Skip to main content

Controls on the stability and composition of amphibole in the Earth’s mantle

Abstract

Presented here is a suite of new experiments aimed at quantifying the effects of pressure, temperature, bulk composition, and H2O content on the stability and composition of amphibole in the Earth’s mantle. Experiments have been performed from 2 to 4 GPa and 950 to 1100 °C on fertile and depleted mantle compositions. H2O contents of most experiments are 0.65 wt%. In the fertile mantle composition, pargasitic amphibole is stable up to ~3.8 GPa at 1000 °C, approximately 0.5 GPa higher than any previous study. The upper stability limit of amphibole in depleted mantle is 0.7 GPa and 40 °C lower than in fertile mantle. The addition of 3 wt% H2O to fertile mantle destabilizes amphibole by 0.5 GPa and 40 °C relative to the 0.65 wt% H2O experiments. Compared to existing experiments on amphibole stability, these experiments indicate that pargasitic amphibole may be stable in mantle lithosphere to almost 4 GPa (0.5 GPa higher (15 km deeper) than previously thought). The extremely strong destabilizing effect of H2O suggests that deeper portions of the strongly fluid-fluxed mantle wedge may be amphibole-free even at low temperatures near the slab–wedge interface. The molar alkali content of amphibole is shown to be a linear function (R 2 = 0.98) of pressure and temperature and is relatively insensitive to bulk compositional differences between fertile and depleted mantle. This relationship is used to produce an empirical thermobarometer for pargasite-bearing spinel and garnet lherzolites. Comparison to existing experimental data shows that this thermobarometer has predictive ability over the pressure range of 1–4 GPa. Comparisons with pressure–temperature estimates of garnet + amphibole peridotites further corroborate the applicability of this thermobarometer for natural samples. Pressure estimates are presented for four examples of metasomatized spinel peridotites otherwise lacking pressure information, and future avenues for refinement of the thermobarometer are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Agrinier P, Mével C, Bosch D, Javoy M (1993) Metasomatic hydrous fluids in amphibole peridotites from Zabargad Island (Red Sea). Earth Planet Sci Lett 120:187–205

    Article  Google Scholar 

  2. Arai S, Ishimaru S, Okrugin VM (2003) Metasomatized harzburgite xenoliths from Avacha volcano as fragments of mantle wedge of the Kamchatka arc: implication for the metasomatic agent. Island Arc 12:233–246

    Article  Google Scholar 

  3. Armstrong JT (1995) CITZAF—a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin-films and particles. Microbeam Anal 4:177–200

    Google Scholar 

  4. Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Miner Petrol 107:27–40

    Article  Google Scholar 

  5. Bonadiman C, Nazzareni S, Coltorti M, Comodi P, Giuli G, Faccini B (2014) Crystal chemistry of amphiboles: implications for oxygen fugacity and water activity in lithospheric mantle beneath Victoria Land, Antarctica. Contrib Miner Petrol 167:984

    Article  Google Scholar 

  6. Boyd FR, England JL (1960) Apparatus for phase equilibrium studies at pressure up to 50 kilobars and temperatures up to 1750 C. J Geophys Res 65:741–748

    Article  Google Scholar 

  7. Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  8. Brooker RA, James RH, Blundy JD (2004) Trace elements and Li isotope systematics in Zabargad peridotites: evidence of ancient subduction processes in the Red Sea mantle. Chem Geol 212:179–204

    Article  Google Scholar 

  9. Carroll Webb SA, Wood BJ (1986) Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio. Contrib Mineral Petrol 92:471–480

    Article  Google Scholar 

  10. Ernst WG (1962) Synthesis, stability relations, and occurrence of riebeckite and riebeckite-arfvedsonite solid solutions. J Geol 70:689–736

    Article  Google Scholar 

  11. Foley S (1991) High-pressure stability of the fluor- and hydroxy-end members of pargasite and K-richterite. Geochim Cosmochim Acta 55:2689–2694

    Article  Google Scholar 

  12. Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Ann Rev Earth Planet Sci 36:389–420

    Article  Google Scholar 

  13. Fumagalli P, Zanchetta S, Poli S (2009) Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study. Contrib Mineral Petrol 158:723–737

