Skip to main content

Advertisement

Log in

Carbon isotope fractionation during experimental crystallisation of diamond from carbonate fluid at mantle conditions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We report first results of a systematic study of carbon isotope fractionation in a carbonate fluid system under mantle PT conditions. The system models a diamond-forming alkaline carbonate fluid using pure sodium oxalate (Na2C2O4) as the starting material, which decomposes to carbonate, CO2 and elementary carbon (graphite and diamond) involving a single source of carbon following the reaction 2Na2C2O4 → 2Na2CO3 + CO2 + C. Near-liquidus behaviour of carbonate was observed at 1300 °C and 6.3 GPa. The experimentally determined isotope fractionation between the components of the system in the temperature range from 1300 to 1700 °C at 6.3 and 7.5 GPa fit the theoretical expectations well. Carbon isotope fractionation associated with diamond crystallisation from the carbonate fluid at 7.5 GPa decreases with an increase in temperature from 2.7 to 1.6 ‰. This trend corresponds to the function ΔCarbonate fluid–Diamond = 7.38 × 106 T−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaishi M, Shaji Kumar MD, Kanda H, Yamaoka S (2000) Formation process of diamond from supercritical H2O–CO2 fluid under high pressure and high temperature conditions. Diam Relat Mater 9:1945–1950

    Article  Google Scholar 

  • Arima M, Kozai Y, Akaishi M (2002) Diamond nucleation and growth by reduction of carbonate melts under high-pressure and high-temperature conditions. Geol 30:691–694

    Article  Google Scholar 

  • Bottinga Y (1969a) Carbon isotope fractionation between graphite, diamond and carbon dioxide. Earth Planet Sci Lett 5:301–307

    Article  Google Scholar 

  • Bottinga Y (1969b) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–carbon dioxide–graphite–methane–hydrogen–water vapour. Geochim Cosmochim Acta 33:49–64

    Article  Google Scholar 

  • Boyd SR, Pineau F, Javoy M (1994) Modelling the growth of natural diamonds. Chem Geol 116:29–42

    Article  Google Scholar 

  • Cartigny P (2010) Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana). Earth Planet Sci Lett 296:329–339

    Article  Google Scholar 

  • Cartigny P, Harris JW, Javoy M (2001) Diamond genesis, mantle fractionations and mantle nitrogen content: study of δ13C–N concentrations in diamonds. Earth Planet Sci Lett 185:85–98

    Article  Google Scholar 

  • Chacko T, Mayeda TK, Clayton RN, Goldsmith JR (1991) Oxygen and carbon isotope fractionations between CO2 and calcite. Geochim Cosmochim Acta 55:2867–2882

    Article  Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Rev Mineral Geochem 43(1):1–81

    Article  Google Scholar 

  • Cole DR, Chakraborty S (2001) Rates and mechanisms of isotopic exchange. Rev Mineral Geochem 43(1):83–223

    Article  Google Scholar 

  • Craven JA, Harte B, Fisher D, Schulze DJ (2009) Diffusion in diamond. I. Carbon isotope mapping of natural diamond. Mineral Mag 73:193–200

    Article  Google Scholar 

  • Deines P (1980) The carbon isotopic composition of diamonds; relationship to diamond shape, colour, occurrence and vapour composition. Geochim Cosmochim Acta 44:943–962

    Article  Google Scholar 

  • Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev 58:247–278

    Article  Google Scholar 

  • Deines P, Eggler DH (2009) Experimental determination of carbon isotope fractionation between CaCO3 and graphite. Geochim Cosmochim Acta 73(24):7256–7274

    Article  Google Scholar 

  • Fine G, Stolper E (1985) The speciation of carbon dioxide in sodium aluminosilicate glasses. Contrib Mineral Petrol 91:105–121

    Article  Google Scholar 

  • Galimov EM (1991) Isotope fractionation related to kimberlite magmatism and diamond formation. Geochim Cosmochim Acta 55:1697–1708

