Skip to main content
Log in

Timescales of storage and recycling of crystal mush at Krafla Volcano, Iceland

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Processes in upper-crustal magma reservoirs such as recharge, magma mixing, recycling of previously crystallized material, and eruption affect both the physical state and the chemical composition of magmas. A growing body of evidence shows that crystals in intermediate or silicic volcanic rocks preserve records of these processes that may be obscured due to mixing in the liquid fraction of magmas. Fewer studies have focused on crystals in basaltic lavas, but these show evidence for a more subtle, but still rich record of magmatic processes. We present new 238U–230Th–226Ra data for plagioclase, combined with δ18O and trace-element measurements of the same crystal populations, from basalts erupted at Krafla Volcanic Center, Iceland. These data document the presence of multiple crystal populations within each sample, with chemical and oxygen isotope heterogeneity at a variety of scales: within individual crystals, between crystals in a given population, between crystal populations within the same sample, and between crystals in lavas erupted from different vents during the same eruption. Comparison to whole-rock or groundmass data shows that the majority of macroscopic crystals are not in trace-element or oxygen isotope equilibrium with their host liquids. The most likely explanation for these data is that the macroscopic crystals originated within a highly heterogeneous crystal mush in the shallow magma reservoir system. U-series and diffusion data indicate that the crystals (and therefore the mush) formed recently (likely within a few thousand years of eruption, and with a maximum age of 8–9 ka), and that the crystals resided in their host magma prior to eruption for decades to a few centuries at most. These data, in conjunction with other recent studies, suggest a model where erupted Icelandic magmas are the result of diverse magmas entering the crust, followed by complex interactions between melts and previously crystallized material at all crustal levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arnorsson S, Oskarsson N (2007) Molybdenum and tungsten in volcanic rocks and in surface and < 100 degrees C ground waters in Iceland. Geochim Cosmochim Acta 71(2):284–304. doi:10.1016/j.gca.2006.09.030

    Article  Google Scholar 

  • Ball L, Sims KWW, Schwieters J (2008) Measurement of 234U/238U and 230Th/232Th in volcanic rocks using the Neptune MC-ICP-MS. J Anal At Spectrosc 23:173–180

    Article  Google Scholar 

  • Bindeman IN, Davis AM (2000) Trace element partitioning between plagioclase and melt: investigation of dopant influence on partition behavior. Geochim Cosmochim Acta 64:2863–2878

    Article  Google Scholar 

  • Bindeman I, Sigmarsson O, Eiler JM (2006) Time constraints on the origin of large volume basalts derived from O-isotope and trace element mineral zoning and U-series disequilibria in the Laki and Grímsvötn volcanic system. Earth Planet Sci Lett 245:245–259

    Article  Google Scholar 

  • Bindeman I, Gurenko A, Carley T, Miller C, Martin E, Sigmarsson O (2012) Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB. Terra Nova 24(3):227–232. doi:10.1111/j.1365-3121.2012.01058.x

    Article  Google Scholar 

  • Blundy J, Cashman K (2008) Petrologic reconstruction of magmatic system variables and processes. In: Putirka KD, Tepley FJ (eds) Minerals, inclusions and volcanic processes. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, vol 69, pp 179–239

  • Blundy J, Wood B (2003a) Mineral-melt partitioning of uranium, thorium and their daughters. In: Bourdon B, Henderson GM, Lundstrom CC, Turner SP (eds) Uranium-series geochemistry. Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, vol 52, pp 59–123

  • Blundy J, Wood B (2003b) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397

    Article  Google Scholar 

  • Borthwick J, Harmon RS (1982) A note regarding ClF 3 as an alternative to BrF 5 for oxygen isotope analysis. Geochim Cosmochim Acta 46:1665–1668

    Article  Google Scholar 

  • Burgisser A, Bergantz GW (2011) A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471(7337):212–215. doi:10.1038/Nature09799

    Article  Google Scholar 

  • Carley T, Miller C, Wooden J, Bindeman I, Barth A (2011) Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas. Mineral Petrol 102(1–4):135–161. doi:10.1007/s00710-011-0169-3

    Article  Google Scholar 

  • Cashman K, Blundy J (2013) Petrological cannibalism: the chemical and textural consequences of incremental magma body growth. Contrib Mineral Petrol/Beitrage zur Minerologie und Petrologie Berlin and New York NY 166(3):703–729. doi:10.1007/s00410-013-0895-0

