Skip to main content

The composition of nanogranitoids in migmatites overlying the Ronda peridotites (Betic Cordillera, S Spain): the anatectic history of a polymetamorphic basement

Abstract

The study of the composition of primary melts during anatexis of high-pressure granulitic migmatites is relevant to understand the generation and differentiation of continental crust. Peritectic minerals in migmatites can trap droplets of melt that forms via incongruent melting reactions during crustal anatexis. These melt inclusions commonly crystallize and form nanogranitoids upon slow cooling of the anatectic terrane. To obtain the primary compositions of crustal melts recorded in these nanogranitoids, including volatile concentrations and information on fluid regimes, they must be remelted and rehomogenized before analysis. A new occurrence of nanogranitoids was recently reported in garnets of mylonitic metapelitic gneisses (former high pressure granulitic migmatites) at the bottom of the prograde metamorphic sequence of Jubrique, located on top of the Ronda peridotite slab (Betic Cordillera, S Spain). Nanogranitoids within separated chips of cores and rims of large garnets from these migmatites were remelted at 15 kbar and 850, 825 or 800 °C and dry (without added H2O), during 24 h, using a piston cylinder apparatus. Although all experiments show glass (former melt) within melt inclusions, the extent of rehomogenization depends on the experimental temperature. Experiments at 850–825 °C show abundant disequilibrium microstructures, whereas those at 800 °C show a relatively high proportion of rehomogenized nanogranitoids, indicating that anatexis and entrapment of melt inclusions in these rocks likely occurred at pressures ≤1.5 GPa and temperatures close to 800 °C. Electron microprobe and NanoSIMS analyses show that experimental glasses are leucogranitoid and peraluminous, though define two distinct compositional groups. Type I melt inclusions correspond to K-rich, Ca- and H2O-poor leucogranitic melts, whereas type II melt inclusions represent K-poor, Ca- and H2O-rich granodioritic to tonalitic melts. Type I and II melt inclusions are found in most cases at the cores and rims of large garnets porphyroclasts, respectively. We tentatively interpret these two distinct melt compositions as suggesting that these former migmatites underwent two melting events under contrasting fluid regimes, possibly during two different orogenic periods. This study demonstrates the strong potential of melt inclusions studies in migmatites and granulites in order to unravel their anatectic history, particularly in strongly deformed rocks where most of the classical anatectic microstructures and macrostructures have been erased during deformation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Acosta A (1998) Estudio de los fenómenos de fusión cortical y generación de granitoides asociados a las peridotitas de Ronda. Unpublished Ph.D. Thesis, Universidad de Granada, p 305

  • Acosta-Vigil A, Pereira MD, Shaw DM, London D (2001) Contrasting behaviour of B during crustal anatexis. Lithos 56:15–31

    Article  Google Scholar 

  • Acosta-Vigil A, London D, Dewers TA, Morgan GB VI (2002) Dissolution of corundum and andalusite in H2O-saturated haplogranitic melts at 800°C and 200 MPa: constraints on diffusivities and the generation of peraluminous melts. J Petrol 43:1885–1908

    Article  Google Scholar 

  • Acosta-Vigil A, London D, Morgan GB VI, Dewers TA (2003) Solubility of excess alumina in hydrous granitic melts in equilibrium with peraluminous minerals at 700–800 °C and 200 MPa, and applications of the aluminum saturation index. Contrib Mineral Petrol 146:100–119

    Article  Google Scholar 

  • Acosta-Vigil A, London D, Morgan GB VI, Dewers TA (2006a) Dissolution of quartz, albite, and orthoclase in H2O-saturated haplogranitic melts at 800°C and 200 MPa: diffusive transport properties of granitic melts at crustal anatectic conditions. J Petrol 47:231–254

    Article  Google Scholar 

  • Acosta-Vigil A, London D, Morgan GB VI (2006b) Experiments on the kinetics of partial melting of a leucogranite at 200 MPa H2O and 690–800 °C: compositional variability of melts during the onset of H2O-saturated crustal anatexis. Contrib Mineral Petrol 151:539–557

    Article  Google Scholar 

  • Acosta-Vigil A, Cesare B, London D, Morgan GB VI (2007) Microstructures and composition of melt inclusions in a crustal anatectic environment, represented by metapelitic enclaves within El Hoyazo dacites, SE Spain. Chem Geol 235:450–465

    Article  Google Scholar 

  • Acosta-Vigil A, Buick I, Hermann J, Cesare B, Rubatto D, London D, Morgan GB VI (2010) Mechanisms of crustal anatexis: a geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain. J Petrol 51:785–821

    Article  Google Scholar 

  • Acosta-Vigil A, London D, Morgan GB VI (2012a) Chemical diffusion of major and minor components in granitic liquids: implications for the rates of homogenization of crustal melts. Lithos 153:308–323