    Article  Google Scholar 

  • Harte B, Taniguchi T, Chakraborty S (2009) Diffusion in diamond. II. High-pressure-temperature experiments. Mineral Mag 73:201–204

    Article  Google Scholar 

  • Horita J, Polyakov VB (2015) Carbon bearing iron phases and the carbon isotope composition of the deep Earth. Proc Natl Acad Sci USA 112(1):31–36. doi:10.1073/pnas.1401782112

    Article  Google Scholar 

  • Izokh OP, Izokh NG, Ponomarchuk VA, Semenova DV (2009) Carbon and oxygen isotopes in the Frasnian–Famennian section of the Kuznetsk basin (southern West Siberia). Russian Geol Geophys 50(7):610–617

    Article  Google Scholar 

  • Kennedy CS, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 81(14):2467–2470. doi:10.1029/JB081i014p02467

    Article  Google Scholar 

  • Keppler H, Wiedenbeck M, Shcheka SS (2003) Carbon solubility in olivine and the mode of carbon storage in the Earth’s mantle. Nature 424:414–416

    Article  Google Scholar 

  • Klein-BenDavid O, Wirth R, Navon O (2006) TEM imaging and analysis of microinclusions in diamonds: close look at diamond growing fluids. Am Miner 91:353–365

    Article  Google Scholar 

  • Klein-BenDavid O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri EH, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond–forming fluid. Lithos 112:648–659

    Article  Google Scholar 

  • Koga KT, Van Orman JA, Walter MJ (2003) Diffusive relaxation of carbon and nitrogen isotope heterogeneity in diamond: new thermochronometer. Phys Earth Planet Inter 139:35–43

    Article  Google Scholar 

  • Logvinova AM, Wirth R, Tomilenko AA, Afanas’ev VP, Sobolev NV (2011) The phase composition of crystal–fluid nanoinclusions in alluvial diamonds in the northeastern Siberian Platform. Russian Geol Geophys 52:1286–1297

    Article  Google Scholar 

  • Luth RW (1999) Carbon and carbonates in the mantle. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. Boyd (Joe). Geochemical Society, Houston, pp 297–322

    Google Scholar 

  • Mattey DP, Taylor WR, Green DH, Pillinger CT (1990) Carbon isotope fractionation between CO2 vapor and carbonate melts; an experimental study at 30 kbar. Contrib Mineral Petrol 133:30–37

    Google Scholar 

  • Mysen BO, Arculus RJ, Eggler DH (1975) Solubility of carbon dioxide in melts of andesite, tholeiite, and olivine nephelinite composition to 30 kbar pressure. Contrib Mineral Petrol 53:227–239

    Article  Google Scholar 

  • Mysen BO, Fogel ML, Morrill PL, Cody GD (2009) Solution behavior of reduced COH volatiles in silicate melts at high pressure and temperature. Geochim Cosmochim Acta 73(6):1696–1710

    Article  Google Scholar 

  • Mysen BO, Kumamoto K, Cody GD, Fogel ML (2011) Solubility and solution mechanisms of C–O–H volatiles in silicate melt with variable redox conditions and melt composition at upper mantle temperatures and pressures. Geochim Cosmochim Acta 75:6183–6199

    Article  Google Scholar 

  • Nowak M, Porbatzki D, Spickenbom K, Diedrich O (2003) Carbon dioxide speciation in silicate melts: restart. Earth Planet Sci Lett 207:131–139

    Article  Google Scholar 

  • Pal’yanov YuN, Sokol AG, Khokhryakov AF, Sobolev NV (2010) Experimental study of interaction in the CO2–C system at mantle PT parameters. Doklady Earth Sci 435:1492–1495

    Article  Google Scholar 

  • Palyanov YuN, Bataleva YuV, Sokol AG, Borzdov YuM, Kupriyanov IN, Reutsky VN, Sobolev NV (2013) Mantle–slab interaction and redox mechanism of diamond formation. Proc Natl Acad Sci USA 110(51):20408–20413

    Article  Google Scholar 

  • Pal'yanov YuN, Sokol AG, Borzdov YuM, Khokhryakov AF, Sobolev NV (1999) Diamond formation from mantle carbonate fluids. Nature 400:417–418

