Advertisement

Postmagmatic magnetite–apatite assemblage in mafic intrusions: a case study of dolerite at Olympic Dam, South Australia

  • Olga B. ApukhtinaEmail author
  • Vadim S. Kamenetsky
  • Kathy Ehrig
  • Maya B. Kamenetsky
  • Jocelyn McPhie
  • Roland Maas
  • Sebastien Meffre
  • Karsten Goemann
  • Thomas Rodemann
  • Nigel J. Cook
  • Cristiana L. Ciobanu
Original Paper

Abstract

An assemblage of magnetite and apatite is common worldwide in different ore deposit types, including disparate members of the iron-oxide copper–gold (IOCG) clan. The Kiruna-type iron oxide-apatite deposits, a subtype of the IOCG family, are recognized as economic targets as well. A wide range of competing genetic models exists for magnetite–apatite deposits, including magmatic, magmatic-hydrothermal, hydrothermal(-metasomatic), and sedimentary(-exhalative). The sources and mechanisms of transport and deposition of Fe and P remain highly debatable. This study reports petrographic and geochemical features of the magnetite–apatite-rich vein assemblages in the dolerite dykes of the Gairdner Dyke Swarm (~0.82 Ga) that intruded the Roxby Downs Granite (~0.59 Ga), the host of the supergiant Olympic Dam IOCG deposit. These symmetrical, only few mm narrow veins are prevalent in such dykes and comprise besides usually colloform magnetite and prismatic apatite also further minerals (e.g., calcite, quartz). The genetic relationships between the veins and host dolerite are implied based on alteration in the immediate vicinity (~4 mm) of the veins. In particular, Ti-magnetite–ilmenite is partially to completely transformed to titanite and magmatic apatite disappears. We conclude that the mafic dykes were a local source of Fe and P re-concentrated in the magnetite–apatite veins. Uranium-Pb ages for vein apatite and titanite associated with the vein in this case study suggest that alteration of the dolerite and healing of the fractures occurred shortly after dyke emplacement. We propose that in this particular case the origin of the magnetite–apatite assemblage is clearly related to hydrothermal alteration of the host mafic magmatic rocks.

Keywords

IOCG deposits Olympic Dam Mafic magmatism Colloform magnetite Hydrothermal alteration Radiogenic isotopes 

Notes

Acknowledgments

We are grateful to Jay Thompson, Paul Olin, and Sandrin Feig (University of Tasmania) for assistance with analytical work. Qiuyue Huang, Alex Cherry, and Richelle Pascual are thanked for discussions and support. Thoughtful comments by Adam Simon and an anonymous reviewer helped to improve clarity and presentation. This study was funded by BHP Billiton and the Australian Research Council (Linkage Grant “The supergiant Olympic Dam U-Cu-Au-REE ore deposit: towards a new genetic model”).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest, and no human or animal participants are involved or harmed in any way during the conduct of this research.

Supplementary material

410_2015_1215_MOESM1_ESM.docx (154 kb)
Supplementary material 1 (DOCX 153 kb)
410_2015_1215_MOESM2_ESM.pdf (9.3 mb)
Supplementary material 2 (PDF 9546 kb)