    Article  Google Scholar 

  • Acosta-Vigil A, Buick I, Cesare B, London D, Morgan GB VI (2012b) The extent of equilibration between melt and residuum during regional anatexis and its implications for differentiation of the continental crust: a study of partially melted metapelitic enclaves. J Petrol 53:1319–1356

    Article  Google Scholar 

  • Acosta-Vigil A, Rubatto D, Bartoli O, Cesare B, Meli S, Pedrera A, Azor A, Tajčmanová L (2014) Age of anatexis in the crustal footwall of the Ronda peridotites, S Spain. Lithos 210–211:147–167

    Article  Google Scholar 

  • Ague JJ (2015) Fluid flow in the deep crust. In: Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 203–247

  • Andrieux J, Fontbotte JM, Mattauer M (1971) Sur un modèle explicatif de l’arc de Gibraltar. Earth Planet Sci Lett 12:191–198

    Article  Google Scholar 

  • Aranovich LY, Newton RC, Manning CE (2013) Brine-assisted anatexis: Experimental melting in the system haplogranite-H2O–NaCl–KCl at deep-crustal conditions. Earth Planet Sci Lett 374:111–120

    Article  Google Scholar 

  • Aranovich LY, Makhluf AR, Manning CE, Newton RC (2014) Dehydration melting and the relationship between granites and granulites. Precambrian Res 253:26–37

    Article  Google Scholar 

  • Argles TW, Platt JP, Waters DJ (1999) Attenuation and excision of a crustal section during extensional exhumation: the Carratraca Massif, Betic Cordillera, southern Spain. J Geol Soc London 156:149–162

    Article  Google Scholar 

  • Aubaud C, Withers AC, Hirschmann MM, Guan Y, Leshin LA, Mackwell SJ, Bell DR (2007) Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. Am Mineral 92:811–828

    Article  Google Scholar 

  • Aubaud C, Bureau H, Raepsaet C, Khodja H, Withers AC, Hirschmann MM, Bell DR (2009) Calibration of the infrared molar absorption coefficients for H in olivine, clinopyroxene and rhyolitic glass by elastic recoil detection analysis. Chem Geol 262:78–86

    Article  Google Scholar 

  • Audetat A, Lowenstern JB (2013) Melt inclusions. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 143–173

    Google Scholar 

  • Baker DR (1991) Interdiffusion of hydrous dacite and rhyolite melts and the efficacy of rhyolite contamination of dacitic enclaves. Contrib Mineral Petrol 106:462–473

    Article  Google Scholar 

  • Balanyá JC, García-Dueñas V (1987) Les directions structurales dans le Domaine d’Alborán de part et d’autre du Détroit de Gibraltar. CR Acad Sci Paris 304:929–932

    Google Scholar 

  • Balanyá JC, García-Dueñas V, Azañón JM, Sánchez-Gómez M (1997) Alternating contractional and extensional events in the Alpujárride nappes of the Alborán Domain (Betics, Gibraltar arc). Tectonics 16:226–238

    Article  Google Scholar 

  • Barich A, Acosta-Vigil A, Garrido CJ, Cesare B, Tajčmanová L, Bartoli O (2014) Microstructures and petrology of melt inclusions in the anatectic sequence of Jubrique (Betic Cordillera, S Spain): implications for crustal anatexis. Lithos 206–207:303–320

    Article  Google Scholar 

  • Barker F (1979) Trondhjemites: definition, environment and hypotheses of origin. In: Barker F (ed) Trondhjemites, dacites and relatated rocks. Elsevier, Amsterdam, pp 1–12

    Chapter  Google Scholar 

  • Bartoli O, Cesare B, Poli S, Bodnar RJ, Acosta-Vigil A, Frezzotti ML, Meli S (2013a) Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-type granite formation. Geology 41:115–118

    Article  Google Scholar 

  • Bartoli O, Cesare B, Poli S, Acosta-Vigil A, Esposito R, Turina A, Bodnar RJ, Angel RJ, Hunter J (2013b) Nanogranite inclusions in migmatitic garnet: behavior during piston cylinder re-melting experiments. Geofluids 13:405–420

    Article  Google Scholar 

  • Bartoli O, Tajčmanová L, Cesare B, Acosta-Vigil A (2013c) Phase equilibria constraints on melting of stromatic migmatites from Ronda (S. Spain): insights on the formation of peritectic garnet. J Metamorphic Geol 31:775–789

    Article  Google Scholar 

  • Bartoli O, Cesare B, Remusat L, Acosta-Vigil A, Poli S (2014) The H2O content of granite embryos. Earth Planet Sci Lett 395:281–290

