Advertisement

Kumdykolite, kokchetavite, and cristobalite crystallized in nanogranites from felsic granulites, Orlica-Snieznik Dome (Bohemian Massif): not evidence for ultrahigh-pressure conditions

  • Silvio FerreroEmail author
  • Martin A. Ziemann
  • Ross J. Angel
  • Patrick J. O’Brien
  • Bernd Wunder
Original Paper

Abstract

A unique assemblage including kumdykolite and kokchetavite, polymorphs of albite and K-feldspar, respectively, together with cristobalite, micas, and calcite has been identified in high-pressure granulites of the Orlica-Snieznik dome (Bohemian Massif) as the product of partial melt crystallization in preserved nanogranites. Previous reports of both kumdykolite and kokchetavite in natural rocks are mainly from samples that passed through the diamond stability field. However, because the maximum pressure recorded in these host rocks is <3 GPa, our observations indicate that high pressure is not required for the formation of kumdykolite and kokchetavite, and their presence is not therefore an indicator of ultrahigh-pressure conditions. Detailed microstructural and microchemical investigation of these inclusions indicates that such phases should instead be regarded as (1) a direct mineralogical criteria to identify former melt inclusions with preserved original compositions, including H2O and CO2 contents and (2) indicators of rapid cooling of the host rocks. Thus, the present study provides novel criteria for the interpretation of melt inclusions in natural rocks and allows a more rigorous characterization of partial melts during deep subduction to mantle depth as well as their behavior on exhumation.

Keywords

Partial melt Polymorphs Deep fluids Nanogranites Kumdykolite Kokchetavite Cristobalite 

Notes

Acknowledgments

The Alexander von Humboldt Foundation, the German Federal Ministry for Education and Research, and the Deutsche Forschungsgemeinschaft (Project FE 1527/2-1) are gratefully acknowledged by SF for funding this study. RJA was supported by a European Research Council starting Grant 307322 to F. Nestola. The authors are grateful to Katarzyna Walczak who provided the samples and to M. Steele-Macinnis, M. Konrad-Schmolke, and Eleanor Berryman for thought-provoking discussions on the behavior of the melt inclusion and daughter phases on cooling. Christina Günther and Peter Czaja are acknowledged for the help provided during the analytical sessions. Comments and suggestions from Othmar Müntener and two anonymous reviewers improved clarity and quality of the paper.