References

  1. Barton MD (2014) Iron oxide (–Cu–Au–REE–P–Ag–U–Co) systems. Treat Geochem 13:515–541CrossRefGoogle Scholar
  2. Barton MD, Johnson DA (2000) Alternative brine sources for Fe-oxide (–Cu–Au) systems: Implications for hydrothermal alteration and metals. Hydrotherm Iron Oxide Copp Gold Relat Depos Glob Perspect 1:43–60Google Scholar
  3. Baumgartner J, Dey A, Bomans PHH, Le Coadou C, Fratzl P, Sommerdijk NAJM, Faivre D (2013) Nucleation and growth of magnetite from solution. Nat Mater 12(4):310–314. doi:http://www.nature.com/nmat/journal/v12/n4/abs/nmat3558.html#supplementary-information
  4. Bookstrom AA (1977) The magnetite deposits of El Romeral, Chile. Econ Geol 72(6):1101–1130CrossRefGoogle Scholar
  5. Burke EAJ (2001) Raman microspectrometry of fluid inclusions. Lithos 55(1–4):139–158. doi: 10.1016/S0024-4937(00)00043-8 CrossRefGoogle Scholar
  6. Charlier B, Namur O, Bolle O, Latypov R, Duchesne J-C (2015) Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks. Earth Sci Rev 141:56–81. doi: 10.1016/j.earscirev.2014.11.005 CrossRefGoogle Scholar
  7. Chernyshova IV, Hochella MF Jr, Madden AS (2007) Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys Chem Chem Phys 9(14):1736–1750. doi: 10.1039/b618790k CrossRefGoogle Scholar
  8. Chukhrov FV (1966) Present views on colloids in ore formation. Int Geol Rev 8(3):336–345. doi: 10.1080/00206816609474290 CrossRefGoogle Scholar
  9. Ciobanu CL, Wade BP, Cook NJ, Schmidt Mumm A, Giles D (2013) Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: a geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambrian Res 238:129–147. doi: 10.1016/j.precamres.2013.10.007 CrossRefGoogle Scholar
  10. Creaser RA, Gray CM (1992) Preserved initial 87Sr/86Sr in apatite from altered felsic igneous rocks: a case study from the Middle Proterozoic of South Australia. Geochim Cosmochim Acta 56(7):2789–2795. doi: 10.1016/0016-7037(92)90359-Q CrossRefGoogle Scholar
  11. Dare SS, Barnes S-J, Beaudoin G (2015) Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Miner Depos 50(5):607–617. doi: 10.1007/s00126-014-0560-1 CrossRefGoogle Scholar
  12. Dumanska-Słowik M, Natkaniec-Nowak L, Wesełucha-Birczynska A, Gaweł A, Lankosz M, Wróbel P (2013) Agates from Morocco: gemological characteristics and proposed origin. Gems Gemol 49(3)Google Scholar
  13. Dymkin AM, Sokolov GA (1961) Colloform seggregations of endogenous magnetite in the Kurzhunkul deposit. Geol Geofiz 1:77–85Google Scholar
  14. Ehrig K, McPhie J, Kamenetsky V (2012) Geology and mineralogical zonation of the Olympic Dam Iron Oxide Cu–U–Au–Ag deposit, South Australia. In: Hedenquist JW et al. (eds) Economic Geology Special Publication, vol 16, pp 237–267Google Scholar
  15. Götze J (2002) Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials. Anal Bioanal Chem 374(4):703–708. doi: 10.1007/s00216-002-1461-1 CrossRefGoogle Scholar
  16. Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper–gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105(3):641–654. doi: 10.2113/gsecongeo.105.3.641 CrossRefGoogle Scholar
  17. Hattori KH, Keith JD (2001) Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Miner Depos 36(8):799–806. doi: 10.1007/s001260100209 CrossRefGoogle Scholar
  18. Hauck SA (1990) Petrogenesis and tectonic setting of middle Proterozoic iron oxide-rich ore deposits: an ore deposit model for Olympic Dam-type mineralization. US Geol Surv Bull 1932:4–39Google Scholar
  19. Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambrian Res 58(1):241–287CrossRefGoogle Scholar