    Article  Google Scholar 

  • Bartoli O, Acosta-Vigil A, Cesare B (2015) High temperature metamorphism and crustal melting: working with melt inclusions. Per Mineral. doi:10.2451/2015pm434

    Google Scholar 

  • Bartoli O, Acosta-Vigil A, Ferrero S, Cesare B (in press) Granitoid magmas preserved as melt inclusions in high-grade metamorphic rocks. Am Mineral. doi:10.2138/am-2016-5541CCBYNCND

  • Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb. J Petrol 32:365–401

    Article  Google Scholar 

  • Becker A, Holtz F, Johannes W (1998) Liquidus temperatures and phase compositions in the system Qz-Ab-Or at 5 kbar and very low water activities. Contrib Mineral Petrol 130:213–224

    Article  Google Scholar 

  • Behrens H, Jantos N (2001) The effect of anhydrous composition on water solubility in granitic melts. Am Mineral 86:14–20

    Article  Google Scholar 

  • Bodnar RJ, Student JJ (2006) Melt inclusions in plutonic rocks: petrography and microthermometry. In: Webster JD (ed) Melt inclusions in plutonic rocks. Mineralogical Association of Canada, Montreal, Short Course 36, pp 1–26

  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-visited. Chem Geol 351:324–334

    Article  Google Scholar 

  • Brown M (1979) The petrogenesis of the St-Malo migmatite belt, Armorican Massif, France, with particular reference to the diatexites. Neues Jb Miner Abh 135:48–74

    Google Scholar 

  • Brown M (2007) Metamorphic conditions in orogenic belts: a record of secular change. Int Geol Rev 49:193–234

    Article  Google Scholar 

  • Brown M (2013) Granite: from genesis to emplacement. Geol Soc Am Bull 125:1079–1113

    Article  Google Scholar 

  • Bureau H, Raepsaet C, Khodja H, Carraro A, Aubaud C (2009) Determination of hydrogen content in geological samples using elastic recoil detection analysis (ERDA). Geochim Cosmochim Acta 73:3311–3322

    Article  Google Scholar 

  • Caddick MJ, Konopásek J, Thompson AB (2010) Preservation of garnet growth zoning and the duration of prograde metamorphism. J Petrol 51:2327–2347

    Article  Google Scholar 

  • Carosi R, Montomoli C, Langone A, Turina A, Cesare B, Iaccarino S, Fascioli L, Visonà D, Ronchi A, Man Rai S (2015) Eocene partial melting recorded in peritectic garnets from kyanite-gneiss, Greater Himalayan Sequence, central Nepal. In: Mukherjee S, Carosi R, van der Beek PA, Mukherjee BK, Robinson DM (eds) Tectonics of the Himalaya. Geological Society, London, Special Publications 412, pp 111–129

  • Cesare B (2008) Crustal melting: working with enclaves. In: Sawyer EW, Brown M (eds) Working with Migmatites. Mineralogical Association of Canada, Montreal, Short Course 38, pp 37–55

  • Cesare B, Salvioli-Mariani E, Venturelli G (1997) Crustal anatexis and melt extraction during deformation in the restitic xenoliths at El Joyazo (SE Spain). Mineral Mag 61:15–27

    Article  Google Scholar 

  • Cesare B, Marchesi C, Hermann J, Gomez-Pugnaire MT (2003) Primary melt inclusions in andalusite from anatectic graphitic metapelites: implications for the position of the Al2SiO5 triple point. Geology 31:573–576

    Article  Google Scholar 

  • Cesare B, Ferrero S, Salvioli-Mariani E, Pedron D, Cavallo A (2009) Nanogranite and glassy inclusions: the anatectic melt in migmatites and granulites. Geology 37:627–630

    Article  Google Scholar 

  • Cesare B, Acosta-Vigil A, Ferrero S, Bartoli O (2011) Melt inclusions in migmatites and granulites. In: Forster MA, Fitz Gerald JD (eds) The science of microstructure—Part II, electronic edition. Journal of the Virtual Explorer 38 (paper 2)

  • Cesare B, Acosta-Vigil A, Bartoli O, Ferrero S (2015) What can we learn from melt inclusions in migmatites and granulites? Lithos 239:186–216

    Article  Google Scholar 

  • Clemens JD (2006) Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 296–331

    Google Scholar 

  • Clemens JD, Stevens G (2015) Comment on “Water-fluxed melting of the continental crust: a review” by R.F. Weinberg and P. Hasalová. Lithos 234–235:100–101

  • Clemens JD, Watkins JM (2001) The fluid regime of high-temperature metamorphism during granitoid magma genesis. Contrib Mineral Petrol 140:600–606

