Skip to main content

Thermally induced cation redistribution in Fe-bearing oxy-dravite and potential geothermometric implications

Abstract

Iron-bearing oxy-dravite was thermally treated in air and hydrogen atmosphere at 800 °C to study potential changes in Fe, Mg and Al ordering over the octahedrally coordinated Y and Z sites and to explore possible applications to intersite geothermometry based on tourmaline. Overall, the experimental data (structural refinement, Mössbauer, infrared and optical absorption spectroscopy) show that heating Fe-bearing tourmalines results in disordering of Fe over Y and Z balanced by ordering of Mg at Y, whereas Al does not change appreciably. The Fe disorder depends on temperature, but less on redox conditions. The degree of Fe3+–Fe2+ reduction is limited despite strongly reducing conditions, indicating that the f O2 conditions do not exclusively control the Fe oxidation state at the present experimental conditions. Untreated and treated samples have similar short- and long-range crystal structures, which are explained by stable Al-extended clusters around the O1 and O3 sites. In contrast to the stable Al clusters that preclude any temperature-dependent Mg–Al order–disorder, there occurs Mg diffusion linked to temperature-dependent exchange with Fe. Ferric iron mainly resides around O2− at O1 rather than (OH), but its intersite disorder induced by thermal treatment indicates that Fe redistribution is the driving force for Mg–Fe exchange and that its diffusion rates are significant at these temperatures. With increasing temperature, Fe progressively disorders over Y and Z, whereas Mg orders at Y according to the order–disorder reaction: YFe + ZMg → ZFe + YMg. The presented findings are important for interpretation of the post-crystallization history of both tourmaline and tourmaline host rocks and imply that successful tourmaline geothermometers may be developed by thermal calibration of the Mg–Fe order–disorder reaction, whereas any thermometers based on Mg–Al disorder will be insensitive and involve large uncertainties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Andreozzi GB, Bosi F, Longo M (2008) Linking Mössbauer and structural parameters in elbaite-schorl-dravite tourmalines. Am Mineral 93:658–666

    Article  Google Scholar 

  2. Berryman EJ, Wunder B, Wirth R, Rhede D, Schettler G, Franz G, Heinrich W (2015) An experimental study on K and Na incorporation in dravitic tourmaline and insight into the formation environment of diamondiferous tourmaline from the Kokchetav, Massif, Kazakhstan. Contrib Mineral Petrol 169:28

    Article  Google Scholar 

  3. Blamart D, Boutaleb M, Sheppard S, Marignac C, Weisbrod A (1992) A comparative thermobarometric (chemical and isotopic) study of a tourmalinized pelite and its Sn–Be vein, Walmès, Morocco. Eur J Mineral 4:355–368

    Article  Google Scholar 

  4. Bosi F (2010) Octahedrally coordinated vacancies in tourmaline: a theoretical approach. Mineral Mag 74:1037–1044

    Article  Google Scholar 

  5. Bosi F (2011) Stereochemical constraints in tourmaline: from a short-range to a long-range structure. Can Mineral 49:17–27

    Article  Google Scholar 

  6. Bosi F (2013) Bond-valence constraints around the O1 site of tourmaline. Mineral Mag 77:343–351

    Article  Google Scholar 

  7. Bosi F, Lucchesi S (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. Am Mineral 92:1054–1063

    Article  Google Scholar 

  8. Bosi F, Skogby H (2013) Oxy-dravite, Na(Al2Mg)(Al5Mg)(Si6O18) (BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Am Mineral 98:1442–1448

    Article  Google Scholar 

  9. Bosi F, Reznitskii L, Skogby H (2012a) Oxy-chromium-dravite, NaCr3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Am Mineral 97:2024–2030

    Article  Google Scholar 

  10. Bosi F, Skogby H, Agrosì G, Scandale E (2012b) Tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from Grotta d’Oggi, San Pietro in Campo, island of Elba, Italy. Am Mineral 97:989–994

    Article  Google Scholar 

  11. Bosi F, Andreozzi GB, Hålenius U, Skogby H (2015a) Experimental evidence for partial Fe2+ disorder at the Y and Z sites of tourmaline: a combined EMP, SREF, MS, IR and OAS study of schorl. Mineral Mag 79:515–528