    Article  Google Scholar 

  • Cheng H, Edwards RL, Shen C-C, Polyak VJ, Asmerom Y, Woodhead J, Hellstrom J, Wang Y, Kong X, Spotl C, Wang X, Alexander EC Jr (2013) Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collectro inductively coupled plasma mass spectrometry. Earth Planet Sci Lett 371–372:82–91

    Article  Google Scholar 

  • Cherniak DJ (2010) Cation diffusion in feldspars. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts: reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, vol 72, pp 691–733

  • Cherniak DJ, Watson EB (2010) Li diffusion in zircon. Contrib Miner Petrol 160(3):383–390. doi:10.1007/s00410-009-0483-5

    Article  Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: application to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Article  Google Scholar 

  • Clague DA (1987) Hawaiian xenolith populations, magma supply rates, and development of magma chambers. Bull Volc 49:577–587

    Article  Google Scholar 

  • Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52

    Article  Google Scholar 

  • Clynne MA (1999) A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. J Petrol 40(1):105–132

    Article  Google Scholar 

  • Condomines M, Morand P, Allegre CJ (1981) 230Th–238U disequilibria in historical lavas from Iceland. Earth Planet Sci Lett 55:393–406

    Article  Google Scholar 

  • Condomines M, Gronvold K, Hooker PJ, Muehlenbachs K, Onions RK, Oskarsson N, Oxburgh ER (1983) Helium, oxygen, strontium and neodymium isotopic relationships in Icelandic volcanics. Earth Planet Sci Lett 66(1–3):125–136. doi:10.1016/0012-821x(83)90131-0

    Article  Google Scholar 

  • Cooper KM (2009) Comment on “On the recent bimodal magmatic processes and their rates in the Torfajökull—Veidivötn area, Iceland” by G.F. Zellmer, K.H. Rubin, K. Grönvold, and Z. Jurado-Chichay. Earth Planet Sci Lett 281:110–114

    Article  Google Scholar 

  • Cooper KM, Donnelly CT (2008) 238U–230Th–226Ra disequilibria in dacite and plagioclase from the 2004–2005 eruption of Mount St. Helens. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption at Mount St Helens, 2004–2006, vol. US Geological Survey Professional Paper 1750, pp 827–846

  • Cooper KM, Kent AJR (2014) Rapid remobilisation of magmatic crystals kept in cold storage. Nature 506(7849):480–483. doi:10.1038/nature12991

    Article  Google Scholar 

  • Cooper KM, Reid MR (2008) Uranium-series crystal ages. In: Putirka K, Tepley III FJ (eds) Minerals, inclusions and volcanic processes: reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, vol 69, pp 479–544

  • Cooper KM, Reid MR, Murrell MT, Clague DA (2001) Crystal and magma residence at Kilauea Volcano, Hawaii: 230Th–226Ra dating of the 1955 east rift eruption. Earth Planet Sci Lett 184(3–4):703–718

    Article  Google Scholar 

  • Cooper KM, Eiler JM, Asimow PD, Langmuir CH (2004) Oxygen-isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge. Earth Planet Sci Lett 220(3–4):297–316

    Article  Google Scholar 

  • Coplen TB (1996) New guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope ratio data. Geochimica et Cosmochimica Acta 60:3359–3360

    Article  Google Scholar 

  • Costa F, Dohmen R, Chakraborty S (2008) Time scales of magmatic processes from modeling the zoning patterns of crystals. In: Putirka K, Tepley III FJ (eds) Minerals, inclusions and volcanic processes: reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, vol 69, pp 545–594

  • Costa F, Coogan LA, Chakraborty S (2010) The time scales of magma mixing and mingling involving primitive melts and melt-mush interaction at mid-ocean ridges. Contrib Miner Petrol 159(3):371–387. doi:10.1007/s00410-009-0432-3

    Article  Google Scholar 

  • Costa F, Andreastuti S, de Maisonneuve CB, Pallister JS (2013) Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J Volcanol Geoth Res 261:209–235. doi:10.1016/j.jvolgeores.2012.12.025

    Article  Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  • David K, Schiano P, Allegre CJ (2000) Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes. Earth Planet Sci Lett 178(3–4):285–301. doi:10.1016/S0012-821x(00)00088-1