    Article  Google Scholar 

  • Connolly JAD, Podladchikov YY (2013) A hydromechanical model for lower crustal fluid flow. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Lectures notes in earth system sciences. Springer, Berlin, Heidelberg, pp 599–658

  • Conrad WK, Nicholls IA, Wall VJ (1988) Water-saturated and—undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. J Petrol 29:765–803

    Article  Google Scholar 

  • Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24

    Article  Google Scholar 

  • Egeler CG, Simons OJ (1969) Sur la tectonique de la zone Bétique (Cordilléres Bétiques, Espagne). Verh Kan Ned Akad Wetensch Afd Natuurk 25:1–90

    Google Scholar 

  • Esteban JJ, Cuevas J, Vegas N, Tubía JM (2008) Deformation and kinematics in a melt-bearing shear zone from the western Betic Cordilleras (southern Spain). J Struct Geol 30:380–393

    Article  Google Scholar 

  • Ferrando S, Frezzotti ML, Dallai L, Compagnoni R (2005) Multiphase solid inclusions in UHP rocks (Su-Lu, China): remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chem Geol 223:68–81

    Article  Google Scholar 

  • Ferrero S, Bartoli O, Cesare B, Salvioli-Mariani E, Acosta-Vigil A, Cavallo A, Groppo C, Battiston S (2012) Microstructures of melt inclusions in anatectic metasedimentary rocks. J Metamorph Geol 30:303–322

    Article  Google Scholar 

  • Ferrero S, Wunder B, Walczak K, O’Brien PJ, Ziemann MA (2015) Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths. Geology 43:447–450

    Article  Google Scholar 

  • Ferri F, Poli S, Vielzeuf D (2009) An experimental determination of the effect of bulk composition on phase relationships in metasediments at near-solidus conditions. J Petrol 50:909–931

    Article  Google Scholar 

  • Frezzotti ML, Ferrando S (2015) The chemical behavior of fluids during deep subduction based on fluid inclusions. Am Mineral 100:352–377

    Article  Google Scholar 

  • Gao XY, Zheng YF, Chen YX (2012) Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: evidence from multiphase solid inclusions in garnet. J Metamorph Geol 30:193–212

    Article  Google Scholar 

  • García-Casco A, Torres-Roldán RL (1996) Disequilibrium induced by fast decompression in St–Bt–Grt–Ky–Sil–And metapelites from the Betic Belt (Southern Spain). J Petrol 37:1207–1239

    Article  Google Scholar 

  • García-Casco A, Haissen F, Castro A, El-Hmidi H, Torres-Roldán RL, Millán G (2003) Synthesis of staurolite in melting experiments of a natural metapelite: consequences for the phase relations in low-temperature pelitic migmatites. J Petrol 44:1727–1757

    Article  Google Scholar 

  • Garrido CJ, Gueydan F, Booth-Rea G, Precigout J, Hidas K, Padron-Navarta JA, Marchesi C (2011) Garnet lherzolite and garnet-spinel mylonite in the Ronda peridotite: vestiges of Oligocene backarc mantle lithospheric extension in the western Mediterranean. Geology 39:927–930

    Article  Google Scholar 

  • Graybill FA (1976) Theory and application of the linear model. Duxbury Press, North Scituate

    Google Scholar 

  • Hacker BR (1990) Amphibolite-facies-to-granulite-facies reactions in experimentally deformed, unpowdered amphibolite. Am Mineral 75:1349–1361

    Google Scholar 

  • Hacker BR, Kelemen PB, Behn MD (2011) Differentiation of the continental crust by relamination. Earth Planet Sci Lett 307:501–516

    Article  Google Scholar 

  • Harris N, Ayres M, Massey J (1995) Geochemistry of granite melts produced during the incongruent melting of muscovite: implications for the extraction of Himalayan leucogranite magmas. J Geophys Res 100:15767–15777

    Article  Google Scholar 

  • Hermann J, Spandler C (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49:717–740

    Article  Google Scholar 

  • Holtz F, Johannes W, Tamic T, Behrens H (2001) Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications. Lithos 56:1–14

    Article  Google Scholar 

  • Huang WL, Wyllie PJ (1981) Phase relationships of S-type granite with H2O to 35 kbar: muscovite granite from Harney Peak, South Dakota. J Geophys Res 86:10515–10529

    Article  Google Scholar 

  • Hwang S-L, Shen P, Chu H-T, Yui T-F, Lin C-C (2001) Genesis of microdiamonds from melt and associated multiphase inclusions in garnet of ultrahigh-pressure gneiss from Erzgebirge, Germany. Earth Planet Sci Lett 188:9–15

    Article  Google Scholar 

  • Johannes W (1973) Eine vereinfachte piston-cylinder-apparatus hoher Genauigkeit. Neues Jb Miner Monat 7(8):337–351