    Article  Google Scholar 

  14. Gilbert MC (1966) Synthesis and stability relationships of ferropargasite. Am J Sci 264:698–742

    Article  Google Scholar 

  15. Gilbert MC (1969) Reconnaissance study of the stability of amphiboles at high pressure. Carnegie Inst Wash Year Book 67:167–170

    Google Scholar 

  16. Green DH (1973) Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19:37–53

    Article  Google Scholar 

  17. Green DH, Hibberson WO, Kovács I, Rosenthal A (2010) Water and its influence on the lithosphere–asthenosphere boundary. Nature 467:448–452

    Article  Google Scholar 

  18. Green DH, Hibberson WO, Rosenthal A, Kovács I, Yaxley GM, Falloon TJ, Brink F (2014) Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J Petrol 55:2067–2096

    Article  Google Scholar 

  19. Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Miner Petrol 142:375–396

    Article  Google Scholar 

  20. Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 19:37–53

    Google Scholar 

  21. Hart SR, Zindler A (1986) In search of a bulk-Earth composition. Chem Geol 57(3–4):247–267

    Article  Google Scholar 

  22. Hodges FN (1972) Solubility of H2O in forsterite melt at 20 kbar. Carnegie Inst Wash Year Book 72:495–497

    Google Scholar 

  23. Johannes W, Bell PM, Mao HK, Boettcher AL, Chipman DW, Hays JF, Newton RS, Siefert F (1971) An interlaboratory comparison of piston-cylinder pressure calibration using the albite-breakdown reaction. Contrib Miner Petrol 32:24–38

    Article  Google Scholar 

  24. Keppler H (1996) Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380:237–240

    Article  Google Scholar 

  25. Klemme S (2004) The influence of Cr on the garnet-spinel transition in the Earth’s mantle: experiments in the system MgO-Cr2O3-SiO2 and thermodynamic modelling. Lithos 77:639–646

    Article  Google Scholar 

  26. Konzett J, Ulmer P (1999) The stability of hydrous potassic phases in lherzolitic mantle—an experimental study to 9.5 GPa in simplified and natural bulk compositions. J Petrol 40:629–652

    Article  Google Scholar 

  27. Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92

    Article  Google Scholar 

  28. Kushiro I (1970) Stability of amphibole and phlogopite in the upper mantle. Carnegie Inst Washington Year Book 68:245–247

    Google Scholar 

  29. Lee C-TA, Luffi P, Chin EJ (2011) Building and destroying continental mantle. Annu Rev Earth Planet Sci 39:59–90

    Article  Google Scholar 

  30. Longhi J (2005) Temporal stability and pressure calibration of barium carbonate and talc/pyrex pressure media in a piston-cylinder apparatus. Am Mineral 90:206–218

    Article  Google Scholar 

  31. Medard E, McCammon CA, Barr JA, Grove TL (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93:1838–1844

    Article  Google Scholar 

  32. Melson WG, Hart SR, Thompson G (1972) St. Paul’s Rocks, Equatorial Atlantic: petrogenesis, radiometric ages, and implications on sea-floor spreading. Geol Soc Am Memoir 132:241–272

    Article  Google Scholar 

  33. Mengel K, Green DH (1989) Stability of amphibole and phlogopite in metasomatized peridotite under water-saturated and water-undersaturated conditions. In: Ross J (ed) Kimberlites and related rocks: their composition, occurrence, origin, and emplacement. 4th international kimberlite conference in Perth, 1986. vol 1, Blackwell Scientific Publications for the Geological Society of Australia, pp 571–581

  34. Millhollen GL, Irving AJ, Wyllie PJ (1974) Melting interval of peridotite with 5.7 per cent water to 30 kilobars. J Geol 82:575–587

    Article  Google Scholar 

  35. Mysen BO, Boettcher AL (1975) Melting of hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide and hydrogen. J Petrol 16:520–548

    Article  Google Scholar 

  36. Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Miner Petrol 135:18–40

    Article  Google Scholar 

  37. Nimis P, Grütter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib Miner Petrol 159:411–427

    Article  Google Scholar 

  38. Nimis P, Morten L (2000) P–T evolution of ‘crustal’ garnet peridotites and included pyroxenites from Nonsberg area (upper Austroalpine), NE Italy: from the wedge to the slab. J Geodyn 30:93–115