    Article  Google Scholar 

  • Davidson JP, Hora JM, Garrison JM, Dungan MA (2005) Crustal forensics in arc magmas. J Volcanol Geoth Res 140:157–170

    Article  Google Scholar 

  • Degruyter W, Huber C (2014) A model for eruption frequency of upper crustal silicic magma chambers. Earth Planet Sci Lett 403:117–130

    Article  Google Scholar 

  • Druitt TH, Costa F, Deloule E, Dungan M, Scaillet B (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482(7383):77–80. doi:10.1038/nature10706

    Article  Google Scholar 

  • Eichelberger JC (1978) Andesitic volcanism and crustal evolution. Nature 275:21–26

    Article  Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364

    Article  Google Scholar 

  • Eiler JM, Schiano P, Kitchen N, Stolper EM (2000) Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts. Nature 403(6769):530–534

    Article  Google Scholar 

  • Eiler JM, Carr MJ, Reagan M, Stolper E (2005) Oxygen isotope constraints on the sources of Central American arc lavas. Geochemistry Geophysics Geosystems 6(2005):Q07007. doi:10.1029/2004GC000804

  • Elphick SC, Graham CM, Dennis PF (1988) An ion microprobe study of anhydrous oxygen diffusion in anorthite—a comparison with hydrothermal data and some geological implications. Contrib Miner Petrol 100:490–495

    Article  Google Scholar 

  • Fabbrizio A, Schmidt MW, Gunther D, Eikenberg J (2009) Experimental determination of Ra mineral/melt partitioning for feldspars and 226Ra-disequilibrium crystallization ages of plagioclase and alkali-feldspar. Earth Planet Sci Lett 280:137–148

    Article  Google Scholar 

  • Feineman MD, DePaolo DJ (2003) Steady-state Ra-226/Th-230 disequilibrium in mantle minerals: implications for melt transport rates in island arcs. Earth Planet Sci Lett 215(3–4):339–355

    Article  Google Scholar 

  • Fitton JG, Saunders AD, Kempton PD, Hardarson BS (2003) Does depleted mantle form an intrinsic part of the Iceland plume? Geochem Geophys Geosyst. doi:10.1029/2002gc000424

    Google Scholar 

  • Garrison JM, Reagan MK, Sims KWW (2012) Dacite formation at Ilopango Caldera, El Salvador: U-series disequilibrium and implications for petrogenetic processes and magma storage time. Geochem Geophys Geosyst. doi:10.1029/2012gc004107

    Google Scholar 

  • Grönvold K, Mäkipää H (1978) Chemical composition of Krafla lavas 1975–1977. Nordic Volcanol Inst Rep 78–16:1–49

    Google Scholar 

  • Gronvold K, Halldorsson SA, Sigurdsson G, Sverrisdottir G, Oskarsson N (2008) Isotopic systematics of magma movement in the Krafla Central Volcano, North Iceland. Geochim Cosmochim Acta 72(12):A331

    Google Scholar 

  • Gurenko AA, Sobolev AV (2006) Crust-primitive magma interaction beneath neovolcanic rift zone of Iceland recorded in gabbro xenoliths from Midfell, SW Iceland. Contrib Miner Petrol 151(5):495–520. doi:10.1007/s00410-006-0079-2

    Article  Google Scholar 

  • Hansen H, Gronvold K (2000) Plagioclase ultraphyric basalts in Iceland: the mush of the rift. J Volcanol Geoth Res 98(1–4):1–32. doi:10.1016/S0377-0273(99)00189-4

    Article  Google Scholar 

  • Helz RT (1987) Diverse olivine types in lava of the 1959 eruption of Kilauea Volcano and their bearing on eruption dynamics. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii, US Geological Survey Professional Paper 1350, vol 1. pp 691–722

  • Hemond C, Condomines M, Fourcade S, Allegre CJ, Oskarsson N, Javoy M (1988a) Thorium, strontium and oxygen isotopic geochemistry in recent tholeiites from Iceland—crustal influence on mantle–derived magmas. Earth Planet Sci Lett 87(3):273–285. doi:10.1016/0012-821x(88)90015-5

    Article  Google Scholar 

  • Hemond C, Condomines M, Fourcade S, Allègre CJ, Oskarsson N, Javoy M (1988b) Thorium, strontium, and oxygen isotopic geochemistry in recent tholeiites from Iceland: crustal influence on mantle-derived magmas. Earth Planet Sci Lett 87:273–285