    Google Scholar 

  • Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin

    Book  Google Scholar 

  • Johannes W, Bell PM, Mao HK, Boettcher AL, Chapman DW, Hays JF, Newton RC, Seifert F (1971) An interlaboratory comparison of piston-cylinder pressure calibration using the albite-breakdown reaction. Contrib Mineral Petrol 32:24–38

    Article  Google Scholar 

  • Khodja H, Berthoumieux E, Daudin L, Gallien JP (2001) The Pierre Süe Laboratory nuclear microprobe as a multi-disciplinary analysis tool. Nucl Instrum Methods Phys Res Sect B 181:83–86

    Article  Google Scholar 

  • Korsakov AV, Hermann J (2006) Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet Sci Lett 241:104–118

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Laporte D, Rapaille C, Provost A (1997) Wetting angles, equilibrium melt geometry, and the permeability threshold of partially molten crustal protoliths. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer Academic Publishers, Dordrecht, pp 31–54

    Chapter  Google Scholar 

  • Laurie A, Stevens G (2012) Water-present eclogite melting to produce Earth’s early felsic crust. Chem Geol 314–317:83–95

    Article  Google Scholar 

  • Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Mineral Petrol 99:226–237

    Article  Google Scholar 

  • Loomis TP (1972) Contact metamorphism of pelitic rocks by the Ronda ultramafic intrusion, southern Spain. Geol Soc Am Bull 83:2449–2474

    Article  Google Scholar 

  • Lundeen MT (1978) Emplacement of the Ronda peridotite, Sierra Bermeja, Spain. Geol Soc Am Bull 89:172–180

    Article  Google Scholar 

  • Luth WC, Jahns RH, Tuttle OF (1964) The granite system at pressure of 4 to 10 kilobars. J Geophys Res 69:759–773

    Article  Google Scholar 

  • Malaspina N, Hermann J, Scambelluri M, Compagnoni R (2006) Polyphase inclusions in garnet–orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth Planet Sci Lett 249:173–187

    Article  Google Scholar 

  • Martin JM, Braga JC (1987) Alpujárride carbonate deposits (Southern Spain)—marine sedimentation in a Triassic Atlantic. Palaeogeogr Palaeoclimatol Palaeoecol 59:243–260

    Article  Google Scholar 

  • Martín-Algarra A (1987) Evolución geológica alpina del contacto entre las Zonas Internas y las Zonas Externas de la Cordillera Bética. Ph.D. Thesis, Universidad de Granada, p 1171

  • Massonne HJ (2014) Wealth of P-T-t information in medium-high grade metapelites: example from the Jubrique Unit of the Betic Cordillera, S Spain. Lithos 208:137–157

    Article  Google Scholar 

  • Mazzoli S, Martín-Algarra A (2011) Deformation partitioning during transpressional emplacement of a ‘mantle extrusion wedge’: the Ronda peridotites, western Betic Cordillera, Spain. J Geol Soc Lond 168:373–382

    Article  Google Scholar 

  • Milord I, Sawyer EW, Brown M (2001) Formation of diatexite migmatite and granite magma during anatexis of semi-pelitic metasedimentary rocks: and example from St. Malo, France. J Petrol 42:487–505

    Article  Google Scholar 

  • Montel JM (1993) A model for monazite/melt equilibrium and applications to the generation of granitic magmas. Chem Geol 110:127–146

    Article  Google Scholar 

  • Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contrib Mineral Petrol 128:176–196

    Article  Google Scholar 

  • Montel JM, Kornprobst J, Vielzeuf D (2000) Preservation of old U–Th–Pb ages in shielded monazite: example from the Beni Bousera Hercynian kinzigites (Morocco). J Metamorph Geol 18:335–342

    Article  Google Scholar 

  • Morfin S, Sawyer EW, Bandyayera D (2013) Large volumes of anatectic melt retained in granulite facies migmatites: an injection complex in northern Quebec. Lithos 168–169:200–218

    Article  Google Scholar 

  • Morfin S, Sawyer EW, Bandyayera D (2014) The geochemical signature of a felsic injection complex in the continental crust: Opinaca Subprovince, Quebec. Lithos 196–197:339–355

    Article  Google Scholar 

  • Morgan GB VI, London D (1996) Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. Am Mineral 81:1176–1185

    Article  Google Scholar 

  • Morgan GB VI, London D (2005) Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses. Am Mineral 90:1131–1138

    Article  Google Scholar 

  • Morgan GB VI, Acosta-Vigil A, London D (2008) Diffusive equilibration between hydrous metaluminous-peraluminous haplogranitic liquid couples at 200 MPa (H2O) and alkali transport in granitic liquids. Contrib Mineral Petrol 155:257–269