    Article  Google Scholar 

  12. Bosi F, Skogby H, Lazor P, Reznitskii L (2015b) Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: a combined EMP, SREF, FTIR and Raman study. Phys Chem Miner 42:441–453

    Article  Google Scholar 

  13. Bosi F, Skogby H, Balić-Žunić T (2016) Thermal stability of extended clusters in dravite: a combined EMP, SREF and FTIR study. Phys Chem Miner. doi:10.1007/s00269-016-0804-y

    Google Scholar 

  14. Bröcker M, Franz L (2000) The contact aureole on Tinos (Cyclades, Greece): tourmaline–biotite geothermometry and Rb–Sr geochronology. Mineral Petrol 70:257–283

    Article  Google Scholar 

  15. Buerger MJ, Burnham CW, Peacor DR (1962) Assessment of several structures proposed for tourmaline. Acta Crystallogr 15:583–590

    Article  Google Scholar 

  16. Burns RG, Strens RGJ (1966) Infrared study of the hydroxyl bonds in clinoamphiboles. Science 153:890–892

    Article  Google Scholar 

  17. Dutrow BL, Henry DJ (2011) Tourmaline: a geologic DVD. Elements 7:301–306

    Article  Google Scholar 

  18. Ertl A, Rossman GR, Hughes JM, Ma C, Brandstätter F (2008) V3+-bearing, Mg-rich, strongly disordered olenite from a graphite deposit near Amstall, Lower Austria: a structural, chemical and spectroscopic investigation. N Jb Miner Abh 184:243–253

    Article  Google Scholar 

  19. Ertl A, Rossman GR, Hughes JM, London D, Wang Y, O’Leary JA, Dyar MD, Prowatke S, Ludwig T, Tillmanns E (2010a) Tourmaline of the elbaite-schorl series from the Himalaya Mine, Mesa Grande, California, USA: a detailed investigation. Am Mineral 95:24–40

    Article  Google Scholar 

  20. Ertl A, Marschall HR, Giester G, Henry DJ, Schertl H-P, Ntaflos T, Luvizotto GL, Nasdala L, Tillmanns E (2010b) Metamorphic ultrahigh-pressure tourmaline: structure, chemistry, and correlations to P–T conditions. Am Mineral 95:1–10

    Article  Google Scholar 

  21. Ertl A, Schuster R, Hughes JM, Ludwig T, Meyer H-P, Finger F, Dyar MD, Ruschel K, Rossman GR, Klötzli U, Brandstätter F, Lengauer CL, Tillmanns E (2012) Li-bearing tourmalines in Variscan pegmatites from the Moldanubian nappes, Lower Austria. Eur J Mineral 24:695–715

    Article  Google Scholar 

  22. Ferrow E (2009) Non-integral hybrid ions in tourmaline: buffering and geo-thermometry. Eur J Mineral 21:241–250

    Article  Google Scholar 

  23. Filip J, Bosi F, Novák M, Skogby H, Tuček J, Čuda J, Wildner M (2012) Redox processes of iron in the tourmaline structure: example of the high-temperature treatment of Fe3+-rich schorl. Geochim Cosmochim Acta 86:239–256

    Article  Google Scholar 

  24. Fuchs Y, Lagache M, Linares J (1998) Fe-tourmaline synthesis under different T and ƒO2 conditions. Am Mineral 83:525–534

    Article  Google Scholar 

  25. Gatta GD, Bosi F, McIntyre GJ, Skogby H (2014) First accurate location of two proton sites in tourmaline: a single-crystal neutron diffraction study of oxy-dravite. Mineral Mag 78:681–692

    Article  Google Scholar 

  26. Gonzalez-Carreño T, Fernandez M, Sanz J (1988) Infrared and electron microprobe analysis of tourmalines. Phys Chem Miner 15:452–460

    Article  Google Scholar 

  27. Gourdant J-P, Robert J-L (1997) Tourmalines in the system Na2O–MgO–Al2O3–Ga2O3–B2O3–SiO2–H2O: an experimental and crystal-chemical investigation. In Tourmaline 1997: international symposium on tourmaline (Nové Mĕstona Moravĕ, Czech Republic), 30–31 (abstr)

  28. Grover JE, Orville PM (1969) The partitioning of cations between coexisting single- and multi-site phases with application to the assemblages: orthopyroxene–clinopyroxene and orthopyroxene–olivine. Geochim Cosmochim Acta 33:205–226