    Article  Google Scholar 

  • Hemond C, Arndt NT, Lichtenstein U, Hofmann AW, Oskarsson N, Steinthorsson S (1993) The heterogeneous Iceland Plume—Nd–Sr–O isotopes and trace- element constraints. J Geophys Res-Solid Earth 98(B9):15833–15850

    Article  Google Scholar 

  • Higgins MD, Roberge J (2007) Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: Evidence from plagioclase crystal size distribution (CSD) and geochemistry. J Volcanol Geoth Res 161(3):247–260. doi:10.1016/j.jvolgeores.2006.12.002

    Article  Google Scholar 

  • Holden N (1990) Total half-lives for selected nuclides. Pure Appl Chem 62:941–958

    Article  Google Scholar 

  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activitites of 235U and 238U. Phys Rev C 4:1889–1906

    Article  Google Scholar 

  • Kelley KA, Plank T, Ludden J, Staudigel H (2003) Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem Geophys Geosyst. doi:10.1029/2002gc000435

    Google Scholar 

  • Kempton PD, Fitton JG, Saunders AD, Nowell GM, Taylor RN, Hardarson BS, Pearson G (2000) The Iceland plume in space and time: a Sr-Nd-Pb-Hf study of the North Atlantic rifted margin. Earth Planet Sci Lett 177(3–4):255–271. doi:10.1016/S0012-821x(00)00047-9

    Article  Google Scholar 

  • Kent AJR, Blundy J, Cashman K, Cooper KM, Donnelly C, Pallister JS, Reagan M, Rowe MC, Thornber CR (2007) Vapor transport prior to the October 2004 eruption of Mount St. Helens. Washington: Insight from Li and 210Pb systematics. Geology

  • Kent AJR, Darr C, Koleszar AM, Salisbury MJ, Cooper KM (2010) Preferential eruption of andesitic magmas through recharge filtering. Nat Geosci 3(9):631–636. doi:10.1038/Ngeo924

    Article  Google Scholar 

  • Kilgour G, Blundy J, Cashman K, Mader HM (2013) Small volume andesite magmas and melt-mush interactions at Ruapehu, New Zealand: evidence from melt inclusions. Contrib Miner Petrol 166(2):371–392. doi:10.1007/s00410-013-0880-7

    Article  Google Scholar 

  • Kokfelt TF, Hoernle K, Hauff F (2003) Upwelling and melting of the Iceland plume from radial variation of U-238-Th-230 disequilibria in postglacial volcanic rocks. Earth Planet Sci Lett 214(1–2):167–186. doi:10.1016/S0012-821X(03)00306-6

    Article  Google Scholar 

  • Kokfelt TF, Hoernle K, Lundstrom C, Hauff F, van den Bogaard C (2009) Time-scales for magmatic differentiation at the Snaefellsjokull central volcano, western Iceland: constraints from U–Th–Pa–Ra disequilibria in post-glacial lavas. Geochim Cosmochim Acta 73(4):1120–1144. doi:10.1016/j.gca.2008.11.021

    Article  Google Scholar 

  • Koornneef JM, Stracke A, Bourdon B, Gronvold K (2012a) The influence of source heterogeneity on the U–Th–Pa–Ra disequilibria in post-glacial tholeiites from Iceland. Geochim Cosmochim Acta 87:243–266. doi:10.1016/j.gca.2012.03.041

    Article  Google Scholar 

  • Koornneef JM, Stracke A, Bourdon B, Meier MA, Jochum KP, Stoll B, Gronvold K (2012b) Melting of a Two-component Source beneath Iceland. J Petrol 53(1):127–157. doi:10.1093/petrology/egr059

    Article  Google Scholar 

  • Kurz MD, Meyer PS, Sigurdsson H (1985) Helium isotopic systematics within the neovolcanic zones of Iceland. Earth Planet Sci Lett 74(4):291–305. doi:10.1016/S0012-821x(85)80001-7

    Article  Google Scholar 

  • Ludwig KR (2001) Isoplot 3.0—a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication 4

  • MacLennan J (2008a) Concurrent mixing and cooling of melts under Iceland. J Petrol 49(11):1931–1953. doi:10.1093/petrology/egn052