    Article  Google Scholar 

  • Palyanov YuN, Borzdov YuM, Khokhryakov AF, Kupriyanov IN, Sokol AG (2010) Effect of nitrogen impurity on diamond crystal growth processes. Cryst Growth Des 10:3169–3175

    Article  Google Scholar 

  • Pal’yanov YuN, Sokol AG, Borzdov YuM, Khokhryakov AF (2002) Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth’s mantle: an experimental study. Lithos 60:145–159

    Article  Google Scholar 

  • Polyakov VB, Kharlashina NN (1994) Effect of pressure on equilibrium isotopic fractionation. Geochim Cosmochim Acta 58:4739–4750

    Article  Google Scholar 

  • Reutsky VN, Borzdov YuM, Palyanov YuN (2008a) Carbon isotope fractionation associated with HPHT crystallization of diamond. Diam Relat Mater 17:1986–1989

    Article  Google Scholar 

  • Reutsky VN, Harte B, Borzdov YM, Palyanov YN (2008b) Monitoring diamond crystal growth, a combined experimental and SIMS study. Eur J Mineral 20(3):365–374

    Article  Google Scholar 

  • Reutsky VN, Borzdov YuM, Palyanov YuN (2012) Effect of diamond growth rate on carbon isotope fractionation in Fe–Ni–C system. Diam Relat Mater 21:7–10

    Article  Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Annu Rev Earth Planet Sci 5:65–110

    Article  Google Scholar 

  • Scheele N, Hoefs J (1992) Carbon isotope fractionation between calcite, graphite and CO2: an experimental study. Contrib Mineral Petrol 112:35–45

    Article  Google Scholar 

  • Sokol AG, Pal'yanov YN, Borzdov YM, Khokhryakov AF, Sobolev NV (1998) Crystallization of diamond from Na2CO3 melt. Doklady Akademii Nauk 361:388-391 (in Russian)

    Google Scholar 

  • Stachel T, Harris JW, Muehlenbachs K (2009) Sources of carbon in inclusion bearing diamonds. Lithos 112:625–637

    Article  Google Scholar 

  • Taniguchi T, Dobson D, Jones AP, Rabe R, Milledge HJ (1996) Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite–K2Mg (CO3)2 systems at high pressure of 9–10 GPa region. J Mater Res 11:2622–2632

    Article  Google Scholar 

  • Thomassot E, Cartigny P, Harris JW, Viljoen KS (2007) Methane-related diamond crystallization in the Earth’s mantle: Stable isotope evidences from a single diamond-bearing xenolith. Earth Planet Sci Lett 257:362–371

    Article  Google Scholar 

  • Weiss Y, Kessel R, Griffin WL, Kiflawi I, Klein-BenDavid O, Bell DR, Harris JW, Navon O (2009) A new model for the evolution of diamond-forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos 112:660–674

    Article  Google Scholar 

  • Zedgenizov DA, Ragozin AL, Shatsky VS, Araujo D, Griffin WL (2011) Fibrous diamonds from the placers of the northeastern Siberian Platform: carbonate and silicate crystallization media. Russian Geol Geophys 52:1298–1309

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Editor Jochen Hoefs and reviewers Prof. Ben Harte, Prof. Thomas Stachel and an anonymous reviewer for their constructive and careful reviews that improved the strength and the clarity of the arguments outlined in the manuscript. Starting series of experiments was done with support of RFBR grant No. 09-05-00277a. Time series experiments, extra runs for verification of isotope data and all the final calculations and discussion were supported by the Russian Scientific Foundation Grant No. 14-27-00054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Reutsky.

Additional information

Communicated by Jochen Hoefs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reutsky, V., Borzdov, Y., Palyanov, Y. et al. Carbon isotope fractionation during experimental crystallisation of diamond from carbonate fluid at mantle conditions. Contrib Mineral Petrol 170, 41 (2015). https://doi.org/10.1007/s00410-015-1197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1197-5

Keywords

Navigation