    Article  Google Scholar 

  • Mungall JE, Romano C, Dingwell DB (1998) Multicomponent diffusion in the molten system K2O–Na2O–Al2O3–SiO2–H2O. Am Mineral 83:685–699

    Article  Google Scholar 

  • Newton RC, Aranovich LY, Hansen EC, Vandenheuvel BA (1998) Hypersaline fluids in Precambrian deep-crustal metamorphism. Precambrian Res 91:41–63

    Article  Google Scholar 

  • O’Brian PJ, Rötzler J (2003) High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. J Metamorph Geol 21:3–20

    Article  Google Scholar 

  • Obata M (1980) The Ronda peridotite: garnet-, spinel-, and plagioclase-lherzolite facies and the P–T trajectories of a high-temperature mantle intrusion. J Petrol 21:533–572

    Article  Google Scholar 

  • Patiño Douce AE, Beard JS (1996) Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. J Petrol 37:999–1024

    Article  Google Scholar 

  • Patiño Douce AE, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39:689–710

    Article  Google Scholar 

  • Patiño Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107:202–218

    Article  Google Scholar 

  • Patiño-Douce AE (1996) Effects of pressure and H2O content on the compositions of primary crustal melts. Trans R Soc Edin Earth 87:11–21

    Article  Google Scholar 

  • Patiño-Douce AE (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro A, Fernández C, Vigneresse JL (eds) Understanding granites: integrating new and classical techniques, vol 168. Geological Society of London Special Publications, pp 77–94

  • Pattison DRM (1992) Stability of andalusite and sillimanite and the Al2SiO5 triple point, constraints from the Ballachulish aureole, Scotland. J Geol 100:423–446

    Article  Google Scholar 

  • Perchuk AL, Burchard M, Maresch WV, Schertl H-P (2008) Melting of hydrous and carbonate mineral inclusions in garnet host during ultrahigh pressure experiments. Lithos 103:25–45

    Article  Google Scholar 

  • Platt JP, Argles TW, Carter A, Kelley SP, Whitehouse MJ, Lonergan L (2003) Exhumation of the Ronda peridotite and its crustal envelope: constraints from thermal modelling of a P–T–time array. J Geol Soc London 160:655–676

    Article  Google Scholar 

  • Platt JP, Behr WM, Johanesen K, Williams JR (2013) The Betic–Rif arc and its orogenic hinterland: a review. Annu Rev Earth Planet Sci 41:14.1–14.45

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1985) ρ(ϕz) correction procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam analysis. San Francisco Press, San Francisco, pp 104–106

    Google Scholar 

  • Précigout J, Gueydan F, Garrido CJ, Cogné N, Booth-Rea G (2013) Deformation and exhumation of the Ronda peridotite (Spain). Tectonics 32:1011–1025

    Google Scholar 

  • Quian Q, Hermann J (2013) Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation. Contrib Mineral Petrol 165:1195–1224

    Article  Google Scholar 

  • Raepsaet C, Bureau H, Khodja H, Aubaud C, Carraro A (2008) μ-ERDA developments in order to improve the water content determination in hydrous and nominally anhydrous mantle phases. Nucl Instr Methods Phys Res Sect B Beam Interact Mater Atoms 266:1333–1337

    Article  Google Scholar 

  • Rapp RP, Watson EW (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  • Rapp RP, Watson EW, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res 51:1–25

    Article  Google Scholar 

  • Rossetti F, Theye T, Lucci F, Bouybaouene ML, Dini A, Gerdes A, Phillips D, Cozzupoli D (2010) Timing and modes of granite magmatism in the core of the Alborán Domain, Rif chain, northern Morocco: implications for the Alpine evolution of the western Mediterranean. Tectonics. doi:10.1029/2009TC002487

    Google Scholar 

  • Ruiz-Cruz MD, Sanz de Galdeano C (2014) Garnet variety and zircon ages in UHP metasedimentary rocks from the Jubrique zone (Alpujárride Complex, Betic Cordillera, Spain): evidence for a pre-Alpine emplacement of the Ronda peridotite. Int Geol Rev 56:845–868

    Article  Google Scholar 

  • Safonov OG, Kosova SA, van Reenen DD (2014) Interaction of biotite-amphibole gneiss with H2O–CO2–(K, Na)Cl fluids at 550 MPa and 750 and 800 °C: experimental study and applications to dehydration and partial melting in the middle crust. J Petrol 55:2419–2456

    Article  Google Scholar 

  • Sánchez-Navas A, García-Casco A, Martín-Algarra A (2014) Pre-Alpine discordant granitic dikes in the metamorphic core of the Betic Cordillera: tectonic implications. Terra Nova 26:477–486