  20. Huang Q-Y, Kamenetsky VS, McPhie J, Ehrig K, Meffre S, Maas R, Apukhtina O, Kamenetsky M, Chambefort I, Hu Y, Ling M (2015) Neoproterozoic (820 Ma) mafic dykes at Olympic Dam, South Australia: links with the Gairdner Large Igneous Province. Precambrian ResearchGoogle Scholar
  21. Jagodzinski EA (2014) The age of magmatic and hydrothermal zircon at Olympic Dam. In: AESC-Abstract-Proceedings NewcastleGoogle Scholar
  22. Johnson JP, McCulloch MT (1995) Sources of mineralising fluids for the Olympic Dam Deposit (South Australia)—Sm–Nd isotopic constraints. Chem Geol 121(1–4):177–199CrossRefGoogle Scholar
  23. Jonsson E, Troll VR, Högdahl K, Harris C, Weis F, Nilsson KP, Skelton A (2013) Magmatic origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in Central Sweden. Sci Rep 3:1644. doi: 10.1038/srep01644 CrossRefGoogle Scholar
  24. Karathanasis AD (1999) Subsurface migration of copper and zinc mediated by soil colloids. Soil Sci Soc Am J 63(4):830–838. doi: 10.2136/sssaj1999.634830x CrossRefGoogle Scholar
  25. Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology. doi: 10.1130/g36650.1 Google Scholar
  26. Maas R, Apukhtina OB, Kamenetsky VS, Ehrig K (2015) Olympic Dam Cu–U–Au deposit: 87Sr/86Sr in carbonate gangue documents long formation history. In: Proceedings Goldschmidt 2015, Prague:1957  Google Scholar
  27. McPhie J, Kamenetsky VS, Chambefort I, Ehrig K, Green N (2011) Origin of the supergiant Olympic Dam Cu–U–Au–Ag deposit, South Australia: Was a sedimentary basin involved? Geology 39(8):795–798. doi: 10.1130/g31952.1 CrossRefGoogle Scholar
  28. Menard T, Lesher CM, Stowell HH, Price DP, Pickell JR, Onstott TC, Hulbert L (1996) Geology, genesis, and metamorphic history of the Namew Lake Ni–Cu deposit, Manitoba. Econ Geol 91(8):1394–1413. doi: 10.2113/gsecongeo.91.8.1394 CrossRefGoogle Scholar
  29. Meyer C (1988) Ore deposits as guides to geologic history of the Earth. Annu Rev Earth Planet Sci 16:147CrossRefGoogle Scholar
  30. Molchan IS, Thompson GE, Lindsay R, Skeldon P, Likodimos V, Romanos GE, Falaras P, Adamova G, Iliev B, Schubert TJS (2014) Corrosion behaviour of mild steel in 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids for CO2 capture applications. RSC Adv 4(11):5300–5311. doi: 10.1039/c3ra45872e CrossRefGoogle Scholar
  31. Nystroem JO, Henriquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry. Econ Geol 89(4):820–839. doi: 10.2113/gsecongeo.89.4.820 CrossRefGoogle Scholar
  32. Parak T (1975) Kiruna iron ores are not “intrusive-magmatic ores of the Kiruna type”. Econ Geol 70(7):1242–1258. doi: 10.2113/gsecongeo.70.7.1242 CrossRefGoogle Scholar
  33. Parak T (1984) On the magmatic origin of iron ores of the Kiruna type; discussion. Econ Geol 79(8):1945–1949. doi: 10.2113/gsecongeo.79.8.1945 CrossRefGoogle Scholar
  34. Pavlov NV (1961) Magnetite deposits of the Tungusska tectonic Depression on the SIberian Platform. Tr IGEM Akad Nauk SSSR 52Google Scholar
  35. Reeve JS, Cross KC, Smith RN, Oreskes N (1990) Olympic Dam copper–uranium–gold–silver deposit. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea, vol Monograph 14. Australasian Institute of Mining and Metallurgy, Melbourne, pp 1009–1035Google Scholar
  36. Saunders JA (1990) Colloidal transport of gold and silica in epithermal precious-metal systems: evidence from the Sleeper deposit, Nevada. Geology 18(8):757–760. doi: 10.1130/0091-7613(1990)018<0757:ctogas>2.3.co;2 CrossRefGoogle Scholar
  37. Saunders JA (1994) Silica and gold textures in bonanza ores of the Sleeper Deposit, Humboldt County, Nevada; evidence for colloids and implications for epithermal ore-forming processes. Econ Geol 89(3):628–638. doi: 10.2113/gsecongeo.89.3.628 CrossRefGoogle Scholar
