miner Petrol 91:321–329

    Article  Google Scholar 

  • Lundstrom CC (2003) An experimental investigation of the diffusive infiltration of alkalis into partially molten peridotite: implications for mantle melting processes. Geochem Geophys Geosyst 4(9):8614

    Article  Google Scholar 

  • Luth RW (1997) Experimental study of the system phlogopite-diopside from 3.5 to 17 GPa. Am Mineral 82:1198–1209

    Article  Google Scholar 

  • Marianelli P, Métrich N, Santacroce R, Sbrana A (1995) Mafic magma batches at Vesuvius: a glass inclusion approach to the modalities of feeding stratovolcanoes. Contrib Miner Petrol 120(2):159–169

    Article  Google Scholar 

  • McDade P, Wood BJ, Van Westrenen W, Brooker R, Gudmundsson G, Soulard H, Najorka J, Blundy J (2002) Pressure corrections for a selection of piston-cylinder cell assemblies. Mineral Mag 66(6):1021–1028

    Article  Google Scholar 

  • McKenzie D (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95:53–72

    Article  Google Scholar 

  • Médard E, Schmidt MW, Schiano P, Ottolini L (2006) Melting of amphibole-bearing wehrlites: an experimental study on the origin of ultra-calcic nepheline-normative melts. J Petrol 47(3):481–504

    Article  Google Scholar 

  • Melzer S, Foley SF (2000) Phase relations and fractionation sequences in potassic magma series modelled in the system CaMgSi2O6–KAlSiO4–Mg2SiO4–SiO2–F2O−1 at 1 bar to 18 kbar. Contrib Miner Petrol 138:186–197

    Article  Google Scholar 

  • Mirnejad H, Bell K (2006) Origin and source evolution of the leucite hills lamproites: evidence from Sr–Nd–Pb–O isotopic compositions. J Petrol 47(12):2463–2489

    Article  Google Scholar 

  • Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum Press, New York

    Book  Google Scholar 

  • MM (2000) Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochemistry Geophysics Geosystems 1(10)

  • Modreski PJ, Boettcher AL (1972) The stability of phlogopite + enstatite at high pressures: a model for micas in the interior of the Earth. Am J Sci 272:852–869

    Article  Google Scholar 

  • Modreski PJ, Boettcher AL (1973) Phase relationships of phlogopite in the system K2O–MgO–CaO–Al2O3–SiO2–H2O to 35 kilobars: a better model for micas in the interior of the Earth. Am J Sci 273:385–414

    Article  Google Scholar 

  • Motoyoshi Y, Hensens BJ (2001) F-rich phlogopite stability in ultra-high-temperature metapelites from the Napier Complex, East Antarctica. Am Mineral 86:1404–1413

    Article  Google Scholar 

  • Nelson DR (1992) Isotopic characteristics of potassic rocks: evidence for the involvement of subducted sediments in magma genesis. Lithos 28(3–6):403–420

    Article  Google Scholar 

  • Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Miner Petrol 135:18–40

    Article  Google Scholar 

  • Nikogosian IK, van Bergen MJ (2010) Heterogeneous mantle sources of potassium-rich magmas in central-southern Italy: melt inclusion evidence from Roccamonfina and Ernici (Mid Latina Valley). J Volcanol Geoth Res 197(1–4):279–302

    Article  Google Scholar 

  • O’Hara MJ (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci Rev 4:69–133

    Article  Google Scholar 

  • O’Neill HSC (1987) Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Mineral 72(1–2):67–75

    Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21(1):115–144

    Article  Google Scholar 

  • Peccerillo A (1985) Roman comagmatic province (central Italy): evidence for subduction-related magma genesis. Geology 13(2):103–106

    Article  Google Scholar 

  • Peccerillo A (2001) Geochemical similarities between the Vesuvius, Phlegraean Fields and Stromboli Volcanoes: petrogenetic, geodynamic and volcanological implications. Mineral Petrol 73(1–3):93–105