    Article  Google Scholar 

  • Maclennan J (2008b) Lead isotope variability in olivine-hosted melt inclusions from Iceland. Geochim Cosmochim Acta 72(16):4159–4176. doi:10.1016/j.gca.2008.05.034

    Article  Google Scholar 

  • Maclennan J, McKenzie D, Gronvold K, Slater L (2001) Crustal accretion under northern Iceland. Earth Planet Sci Lett 191(3–4):295–310. doi:10.1016/S0012-821x(01)00420-4

    Article  Google Scholar 

  • Maclennan J, McKenzie D, Gronvold K, Shimizu N, Eiler JM, Kitchen N (2003) Melt mixing and crystallization under Theistareykir, northeast Iceland. Geochem Geophys Geosyst. doi:10.1029/2003gc000558

    Google Scholar 

  • Marsh BD (1998) On the interpretation of crystal size distributions in magmatic systems. J Petrol 39(4):553–599

    Article  Google Scholar 

  • Martin E, Sigmarsson O (2010) Thirteen million years of silicic magma production in Iceland: Links between petrogenesis and tectonic settings. Lithos 116(1–2):129–144. doi:10.1016/j.lithos.2010.01.005

    Article  Google Scholar 

  • Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757–775

    Article  Google Scholar 

  • Neave DA, Passmore E, Maclennan J, Fitton G, Thordarson T (2013) Crystal–melt relationships and the record of deep mixing and crystallization in the ad 1783 Laki Eruption, Iceland. J Petrol 54(8):1661–1690. doi:10.1093/petrology/egt027

    Article  Google Scholar 

  • Neave DA, Maclennan J, Edmonds M, Thordarson T (2014) Melt mixing causes negative correlation of trace element enrichment and CO2 content prior to an Icelandic eruption. Earth Planet Sci Lett 400:272–283. doi:10.1016/j.epsl.2014.05.050

    Article  Google Scholar 

  • Nichols ARL, Carroll MR, Hoskuldsson A (2002) Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts. Earth Planet Sci Lett 202(1):77–87. doi:10.1016/S0012-821x(02)00758-6

    Article  Google Scholar 

  • Nicholson H, Latin D (1992) Olivine tholeiites from Krafla, Iceland—evidence for variations in melt fraction within a plume. J Petrol 33(5):1105–1124

    Article  Google Scholar 

  • Nicholson H, Condomines M, Fitton JG, Fallick AE, Gronvold K, Rogers G (1991) Geochemical and isotopic evidence for crustal assimilation beneath Krafla, Iceland. J Petrol 32(5):1005–1020

    Article  Google Scholar 

  • Passmore E, Maclennan J, Fitton G, Thordarson T (2012) Mush disaggregation in basaltic magma chambers: evidence from the ad 1783 Laki Eruption. J Petrol 53(12):2593–2623. doi:10.1093/petrology/egs061

    Article  Google Scholar 

  • Pyle DM, Ivanovich M, Sparks RSJ (1988) Magma-cumulate mixing identified by U–Th disequilibrium dating. Nature 331:187–189

    Article  Google Scholar 

  • Rubin KH, Zellmer GF (2009) Reply to Comment on “On the recent bimodal magmatic processes and their rates in the Torfajokull–Veidivotn area, Iceland” by KM Cooper Discussion. Earth Planet Sci Lett 281(1–2):115–123. doi:10.1016/j.epsl.2009.02.008

    Article  Google Scholar 

  • Saal AE, Van Orman JA (2004) The Ra-226 enrichment in oceanic basalts: evidence for melt-cumulate diffusive interaction processes within the oceanic lithosphere. Geochem Geophys Geosyst 5:2003GC000620. doi:10.1029/2003GC000620

    Article  Google Scholar 

  • Sæmundsson K (1991) Jarđfrædi Kröflukerfisins (Geology of the Krafla volcanic system). In: Gardarson A, Einarsson Á (eds) Náttúra Mývatns, vol. Hid íslenska náttúrufrædifélag, Reyjkavik, pp 25–95

  • Sæmundsson K, Hjartarson Á, Kaldal I, Sigurgeirsson MÁ, Kristinsson SG, Vikingsson S (2012) Geological map of the Northern volcanic zone, Icleand, Northern part. In, vol. Iceland GeoSurvey

  • Schmitt AK (2011) Uranium series accessory crystal dating of magmatic processes. Annu Rev Earth Planet Sci 39:321–349