References

  1. Anczkiewicz R, Szczepański J, Mazur S, Storey C, Crowley Q, Villa IM, Thirlwall MF, Jeffries TE (2007) Lu–Hf geochronology and trace element distribution in garnet: implications for uplift and exhumation of ultra-high pressure granulites in the Sudetes, SW Poland. Lithos 95:363–380. doi: 10.1016/j.lithos.2006.09.001 CrossRefGoogle Scholar
  2. Angel RJ, Mazzucchelli ML, Alvaro M, Nimis P, Nestola F (2014) Geobarometry from host-inclusion systems: the role of elastic relaxation. Am Mineral 99:2146–2149. doi: 10.2138/am-2014-5047 CrossRefGoogle Scholar
  3. Angel RJ, Nimis P, Mazzucchelli ML, Alvaro M, Nestola F (2015) How large are departures from lithostatic pressure? Constraints from host-inclusion elasticity. J Metamorph Geol 33:801–813. doi: 10.1111/jmg.12138 CrossRefGoogle Scholar
  4. Bartoli O, Cesare B, Poli S, Bodnar RJ, Acosta-Vigil A, Frezzotti ML, Meli S (2013) Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-type granite formation. Geology 41:115–118. doi: 10.1130/G33455.1 CrossRefGoogle Scholar
  5. Bartoli O, Cesare B, Remusat L, Acosta-Vigil A, Poli S (2014) The H2O content of granite embryos. Earth Planet Sci Lett 395:281–290. doi: 10.1016/j.epsl.2014.03.031 CrossRefGoogle Scholar
  6. Bodnar RJ (2003) Re-equilibration of fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation. Mineralogical Association of Canada, Short Course 32, pp 213–230Google Scholar
  7. Bose K, Ganguly J (1995) Quartz-coesite transition revisited: reversed experimental determination at 500–1200 °C and retrieved thermochemical properties. Am Mineral 80:231–238Google Scholar
  8. Bröcker M, Klemd R (1996) Ultrahigh-pressure metamorphism in the Śnieżnik Mountains (Sudetes, Poland): P-T constraints and geological implications. J Geol 104:417–433CrossRefGoogle Scholar
  9. Brown M (2013) Granite: from genesis to emplacement. Geol Soc Am Bull 125:1079–1113CrossRefGoogle Scholar
  10. Cesare B, Ferrero S, Salvioli-Mariani E, Pedron D, Cavallo A (2009) Nanogranite and glassy inclusions: the anatectic melt in migmatites and granulites. Geology 37:627–630. doi: 10.1130/G25759A.1 CrossRefGoogle Scholar
  11. Cesare B, Acosta-Vigil A, Ferrero S, Bartoli O (2011) Melt inclusions in migmatites and granulites. In: Forster MA, Fitz Gerald JD (eds) The science of microstructure—part II, Electronic edition. J Virtual Explor 38 (paper 2)Google Scholar
  12. Cesare B, Acosta-Vigil A, Bartoli O, Ferrero S (2015) What can we learn from melt inclusions in migmatites and granulites? Lithos 239:186–216. doi: 10.1016/j.lithos.2015.09.028 CrossRefGoogle Scholar
  13. Chesnokov BV, Lotova EV, Pavlyuchenko VS, Usova LV, Bushmakin AF, Nishanbayev TP (1989) Svyatoslavite CaAl2Si2O8: (orthorhombic)—a new mineral. Zap Vses Mineral Obshch 118:111–114 (in Russian) Google Scholar
  14. Darling RS, Chou IM, Bodnar RJ (1997) An occurrence of metastable cristobalite in high-pressure garnet granulite. Science 276:91CrossRefGoogle Scholar
  15. Downs RT, Palmer DC (1994) The pressure behavior of a cristobalite. Am Mineral 79:9–14Google Scholar
  16. Ferrando S, Frezzotti ML, Dallai L, Compagnoni R (2005) Remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chem Geol 223:68–81CrossRefGoogle Scholar
  17. Ferrero S, Bodnar RJ, Cesare B, Viti C (2011) Reequilibration of primary fluid inclusions in peritectic garnet from metapelitic enclaves, El Hoyazo, Spain. Lithos 124:117–131CrossRefGoogle Scholar
  18. Ferrero S, Bartoli O, Cesare B, Salvioli-Mariani E, Acosta-Vigil A, Cavallo A, Groppo C, Battiston S (2012) Microstructures of melt inclusions in anatectic metasedimentary rocks. J Metamorph Geol 30:303–322. doi: 10.1111/j.1525-1314.2011.00968.x CrossRefGoogle Scholar
  19. Ferrero S, Braga R, Berkesi M, Cesare B, Laridhi Ouazaa N (2014) Production of metaluminous melt during fluid-present anatexis: an example from the Maghrebian basement, La Galite Archipelago, central Mediterranean. J Metamorph Geol 32:209–225. doi: 10.1111/jmg.12068 CrossRefGoogle Scholar
  20. Ferrero S, Wunder B, Walczak K, O’Brien PJ, Ziemann MA (2015) Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths. Geology 43:447–450. doi: 10.1130/G36534.1 CrossRefGoogle Scholar
  21. Frezzotti ML, Ferrando S (2015) The chemical behavior of fluids released during deep subduction based on fluid inclusions. Am Mineral 100:352–377CrossRefGoogle Scholar
  22. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134CrossRefGoogle Scholar
  23. Hermann J, Rubatto D (2014) Subduction of continental crust to mantle depth: geochemistry of ultrahigh-pressure rocks. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 309–340CrossRefGoogle Scholar
  24. Hermann J, Spandler C (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49:717–740. doi: 10.1093/petrology/egm073 CrossRefGoogle Scholar
  25. Hermann J, Zheng Y-F, Rubatto D (2013) Deep fluids in subducted crust. Elements 9:281–287CrossRefGoogle Scholar
  26. Holland TJB (1980) The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C. Am Mineral 65:129–134Google Scholar
  27. Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383. doi: 10.1111/j.1525-1314.2010.00923.x CrossRefGoogle Scholar