    Article  Google Scholar 

  • Peterson JW, Chacko T, Kuehner SM (1991) The effects of fluorine on the vapor-absent melting of phlogopite + quartz: implications for deep-crustal processes. Am Mineral 76:470–476

    Google Scholar 

  • Prelević D, Akal C, Foley SF, Romer RL, Stracke A, van Den Bogaard P (2012) Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. J Petrol 53:1019–1055

    Article  Google Scholar 

  • Putirka KD, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Miner Petrol 123:92–108

    Article  Google Scholar 

  • Rieder M, Cavazzini G, D’Yakonov YS (1998) Nomenclature of the micas. Can Mineral 36:41–48

    Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29:275–289

    Article  Google Scholar 

  • Rogers NW, Hawkesworth CJ, Parker RJ, Marsh JR (1985) The geochemistry of potassic lavas from Vulsini, Central Italy, and implications for mantle enrichment processes beneath the Roman region. Contrib Miner Petrol 90:244–257

    Article  Google Scholar 

  • Sato K, Katsura T, Ito E (1997) Phase relations of natural phlogopite with and without enstatite up to 8 GPa: implication for mantle metasomatism. Earth Planet Sci Lett 146:511–526

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Ottolini L, Sbrana A (2004) The relationship between potassic, calc-alkaline and Na-alkaline magmatism in South Italy volcanoes: a melt inclusion approach. Earth Planet Sci Lett 220(1–2):121–137

    Article  Google Scholar 

  • Sekine T, Wyllie PJ (1982) Phase relationships in the system KAISiO4–Mg2SiO4–SiO2–H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Miner Petrol 79:368–374

    Article  Google Scholar 

  • Smith JV (1981) Halogen and phosphorus storage in the Earth. Nature 289(5800):762–765

    Article  Google Scholar 

  • Sorbadere F, Médard E, Laporte D, Schiano P (2013) Experimental melting of hydrous peridotite-pyroxenite mixed sources: constraints on the genesis of silica-undersaturated magmas beneath volcanic arcs. Earth Planet Sci Lett 384:42–56

    Article  Google Scholar 

  • Sudo A, Tatsumi Y (1990) Phlogopite and K-amphibole in the upper mantle: implication for magma genesis in subduction zones. Geophys Res Lett 17(1):29–32

    Article  Google Scholar 

  • Tareen JAK, Keshava Prasad AV, Basavalingu B, Ganesha AV (1995) The effect of fluorine and titanium on the vapour-absent melting of phlogopite and quartz. Mineral Mag 59(3):566–570

    Article  Google Scholar 

  • Tareen JAK, Keshava Prasad AV, Basavalingu B, Ganesha AV (1998) Stability of F-Ti-phlogopite in the system phlogopite-sillimanite-quartz: an experimental study of dehydration melting in H2O-saturated and undersaturated conditions. Mineral Mag 62(3):373–380

    Article  Google Scholar 

  • Tenner TJ, Hirschmann MM, Humayun M (2012) The effect of H2O on partial melting of garnet peridotite at 3.5 GPa. Geochem Geophys Geosyst 13(3):28

    Article  Google Scholar 

  • Thibault Y, Edgar AD, Lloyd FE (1992) Experimental investigation of melts from a carbonated phlogopite lherzolite: implications for metasomatism in the continental lithospheric mantle. Am Mineral 77:784–794

    Google Scholar 

  • Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Miner Petrol 149(1):22–39

    Article  Google Scholar 

  • Trønnes RG (2002) Stability range and decomposition of potassic richterite and phlogopite end members at 5–15 GPa. Mineral Petrol 74:129–148

    Article  Google Scholar 

  • Tumiati S, Fumagalli P, Tiraboschi C, Poli S (2013) An experimental study on COH-bearing peridotite up to 3·2 GPa and Implications for crust-mantle recycling. J Petrol 54(3):453–479