    Article  Google Scholar 

  • Sharp ZD (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357

    Article  Google Scholar 

  • Sigmarsson O (1996) Short magma chamber residence time at an Icelandic volcano inferred from U-series disequilibria. Nature 382(6590):440–442

    Article  Google Scholar 

  • Sigmarsson O, Hemond C, Condomines M, Fourcade S, Oskarsson N (1991) Origin of silicic magma in Iceland revealed by Th isotopes. Geology 19:621–624

    Article  Google Scholar 

  • Sigmarsson O, Condomines M, Fourcade S (1992a) A detailed Th, Sr and O isotope study of Hekla: differentiation processes in an Icelandic volcano. Contrib Miner Petrol 112:20–34

    Article  Google Scholar 

  • Sigmarsson O, Condomines M, Fourcade S (1992b) Mantle and crustal contribution in the genesis of Recent basalts from off-rift zones in Iceland: constraints from Th, Sr and O isotopes. Earth Planet Sci Lett 110:149–162

    Article  Google Scholar 

  • Sigvaldason GE, Oskarsson N (1986) Fluorine in Basalts from Iceland. Contrib Miner Petrol 94(3):263–271. doi:10.1007/Bf00371435

    Article  Google Scholar 

  • Sims KWW Jr, Ackert RP, Ramos FC, Sohn RA, Murrell MT, DePaolo DJ (2007) Determining eruption ages and erosion rates of Quaternary basaltic volcanism from combined U-series disequilibria and cosmogenic exposure ages. Geology 35:471–474

    Article  Google Scholar 

  • Sims KWW, Gill JB, Dosseto A, Hoffmann DL, Lundstrom Craig C, Williams RW, Ball L, Tollstrup D, Turner S, Prytulak J, Glessner JJG, Standish JJ, Elliott T (2008a) An inter-laboratory assessment of the thorium isotopic composition of synthetic and rock reference materials. Geostand Geoanal Res 32(1):65–91

    Article  Google Scholar 

  • Sims KWW, Hart SR, Reagan MK, Blusztain J, Staudigel H, Sohn RA, Layne GD, Ball LA, Andrews J (2008b) 238U–230Th–226Ra–210Pb–210Po, 232Th–228Ra and 235U–231Pa constraints on the ages and petrogenesis of Vailulu and Malumalu Lavas, Samoa. Geochem Geophys Geosyst. doi:10.1029/2007GC001651

    Google Scholar 

  • Sims KWW, Maclennan J, Blichert-Toft J, Mervine EM, Blusztajn J, Gronvold K (2013a) Short length scale mantle heterogeneity beneath Iceland probed by glacial modulation of melting. Earth Planet Sci Lett 379:146–157. doi:10.1016/j.epsl.2013.07.027

    Article  Google Scholar 

  • Sims KWW, Pichat S, Reagan MK, Kyle PR, Dulaiova H, Dunbar NW, Prytulak J, Sawyer G, Layne GD, Blichert-Toft J, Gauthier PJ, Charette MA, Elliott TR (2013b) On the time scales of magma genesis, melt evolution, crystal growth rates and magma degassing in the erebus volcano magmatic system using the U-238, U-235 and Th-232 decay series. J Petrol 54(2):235–271. doi:10.1093/Petrology/Egs068

    Article  Google Scholar 

  • Slater L, McKenzie D, Gronvold K, Shimizu N (2001) Melt generation and movement beneath Theistareykir, NE Iceland. J Petrol 42(2):321–354

    Article  Google Scholar 

  • Stelten ME, Cooper KM (2012) Constraints on the nature of the subvolcanic reservoir at South Sister volcano, Oregon from U-series dating combined with sub-crystal trace-element analysis of plagioclase and zircon. Earth Planet Sci Lett 313:1–11. doi:10.1016/J.Epsl.2011.10.035

    Article  Google Scholar 

  • Stracke A, Zindler A, Salters VJM, McKenzie D, Blichert-Toft J, Albarede F, Gronvold K (2003a) Theistareykir revisited. Geochem Geophys Geosyst. doi:10.1029/2001gc000201

    Google Scholar 

  • Stracke A, Zindler A, Salters VJM, McKenzie D, Gronvold K (2003b) The dynamics of melting beneath Theistareykir, northern Iceland. Geochem Geophys Geosyst. doi:10.1029/2002gc000347