  28. Holness MB, Sawyer EW (2008) On the pseudomorphing of melt-filled pores during the crystallization of migmatites. J Petrol 49:1343–1363CrossRefGoogle Scholar
  29. Huang L, Kieffer J (2004) Amorphous-amorphous transitions in silica glass. I. Reversible transitions and thermomechanical anomalies. Phys Rev B 69:224203CrossRefGoogle Scholar
  30. Hwang S-L, Shen P, Chu HT, Yui TF, Liou JG, Sobolev NV, Zhang RY, Shatsky VS, Zayachkovsky AA (2004) Kokchetavite: a new polymorph of KAlSi3O8 from the Kokchetav UHP terrain. Contrib Mineral Petrol 148:380–389CrossRefGoogle Scholar
  31. Hwang S-L, Shen P, Chu H-T, Yui T-F, Liou J-G, Sobolev NV (2009) Kumdykolite, an orthorhombic polymorph of albite, from the Kokchetav ultrahigh-pressure massif, Kazakhstan. Eur J Mineral 21:1325–1334CrossRefGoogle Scholar
  32. Kanzaki M, Xue X, Amalberti J, Zhang Q (2012) Raman and NMR spectroscopic characterization of high-pressure K-cymrite (KAlSi3O8 H2O) and its anhydrous form (kokchetavite). J Mineral Petrol Sci 107:114–119CrossRefGoogle Scholar
  33. Korsakov AV, Hermann J (2006) Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet Sci Lett 241:104–118CrossRefGoogle Scholar
  34. Kotková J, Škoda R, Machovič V (2014) Kumdykolite from the ultrahigh-pressure granulite of the Bohemian Massif. Am Mineral 99:1798–1801CrossRefGoogle Scholar
  35. Kryza R, Pin C, Vielzeuf D (1996) High pressure granulites from the Sudetes (SW Poland): evidence of crustal subduction and collisional thickening in the Variscan Belt. J Metamorph Geol 14:531–546. doi: 10.1046/j.1525-1314.1996.03710.x CrossRefGoogle Scholar
  36. Malaspina N, Hermann J, Scambelluri M, Compagnoni R (2006) Polyphase inclusions in garnet–orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth Planet Sci Lett 249:173–187. doi: 10.1016/j.epsl.2006.07.017 CrossRefGoogle Scholar
  37. Massonne H-J, O’Brien PJ (2003) The Bohemian Massif and the NW Himalayas. In: Carswell DA, Compagnoni R (eds) Ultrahigh-pressure metamorphism. E.M.U. Notes in Mineralogy 5, pp 145–187Google Scholar
  38. Mikhno AO, Schmidt U, Korsakov AV (2013) Origin of K-cymrite and kokchetavite in the polyphase mineral inclusions from Kokchetav UHP calc-silicate rocks: evidence from confocal Raman imaging. Eur J Mineral 25:807–816. doi: 10.1127/0935-1221/2013/0025-2321 CrossRefGoogle Scholar
  39. Németh P, Lehner SW, Petaev MI, Buseck P (2013) Kumdykolite, a high-temperature feldspar from an enstatite chondrite. Am Mineral 98:1070–1073CrossRefGoogle Scholar
  40. O’Brien PJ, Rötzler J (2003) High-pressure granulites: formation, recovery of peak conditions, and implications for tectonics. J Metamorph Geol 21:3–20. doi: 10.1046/j.1525-1314.2003.00420.x CrossRefGoogle Scholar
  41. O’Brien PJ, Ziemann MA (2008) Preservation of coesite in exhumed eclogite: insights from Raman mapping. Eur J Mineral 20:827–834. doi: 10.1127/0935-1221/2008/0020-1883 CrossRefGoogle Scholar
  42. Perraki M, Faryad SW (2014) First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif. Lithos 202–203:157–166CrossRefGoogle Scholar
  43. Schmidt M, Poli S (2004) Magmatic Epidote. Rev Min Geochem 56:399–430. doi: 10.2138/gsrmg.56.1.399 CrossRefGoogle Scholar
  44. Steele-Macinnis M, Esposito R, Bodnar RJ (2011) Thermodynamic model for the effect of post-entrapment crystallization on the H2O–CO2 systematics of vapor-saturated, silicate melt inclusions. J Petrol 52:461–2482. doi: 10.1093/petrology/egr052 CrossRefGoogle Scholar
  45. Stöckhert B, Trepmann CA, Massonne HJ (2009) Decrepitated UHP fluid inclusions: about diverse phase assemblages and extreme decompression rates (Erzgebirge, Germany). J Metamorph Geol 27:673–684CrossRefGoogle Scholar
  46. Swanson SE (1977) Relation of nucleation and crystal-growth rate to the development of granitic textures. Am Mineral 62:966–978Google Scholar
  47. Swanson SE (1979) The effect of CO2 on phase equilibria and crystal growth in the system Kspar-Ab-An-Qz-H20-CO2. Am J Sci 279(703):720Google Scholar
  48. Tait S (1992) Selective preservation of melt inclusions in igneous phenocrysts. Am Mineral 77:146–155Google Scholar
  49. Touret JLR (2001) Fluids in metamorphic rocks. Lithos 55:1–25CrossRefGoogle Scholar
  50. Walczak K (2011) Interpretation of Sm–Nd and Lu–Hf dating of garnets from high pressure and high temperature rocks in the light of the trace elements distribution. Ph.D. thesis, Institute of Geological Sciences, Polish Academy of Sciences, Poland, pp 146Google Scholar
  51. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  52. Zhang ZY, Liou JG, Iizuka Y, Yang JS (2009) First record of K-cymrite in North Qaidam UHP eclogite, Western China. Am Mineral 94:222–228CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Silvio Ferrero
    • 1
    • 2
    Email author
  • Martin A. Ziemann
    • 1
  • Ross J. Angel
    • 3
  • Patrick J. O’Brien
    • 1
  • Bernd Wunder
    • 4
  1. 1.Institut für Erd- und UmweltwissenschaftenUniversität PotsdamPotsdamGermany
  2. 2.Museum für Naturkunde (MfN), Leibniz-Institut für Evolutions- und BiodiversitätsforschungBerlinGermany
  3. 3.Dipartimento di GeoscienzeUniversità di PadovaPaduaItaly
  4. 4.Helmholtz-Zentrum Potsdam, GFZPotsdamGermany

Personalised recommendations