    Article  Google Scholar 

  29. Hamburger GE, Buerger MJ (1948) The structure of tourmaline. Am Mineral 33:532–540

    Google Scholar 

  30. Hawthorne FC (1996) Structural mechanisms for light-element variations in tourmaline. Can Mineral 34:123–132

    Google Scholar 

  31. Hawthorne FC (1997) Short-range order in amphiboles: a bond-valence approach. Can Mineral 35:201–216

    Google Scholar 

  32. Hawthorne FC (2002) Bond-valence constraints on the chemical composition of tourmaline. Can Mineral 40:789–797

    Article  Google Scholar 

  33. Hawthorne FC (2016) Short-range atomic arrangements in minerals. I: the minerals of the amphibole, tourmaline and pyroxene supergroups. Eur J Mineral. doi:10.1127/ejm/2016/0028-2538

    Google Scholar 

  34. Hawthorne FC, Della Ventura G, Oberti R, Robert J-L, Iezzi G (2005) Short-range order in minerals: amphiboles. Can Mineral 43:1895–1920

    Article  Google Scholar 

  35. Henry DJ, Dutrow BL (1992) Tourmaline in a low grade clastic metasedimentary rock: an example of the petrogenetic potential of tourmaline. Contrib Mineral Petrol 112:203–218

    Article  Google Scholar 

  36. Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. In: Grew ES, Anvitz LM (eds) Boron: mineralogy, petrology and geochemistry, reviews in mineralogy and geochemistry, vol 33. Mineralogical Society of America, Chantilly, pp 503–557

    Google Scholar 

  37. Henry DJ, Dutrow BL (2011) The incorporation of fluorine in tourmaline: internal crystallographic controls or external environmental influences? Can Mineral 49:41–56

    Article  Google Scholar 

  38. lto T, Sadanaga R (1951) A Fourier analysis of the structure of tourmaline. Acta Crystallogr 4:385–390

    Article  Google Scholar 

  39. Kawakami T, Ikeda T (2003) Boron in metapelites controlled by the breakdown of tourmaline and retrograde formation of borosilicates in the Yanai area, Ryoke meta-morphic belt, SW Japan. Contrib Mineral Petrol 145:131–150

    Article  Google Scholar 

  40. Libowitzky E (1999) Correlation of O–H stretching frequencies and O–HO hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059

    Google Scholar 

  41. London D (2011) Experimental synthesis and stability of tourmaline: a historical perspective. Can Mineral 49:117–136

    Article  Google Scholar 

  42. Lussier AJ, Aguiar PM, Michaelis VK, Kroeker S, Herwig S, Abdu Y, Hawthorne FC (2008) Mushroom elbaite from the Kat Chay mine, Momeik, near Mogok, Myanmar: I. Crystal chemistry by SREF, EMPA, MAS NMR and Mössbauer spectroscopy. Mineral Mag 72:747–761

    Article  Google Scholar 

  43. Lussier AJ, Aguiar P, Michaelis V, Kroeker S, Hawthorne FC (2009) The occurrence of tetrahedrally coordinated Al and B in tourmaline: an 11B and 27Al MAS NMR study. Am Mineral 94:785–792

    Article  Google Scholar 

  44. Lussier AJ, Hawthorne FC, Aguiar PM, Michaelis VK, Kroeker S (2011) Elbaite–liddicoatite from Black Rapids glacier, Alaska. Period Mineral 80:57–73

    Google Scholar 

  45. Lussier A, Ball NA, Hawthorne FC, Henry DJ, Shimizu R, Ogasawara Y, Ota T (2016) Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: description and crystal structure. Am Mineral 101:355–361

    Article  Google Scholar 

  46. Martìnez-Alonso S, Rustad JR, Goetz AFH (2002) Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: main physical factors governing the OH vibrations. Am Mineral 87:1224–1234

    Article  Google Scholar 

  47. Mattson SM, Rossman GR (1984) Ferric iron in tourmaline. Phys Chem Miner 11:225–234

    Article  Google Scholar 

  48. Mattson SM, Rossman GR (1987) Fe2+–Fe3+ interactions in tourmaline. Phys Chem Miner 14:163–171

    Article  Google Scholar 

  49. Novák M, Povondra P, Selway JB (2004) Schorl-oxy-schorl to dravite-oxydravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. Eur J Mineral 16:323–333