    Article  Google Scholar 

  • Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, van Calsteren P, Deng W (1996) Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37(1):45–71

    Article  Google Scholar 

  • Ulmer P (2001) Partial melting in the mantle wedge—the role of H2O in the genesis of mantle-derived ‘arc-related’ magmas. Phys Earth Planet Inter 127:215–232

    Article  Google Scholar 

  • Van den Bleeken G, Müntener O, Ulmer P (2011) Melt variability in percolated peridotite: an experimental study applied to reactive migration of tholeiitic basalt in the upper mantle. Contrib Miner Petrol 161(6):921–945

    Article  Google Scholar 

  • Van Kooten GK (1980) Mineralogy, petrology, and geochemistry of an ultrapotassic basaltic suite, central Sierra Nevada, California, USA. J Petrol 21(4):651–684

    Article  Google Scholar 

  • Vielzeuf D, Clemens JD (1992) The fluid-absent melting of phlogopite + quartz: experiments and models. Am Mineral 77:1206–1222

    Google Scholar 

  • Vukadinovic D, Edgar AD (1993) Phase relations in the phlogopite-apatite system at 20 kbar; implications for the role of fluorine in mantle melting. Contrib Miner Petrol 114:247–254

    Article  Google Scholar 

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335(6188):343–346

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60

    Article  Google Scholar 

  • Wang K-L, Chung S-L, Chen C-H, Shinjo R, Yang TF, Chen C-H (1999) Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough. Tectonophysics 308:363–376

    Article  Google Scholar 

  • Wang K-L, Chung S-L, O’Reilly SY, Sun S-S, Shinjo R, Chen C-H (2004) Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan region. J Petrol 45(5):975–1011

    Article  Google Scholar 

  • Wendlandt RF, Eggler DH (1980a) The origins of potassic magmas: 1. Melting relations in the systems KAlSiO4–Mg2SiO4–SiO2 and KAlSiO4–MgO–SiO2–CO2 to 30 kilobars. Am J Sci 280:385–420

    Article  Google Scholar 

  • Wendlandt RF, Eggler DH (1980b) The origins of potassic magmas: 2. Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4–MgO–SiO2–H2O–CO2 at high pressures and high temperatures. Am J Sci 280:421–458

    Article  Google Scholar 

  • Wilson SA (1997) Basalt, Columbia River, BCR-2. United States Geological Survey Certificate of Analysis

  • Wyllie PJ, Sekine T (1982) The formation of mantle phlogopite in subduction zone hybridization. Contrib Miner Petrol 79:375–380

    Article  Google Scholar 

  • Yoder HS, Eugster HP (1954) Phlogopite synthesis and stability range. Geochim Cosmochim Acta 6(4):157–185

    Article  Google Scholar 

  • Yoder HS, Kushiro I (1969) Melting of hydrous phase: phlogopite. Am J Sci 267:558–582

    Google Scholar 

  • Yoder HS, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3(3):342–532

    Article  Google Scholar 

Download references

Acknowledgments

We thank Peter Ulmer and Travis Tenner for their constructive reviews as well as Timothy Grove for his editorial handling. We thank Didier Laporte for helpful comments and for providing us with the Bri5 peridotite and Christian Pin for the Finero phlogopite-peridotite sample. This study was funded by the Syster program of CNRS-INSU. This is Laboratory of Excellence ClerVolc Contribution No. 219.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Condamine.

Additional information

Communicated by Timothy L. Grove.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Condamine, P., Médard, E. & Devidal, JL. Experimental melting of phlogopite-peridotite in the garnet stability field. Contrib Mineral Petrol 171, 95 (2016). https://doi.org/10.1007/s00410-016-1306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1306-0

Keywords

  • Phlogopite
  • Hydrous melting
  • Garnet-peridotite
  • Fluorine
  • Potassic
  • Ultrapotassic