    Article  Google Scholar 

  39. O’Neill HSC (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Miner Petrol 77:185–194

    Article  Google Scholar 

  40. Piccardo GB, Messiga B, Vannucci R (1988) The Zabargad peridotite-pyroxenite association: petrological constraints on its evolution. Tectonophysics 150:135–162

    Article  Google Scholar 

  41. Pirard C, Hermann J (2015) Experimentally determined stability of alkali amphibole in metasomatised dunite at sub-arc pressures. Contrib Mineral Petrol 169:1

    Article  Google Scholar 

  42. Rampone E, Morten L (2001) Records of crustal metasomatism in the garnet peridotites of the Ulten Zone (Upper Austroalpine, Eastern Alps). J Petrol 42:207–219

    Article  Google Scholar 

  43. Roden MK, Hart SR, Frey FA, Melson WG (1984) Sr, Nd and Pb isotopic and REE geochemistry of St. Paul’s Rocks: the metamorphic and metasomatic development of an alkali basalt mantle source. Contrib Miner Petrol 85:376–390

    Article  Google Scholar 

  44. Scambelluri M, Philippot P (2001) Deep fluids in subduction zones. Lithos 55:213–227

    Article  Google Scholar 

  45. Schmidt MW, Poli S (2014) Devolatilization during subduction. In: Holland H, Turekian K (eds) Treatise on geochemistry: the crust, vol 4. Elsevier, pp 669–701

  46. Snow JE, Schmidt G (1999) Proterozoic melting in the northern peridotite massif, Zabargad Island: Os isotopic evidence. Terra Nova 11:45–50

    Article  Google Scholar 

  47. Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121:293–325

    Article  Google Scholar 

  48. Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Int 183:73–90

    Article  Google Scholar 

  49. Till CB, Grove TL, Withers AC (2012) The beginnings of hydrous mantle wedge melting. Contrib Miner Petrol 163:669–688

    Article  Google Scholar 

  50. Tropper P, Manning CE, Essene EJ, Kao L-S (2000) The compositional variation of synthetic sodic amphiboles at high and ultra-high pressures. Contrib Miner Petrol 139:146–162

    Article  Google Scholar 

  51. Tumiati S, Fumagalli P, Tinaboschi C, Poli S (2013) An experimental study on COH-bearing peridotite up to 3.2 GPa, and implications for crust-mantle recycling. J Petrol 54:453–479

    Article  Google Scholar 

  52. Van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res 116:B01401

    Google Scholar 

  53. Wada I, Behn MD, Shaw AM (2012) Effects of heterogeneous hydration in the incoming plate, slab rehydration, and mantle wedge hydration on slab-derived H2O flux in subduction zones. Earth Planet Sci Lett 353–354:60–71

    Article  Google Scholar 

  54. Wallace ME, Green DH (1991) The effect of bulk rock composition on the stability of amphibole in the upper mantle. Mineral Petrol 44:1–19

    Article  Google Scholar 

  55. Walowski KJ, Wallace PJ, Hauri EH, Wada I, Clynne MA (2015) Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite. Nat Geosci 8:404–408

    Article  Google Scholar 

  56. Walter MJ (1999) Melting residues of fertile peridotite and the origin of cratonic lithosphere. In: Mantle petrology: field observations and high pressure experimentation: A tribute to Francis R. (Joe) Boyd. Geochem Soc Spec Pub 6:225–239

  57. Yoder HS, Kushiro I (1969) Melting of a hydrous phase: phlogopite. Am J Sci 267A:558–582

    Google Scholar 

  58. Ziberna L, Klemme S, Nimis P (2013) Garnet and spinel in fertile and depleted mantle: insights from thermodynamic modelling. Contrib Mineral Petrol 166:411–421

    Article  Google Scholar 

Download references

Acknowledgments

Thoughtful reviews from C. Pirard and P. Nimis, plus editorial handling from O. Müntener, led to improvements in this manuscript. This research was supported by National Science Foundation Grants EAR-1118598 and EAR-1551321 to T.L. Grove.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ben E. Mandler.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mandler, B.E., Grove, T.L. Controls on the stability and composition of amphibole in the Earth’s mantle. Contrib Mineral Petrol 171, 68 (2016). https://doi.org/10.1007/s00410-016-1281-5

Download citation

Keywords

  • Experimental petrology
  • Amphibole
  • Peridotite
  • Mantle
  • Metasomatism
  • Thermobarometry