    Article  Google Scholar 

  • Sánchez-Rodríguez L (1998) Pre-Alpine and Alpine evolution of the Ronda Ultramafic Complex and its country-rocks (Betic chain, southern Spain): U-Pb SHRIMP zircon and fission-track dating. Ph.D. Thesis, ETH Zürich, p 170

  • Sanz de Galdeano C (1990) Geologic evolution of the Betic Cordilleras in the Western Mediterranean, Miocene to present. Tectonophysics 172:107–119

    Article  Google Scholar 

  • Sanz de Galdeano C, Andreo B (1995) Structure of Sierra Blanca (Alpujárride complex, west of the Betic Cordillera). Estud Geol Madrid 51:43–55

    Google Scholar 

  • Sawyer EW (1996) Melt segregation and magma flow in migmatites: implications for the generation of granite magmas. Trans R Soc Edin Earth 87:85–94

    Article  Google Scholar 

  • Sawyer EW (2008) Atlas of migmatites. The Canadian Mineralogist Special Publication 9. NRC Research Press, Ottawa, ON, Canada

  • Sawyer EW, Cesare B, Brown M (2011) When the continental crust melts. Elements 7:229–234

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310

    Article  Google Scholar 

  • Schmidt MW, Vielzeuf D, Auzanneau E (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett 228:65–84

    Article  Google Scholar 

  • Skjerlie K, Patiño-Douce AE (2002) The fluid-absent partial melting of a zoisite bearing quartz eclogite from 1.0 to 3.2 GPa: implications for melting of a thickened continental crust and for subduction-zone processes. J Petrol 43:291–314

    Article  Google Scholar 

  • Solar GS, Brown M (2001) Petrogenesis of migmatites in Maine, USA: possible source of peraluminous leucogranite in plutons? J Petrol 42:789–823

    Article  Google Scholar 

  • Stepanov AS, Hermann J, Rubatto D, Rapp RP (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem Geol 300–301:200–220

    Article  Google Scholar 

  • Stevens G, Clemens JD, Dropp GTR (1997) Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths. Contrib Mineral Petrol 128:352–370

    Article  Google Scholar 

  • Stöckhert B, Duyster J, Trepmann C, Massonne H-J (2001) Microdiamonds daughter crystals precipitated from supercritical COH + silicate fluids included in garnet, Erzgebirge, Germany. Geology 29:391–394

    Article  Google Scholar 

  • Thomas R, Klemm W (1997) Microthermometry study of silicate melt inclusions in Variscan granites from SE Germany: volatile contents and entrapment conditions. J Petrol 38:1753–1765

    Article  Google Scholar 

  • Thomas R, Rhede D, Trumbull RB (1996) Microthermometry of volatile-rich silicate melt inclusions in granitic rocks. Z Geol Wissenschaft 24:507–528

    Google Scholar 

  • Torné M, Banda E, García-Dueñas V, Balanyá JC (1992) Mantle-lithosphere bodies in the Alborán crustal domain (Ronda peridotites, Betic–Rif orogenic belt). Earth Planet Sci Lett 110:163–171

    Article  Google Scholar 

  • Torres-Roldán RL (1981) Plurifacial metamorphic evolution of the Sierra Bermeja peridotite aureole (southern Spain). Estud Geol Madrid 37:115–133

    Google Scholar 

  • Torres-Roldán RL (1983) Fractionated melting of metapelite and further crystal-melt equilibria. The example of the Blanca Unit migmatite complex, north of Estepona (southern Spain). Tectonophysics 96:95–123

    Article  Google Scholar 

  • Tubía JM, Cuevas J, Gil-Ibarguchi JI (1997) Sequential development of the metamorphic aureole beneath the Ronda peridotites and its bearing on the tectonic evolution of the Betic Cordillera. Tectonophysics 279:227–252

    Article  Google Scholar 

  • Tubía JM, Cuevas J, Esteban JJ (2013) Localization of deformation and kinematics shift during the hot emplacement of the Ronda peridotites (Betic Cordilleras, southern Spain). J Struct Geol 50:148–160

    Article  Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system: NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geological Society of America Memoir 74:153

  • Van der Wal D, Vissers RLM (1996) Structural petrology of the Ronda peridotite, SW Spain: deformation history. J Petrol 37:23–43

    Article  Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98:257–276

    Article  Google Scholar 

  • Vielzeuf D, Montel JM (1994) Partial melting of metagreywackes. 1. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol 117:375–393

    Article  Google Scholar 

  • Vielzeuf D, Clemens JD, Pin C, Moinet E (1990) Granites, granulites and crustal differentiation. In: Vielzeuf D, Vidal Ph (eds) Granulites and crustal evolution. Kluwer, Dordrecht, pp 59–85