  38. Shebanova ON, Lazor P (2003) Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J Solid State Chem 174(2):424–430. doi: 10.1016/S0022-4596(03)00294-9 CrossRefGoogle Scholar
  39. Sillitoe RH (2003) Iron oxide-copper–gold deposits: an Andean view. Miner Depos 38(7):787–812. doi: 10.1007/s00126-003-0379-7 CrossRefGoogle Scholar
  40. Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, Northern Chile. Econ Geol 97(5):1101–1109. doi: 10.2113/gsecongeo.97.5.1101 Google Scholar
  41. Song X-Y, Qi H-W, Hu R-Z, Chen L-M, Yu S-Y, Zhang J-F (2013) Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: evidence from the Panzhihua intrusion, SW China. Geochem Geophys Geosyst 14(3):712–732. doi: 10.1002/ggge.20068 CrossRefGoogle Scholar
  42. Stevenson JS, Jeffery WG (1964) Colloform magnetite in a contact metasomatic iron deposit, Vancouver Island, British Columbia. Econ Geol 59(7):1298–1305. doi: 10.2113/gsecongeo.59.7.1298 CrossRefGoogle Scholar
  43. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345. doi: 10.1144/gsl.sp.1989.042.01.19 CrossRefGoogle Scholar
  44. Treloar PJ, Colley H (1996) Variations in F and Cl contents in apatites from magnetite–apatite ores in northern Chile, and their ore-genetic implications. Miner Mag 60(399):285–302CrossRefGoogle Scholar
  45. Watson T, Taber S (1910) Nelsonite, a new rock type; its occurrence, association, and composition. Geol Soc Am Bull 21:787Google Scholar
  46. Wawryk C (1989) Strontium and rare earth element geochemistry of barite-fluorite mineralization at Olympic Dam, South Australia. B.Sc thesis, unpublishedGoogle Scholar
  47. Wilkinson JJ, Nolan J, Rankin AH (1996) Silicothermal fluid: a novel medium for mass transport in the lithosphere. Geology 24(12):1059–1062. doi: 10.1130/0091-7613(1996)024<1059:sfanmf>2.3.co;2 CrossRefGoogle Scholar
  48. Williams PJ, Barton MD, Johnson DA, Fontboté L, De Haller A, Mark G, Oliver NH, Marschik R (2005) Iron oxide copper–gold deposits: geology, space-time distribution, and possible modes of origin. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology 100th Anniversary volume, Society of Economic Geologists, Denver, pp. 371–405Google Scholar
  49. Williamson BJ, Wilkinson JJ, Luckham PF, Stanley CJ (2002) Formation of coagulated colloidal silica in high-temperature mineralizing fluids. Miner Mag 66(4):547–553. doi: 10.1180/0026461026640048 CrossRefGoogle Scholar
  50. Wingate MTD, Pirajno F, Morris PA (2004) Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geology 32(2):105–108. doi: 10.1130/g20171.1 CrossRefGoogle Scholar
  51. Zhao J, McCulloch MT (1993) Sm–Nd mineral isochron ages of Late Proterozoic dyke swarms in Australia: evidence for two distinctive events of mafic magmatism and crustal extension. Chem Geol 109(1–4):341–354. doi: 10.1016/0009-2541(93)90079-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Olga B. Apukhtina
    • 1
    Email author
  • Vadim S. Kamenetsky
    • 1
  • Kathy Ehrig
    • 2
  • Maya B. Kamenetsky
    • 1
  • Jocelyn McPhie
    • 1
  • Roland Maas
    • 3
  • Sebastien Meffre
    • 1
  • Karsten Goemann
    • 4
  • Thomas Rodemann
    • 4
  • Nigel J. Cook
    • 5
  • Cristiana L. Ciobanu
    • 5
  1. 1.School of Physical SciencesUniversity of TasmaniaHobartAustralia
  2. 2.BHP Billiton Olympic DamAdelaideAustralia
  3. 3.School of Earth SciencesUniversity of MelbourneParkvilleAustralia
  4. 4.Central Science LaboratoryUniversity of TasmaniaHobartAustralia
  5. 5.School of Chemical EngineeringUniversity of AdelaideAdelaideAustralia

Personalised recommendations