    Google Scholar 

  • Sveinbjornsdottir AE, Coleman ML, Yardley BWD (1986) Origin and history of hydrothermal fluids of the Reykjanes and Krafla Geothermal Fields, Iceland—a Stable Isotope Study. Contrib Miner Petrol 94(1):99–109. doi:10.1007/Bf00371231

    Article  Google Scholar 

  • Tera F, Brown L, Morris J, Sacks IS, Klein J, Middleton R (1986) Sediment incorporation in Island-Arc Magmas—inferences from Be-10. Geochim Cosmochim Acta 50(4):535–550. doi:10.1016/0016-7037(86)90103-1

    Article  Google Scholar 

  • Thirlwall MF, Gee MAM, Taylor RN, Murton BJ (2004) Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochim Cosmochim Acta 68(2):361–386. doi:10.1016/S0016-7037(03)00424-1

    Article  Google Scholar 

  • Thomson A, Maclennan J (2013) The distribution of olivine compositions in icelandic basalts and picrites. J Petrol 54(4):745–768. doi:10.1093/Petrology/Egs083

    Article  Google Scholar 

  • Thordarson T, Larsen G (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. J Geodyn 43(1):118–152. doi:10.1016/j.jog.2006.09.005

    Article  Google Scholar 

  • Torssander P (1988) Sulfur isotope ratios of Icelandic lava incrustations and volcanic gases. J Volcanol Geoth Res 35(3):227–235. doi:10.1016/0377-0273(88)90019-4

    Article  Google Scholar 

  • Turner S, George R, Jerram DA, Carpenter N, Hawkesworth C (2003) Case studies of plagioclase growth and residence times in island arc lavas from Tonga and the Lesser Antilles, and a model to reconcile discordant age information. Earth Planet Sci Lett 214(1–2):279–294

    Article  Google Scholar 

  • Valley JW, Kitchen N, Kohn MJ, Niendorff CR, Spicuzza MJ (1995) Strategies for high precision oxygen isotope analysis by laser fluorination. Geochim Cosmochim Acta 59:5223–5231

    Article  Google Scholar 

  • Van Orman JA, Saal AE, Bourdon B, Hauri EH (2006) Diffusive fractionation of U-series radionuclides during mantle melting and shallow-level melt-cumulate interaction. Geochim Cosmochim Acta 70:4797–4812

    Article  Google Scholar 

  • White AF, Hochella MF (1992) Surface-chemistry associated with the cooling and subaerial weathering of recent basalt flows. Geochim Cosmochim Acta 56(10):3711–3721. doi:10.1016/0016-7037(92)90164-E

    Article  Google Scholar 

  • Wood DA, Joron JL, Treuil M, Norry M, Tarney J (1979) Elemental and Sr isotope variations in basic lavas from iceland and the surrounding ocean-floor—nature of mantle source inhomogeneities. Contrib Miner Petrol 70(3):319–339. doi:10.1007/Bf00375360

    Article  Google Scholar 

  • Wright TL (1973) Magma mixing as illustrated by the 1959 eruption, Kilauea Volcano, Hawaii. Geol Soc Am Bull 84:849–858

    Article  Google Scholar 

  • Zellmer GF, Rubin KH, Gronvold K, Jurado-Chichay Z (2008) On the recent bimodal magmatic processes and their rates in the Torfajokull–Veidivotn area, Iceland. Earth Planet Sci Lett 269:388–398

    Article  Google Scholar 

  • Zellmer G, Rubin K, Dulski P, Iizuka Y, Goldstein S, Perfit M (2011) Crystal growth during dike injection of MOR basaltic melts: evidence from preservation of local Sr disequilibria in plagioclase. Contrib Miner Petrol 161(1):153–173. doi:10.1007/s00410-010-0518-y

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by NSF awards EAR-0307691 and EAR-0714455 to KMC and EAR-0307123 to KWWS. Tracy Compton produced much of the barium data in feldspar as part of her senior thesis at UCD, and we thank Zhengrong Wang for running some of the oxygen isotope analyses in the laboratory at Caltech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari M. Cooper.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooper, K.M., Sims, K.W.W., Eiler, J.M. et al. Timescales of storage and recycling of crystal mush at Krafla Volcano, Iceland. Contrib Mineral Petrol 171, 54 (2016). https://doi.org/10.1007/s00410-016-1267-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1267-3

Keywords

Navigation