    Article  Google Scholar 

  50. Pieczka A, Kraczka J (2004) Oxidized tourmalines—a combined chemical, XRD and Mossbauer study. Eur J Mineral 16:309–321

    Article  Google Scholar 

  51. Prescher C, McCammon C, Dubrowinsky L (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J Appl Crystallogr 45:329–331

    Article  Google Scholar 

  52. Princivalle F, Della Giusta A, De Min A, Piccirillo EM (1999) Crystal chemistry and significance of cation ordering in Mg–Al rich spinels from high-grade hornfels (Pedrazzo-Monzoni, NE Italy). Mineral Mag 63:257–262

    Article  Google Scholar 

  53. Sheldrick GM (2013) SHELXL2013. University of Göttingen, Germany

    Google Scholar 

  54. Skogby H, Bosi F, Lazor P (2012) Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite. Phys Chem Miner 39:811–816

    Article  Google Scholar 

  55. Slack JF, Trumbull RB (2011) Tourmaline as a recorder of ore-forming processes. Elements 7:321–326

    Article  Google Scholar 

  56. Taran MN, Rossman GR (2002) High-temperature, high-pressure optical spectroscopic study of ferric-iron-bearing tourmaline. Am Mineral 87:1148–1153

    Article  Google Scholar 

  57. Taran MN, Lebedev AS, Platonov AN (1993) Optical absorption spectroscopy of synthetic tourmalines. Phys Chem Miner 20:209–220

    Article  Google Scholar 

  58. Taran MN, Dyar MD, Naumenko IV, Vyshnevsky OA (2015) Spectroscopy of red dravite from northern Tanzania. Phys Chem Miner 42:559–568

    Article  Google Scholar 

  59. van Hinsberg VJ, Schumacher JC (2007) Intersector element partitioning in tourmaline: a potentially powerful single crystal thermometer. Contrib Mineral Petrol 153:289–301

    Article  Google Scholar 

  60. van Hinsberg VJ, Schumacher JC (2009) The geothermobarometric potential of tourmaline, based on experimental and natural data. Am Mineral 94:761–770

    Article  Google Scholar 

  61. van Hinsberg VJ, Schumacher JC (2011) Tourmaline as a petrogenetic indicator mineral in the Haut–Allier metamorphic suite, Massif Central, France. Can Mineral 29:177–194

    Article  Google Scholar 

  62. van Hinsberg VJ, Schumacher JC, Kearns S, Mason PRD, Franz G (2006) Hourglass sector zoning in metamorphic tourmaline and resultant major and trace element fractionation. Am Mineral 91:717–728

    Article  Google Scholar 

  63. van Hinsberg VJ, Henry DJ, Marschall HR (2011) Tourmaline: an ideal indicator of its host environment. Can Mineral 49:1–16

    Article  Google Scholar 

  64. von Goerne G, Franz G, Robert JL (1999) Upper thermal stability of tourmaline + quartz in the system MgO–Al2O3–SiO2–B2O3–H2O and Na2O–MgO–Al2O3–SiO2–B2O3–H2O–HCl in hydrothermal solutions and siliceous melts. Can Mineral 37:1025–1039

    Google Scholar 

  65. Watenphul A, Burgdorf M, Schlüter J, Horn I, Malcherek T, Mihailova B (2016) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines. Am Mineral. doi:10.2138/am-2016-5530

    Google Scholar 

Download references

Acknowledgments

Chemical analyses were done with the kind assistance of M. Serracino to whom the authors express their gratitude. We also thank TL Grove and two reviewers for useful suggestions that improved the manuscript. Funding by Sapienza University of Rome (Prog. Università 2015 to F.B.) and the Swedish Research Council (H.S.) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Bosi.

Additional information

Communicated by Timothy L. Grove.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bosi, F., Skogby, H. & Hålenius, U. Thermally induced cation redistribution in Fe-bearing oxy-dravite and potential geothermometric implications. Contrib Mineral Petrol 171, 47 (2016). https://doi.org/10.1007/s00410-016-1259-3

Download citation

Keywords

  • Tourmaline
  • Crystal structure refinement
  • Infrared spectroscopy
  • Mössbauer spectroscopy
  • Optical absorption spectroscopy
  • Geothermometry