    Chapter  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Webster JD, Mandeville CW (2007) Fluid immiscibility in volcanic environments. In: Liebscher A, Heinrich CA (eds) Fluid-fluid interactions. Rev Mineral Geochem 65:313–362

  • Weinberg RF, Hasalová P (2015a) Water-fluxed melting of the continental crust: a review. Lithos 212–215:158–188

    Article  Google Scholar 

  • Weinberg RF, Hasalová P (2015b) Reply to comment by J.D. Clemens and G. Stevens on “Water-fluxed melting of the continental crust: a review”. Lithos 234–235:102–103

    Article  Google Scholar 

  • Whitehouse MJ, Platt JP (2003) Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol 145:61–74

    Article  Google Scholar 

  • Whitney DL, Irving AJ (1994) Origin of K-poor leucosomes in a metasedimentary migmatite complex by ultrametamorphism, syn-metamorphic magmatism and subsolidus processes. Lithos 32:173–192

    Article  Google Scholar 

  • Withers AC, Bureau H, Raepsaet C, Hirschmann MM (2012) Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine. Chem Geol 334:92–98

    Article  Google Scholar 

  • Yardley BWD (2009) The role of water in the evolution of the continental crust. J Geol Soc London 166:585–600

    Article  Google Scholar 

  • Yardley BWD, Graham JT (2002) The origins of salinity in metamorphic fluids. Geofluids 2:249–256

    Article  Google Scholar 

  • Zajacz Z, Halter WE, Pettke T, Guillong M (2008) Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochim Cosmochim Acta 72:2169–2197

    Article  Google Scholar 

  • Zeck HP, Whitehouse MJ (1999) Hercynian, Pan-African, Proterozoic and Archean ion-microprobe zircon ages for a Betic–Rif core complex, Alpine belt, W Mediterranean—consequences for its P–T–t path. Contrib Mineral Petrol 134:134–149

    Article  Google Scholar 

  • Zeck HP, Whitehouse MJ (2002) Repeated age resetting in zircons from Hercynian-Alpine polymetamorphic schists (Betic–Rif tectonic belt, S. Spain)—a U–Th–Pb ion microprobe study. Chem Geol 182:275–292

    Article  Google Scholar 

  • Zeck HP, Albat F, Hansen BT, Torres-Roldán RL, García-Casco A, Martín-Algarra A (1989) A 21 ± 2 Ma age for the termination of the ductile Alpine deformation in the internal zone of the Betic Cordilleras, south Spain. Tectonophysics 169:215–220

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the International Lithosphere Program (grant CC4-MEDYNA) and by FP7 Marie-Curie Action IRSES-MEDYNA funded under GA PIRSES-GA-2013-61257. Research grants to C.J.G. from MINECO (CGL2013-42349-P) and Junta de Andalucía (research group RNM-131) are also acknowledged. This research has benefited from EU Cohesion Policy funds from the European Regional Development Fund (ERDF) and the European Social Fund (ESF) in support of human resources, innovation and research capacities, and research infrastructures. A.B. acknowledges an FPI Ph.D. Fellowship from the Spanish Ministerio de Ciencia e Innovación MINECO (Ref. BES-2011-045283). B.C. acknowledges funding from the Italian Ministry of Education, University and Research (PRIN 2010TT22SC) and the Università di Padova (Progetto di Ateneo CPDA107188/10). A.A.-V acknowledges a research contract from the Instituto Andaluz de Ciencias de la Tierra (IACT) and a Piscopia—Marie Curie Fellowship (GA No. 600376) from the Universitá di Padova. O.B. acknowledges funding from the Italian Ministry of Education, University and Research (SIR RBSI14Y7PF) and the Università di Padova (Progetti per Giovani Studiosi 2013). The research leading to these results has received funding from the European Commission, Seventh Framework Programme, under Grant Agreement no. 600376. We are grateful to David London and François Holtz for discussion and suggestions, Timothy Grove for editorial handling, and two anonymous reviewers for constructive comments that have significantly strengthened and made more clear the manuscript. We also thank Rosario Reyes-González (IACT) for sample preparation, Isabel Sánchez-Almazo (CIC, Universidad de Granada) for assistance with the scanning electron microscope study and backscattered electron images of melt inclusions, Raul Carampin for assistance with the electron microprobe analyses, and Ángel Caballero (IACT) and Antonio Pedrera (Instituto Geológico y Minero de España) for drawing Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Acosta-Vigil.

Additional information

Communicated by Timothy L. Grove.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta-Vigil, A., Barich, A., Bartoli, O. et al. The composition of nanogranitoids in migmatites overlying the Ronda peridotites (Betic Cordillera, S Spain): the anatectic history of a polymetamorphic basement. Contrib Mineral Petrol 171, 24 (2016). https://doi.org/10.1007/s00410-016-1230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1230-3

Keywords