Abstract
Rocks consist of crystal grains separated by grain boundaries that impact the bulk rock properties. Recent studies on metals and ceramics showed that the grain boundary plane orientation is more significant for grain boundary properties than other characteristics such as the sigma value or disorientation (in the Earth’s science community more frequently termed misorientation). We determined the grain boundary character distribution (GBCD) of synthetic and natural polycrystalline olivine, the most abundant mineral of Earth’s upper mantle. We show that grain boundaries of olivine preferentially contain low index planes, in agreement with recent findings on other oxides (e.g. MgO, TiO2, Al2O3 etc.). Furthermore, we find evidence for a preferred orientation relationship of 90° disorientations about the [001] direction forming tilt and twist grain boundaries, as well as a preference for the 60° disorientation about the [100] axis. Our data indicate that the GBCD, which is an intrinsic property of any mineral aggregate, is fundamental for understanding and predicting grain boundary related processes.
Similar content being viewed by others
References
Adjaoud O, Marquardt K, Jahn S (2012) Atomic structures and energies of grain boundaries in Mg2SiO4 forsterite from atomistic modeling. Phys Chem Miner 39:749–760. doi:10.1007/s00269-012-0529-5
Atkinson A, Taylor RI (1979) The diffusion of Ni in the bulk and along dislocations in NiO single crystals. Philos Mag A 39:581–595. doi:10.1080/01418617908239293
Bagdassarov N, Laporte D, Thompson AB (2000) Physics and chemistry of partially molten rocks. Kluwer Academic Publishers, Berlin
Becker JK, Bons PD, Jessell MW (2008) A new front-tracking method to model anisotropic grain and phase boundary motion in rocks. Comput Geosci 34:201–212. doi:10.1016/j.cageo.2007.03.013
Bollmann W (1962) On the analysis of dislocation networks. Philos Mag 7:1513–1533. doi:10.1080/14786436208213290
Bollmann W (1970) Crystal defects and crystalline interfaces. Springer, New York
Brandon DG (1966) The structure of high-angle grain boundaries. Acta Metall 14:1479–1484
Brandon D (2010) 25 Year perspective defining grain boundaries: an historical perspective The development and limitations of coincident site lattice models. Mater Sci Technol 26:762–773. doi:10.1179/026708310X12635619987989
Campbell GH, Plitzko JM, King WE et al (2004) Copper Segregation to the Σ 5 (310)/[001] symmetric tilt grain boundary in aluminum. Interface Sci 12:165–174
Chadwick GA, Smith DA (eds) (1976) Grain boundary structure and properties. Academic Press, London, pp 388. ISBN: 0121662500, 9780121662509
Cmíral M, Fitz Gerald JD, Faul UH, Green DH (1998) A close look at dihedral angles and melt geometry in olivine-basalt aggregates: a TEM study. Contrib Mineral Petrol 130:336–345
Conrad B (1935) Notiz über Zwillinge und Drillinge gesteinsbildender Olivine. Schweizerische Mineral und Petrogr Mitteilungen 15:160–167
Cordier P, Demouchy S, Beausir B et al (2014) Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature. doi:10.1038/nature13043
Dai L, Li H, Hu H, Shan S (2008) Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions. J Geophys Res 113:B12211. doi:10.1029/2008JB005820
Dai L, Li H, Hu H et al (2013) Electrical conductivity of Alm82Py15Grs3 almandine-rich garnet determined by impedance spectroscopy at high temperatures and high pressures. Tectonophysics 608:1086–1093. doi:10.1016/j.tecto.2013.07.004
De Leeuw NH, Parker SC, Catlow CRA, Price GD (2000) Modelling the effect of water on the surface structure and stability of forsterite. Phys Chem Miner 27:332–341. doi:10.1007/s002690050262
Deer WA, Howie RA, Zussman J (1992) An introduction to the rock forming minerals, 2nd edn. Prentice Hall, Englewood Cliffs
Dillon SJ, Rohrer GS (2009) Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth. Acta Mater 57:1–7. doi:10.1016/j.actamat.2008.08.062
Farla RJM, Gerald JDF, Kokkonen H et al (2011) Slip-system and EBSD analysis on compressively deformed fine-grained polycrystalline olivine. Geol Soc Lond Spec Publ 360:225–235. doi:10.1144/SP360.13
Farver J, Yund R (2000) Silicon diffusion in forsterite aggregates: implications for diffusion accommodated creep. Geophys Res Lett 27:2337–2340
Farver JR, Yund A, Rubie C (1994) Magnesium grain boundary diffusion in forsterite aggregates at 1000°–1300°C and 0.1 MPa to 10 GPa. J Geophys Res 99(94):19809–19819
Faul UH (2001) Melt retention and segregation beneath mid-ocean ridges. Nature 410:920–923. doi:10.1038/35073556
Faul UH, Fitz Gerald JD (1999) Grain misorientations in partially molten olivine aggregates: an electron backscatter diffraction study. Phys Chem Miner 26:187–197. doi:10.1007/s002690050176
Faul UH, Fitz Gerald JD, Jackson I (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications. J Geophys Res 109:202. doi:10.1029/2003JB002407
Fitz Gerald JD, Parsons I, Cayzer N (2006) Nanotunnels and pull-aparts: defects of exsolution lamellae in alkali feldspars. Am Mineral 91:772–783. doi:10.2138/am.2006.2029
Fliervoet TF, Drury MR, Chopra PN (1999) Crystallographic preferred orientations and misorientations in some olivine rocks deformed by diffusion or dislocation creep. Tectonophysics 303:1–27. doi:10.1016/S0040-1951(98)00250-9
Frank F (1951) The resultant content of dislocations in an arbitrary intercrystalline boundary. Rep. a Symp. Plast. Deform. Cryst. solids. Carnegie Inst. Technol
Friedel J (1964) Deslocations in crystals. Addison-Wesley Publishing Company, Pergamon Press, Reading
Garapic G, Faul UH, Brisson E (2013) High-resolution imaging of the melt distribution in partially molten upper mantle rocks: evidence for wetted two-grain boundaries. Geochem Geophys Geosyst 14:1–11. doi:10.1029/2012GC004547
Gardés E, Wunder B, Marquardt K, Heinrich W (2012) The effect of water on intergranular mass transport: new insights from diffusion-controlled reaction rims in the MgO–SiO2 system. Contrib Mineral Petrol 164:1–16. doi:10.1007/s00410-012-0721-0
Ghanbarzadeh S, Prodanović M, Hesse MA (2014) Percolation and grain boundary wetting in anisotropic texturally equilibrated pore networks. Phys Rev Lett 113:048001. doi:10.1103/PhysRevLett.113.048001
Ghosh DB, Karki BB (2014) First principles simulations of the stability and structure of grain boundaries in Mg2SiO4 forsterite. Phys Chem Miner 41:163–171. doi:10.1007/s00269-013-0633-1
Gleiter H, Chalmers B (1972) High-angle grain boundaries. Pergamon Press, Oxford
Grimmer H (1989) Coincidence orientations of grains in rhombohedral materials. Acta Crystallogr Sect A Found Crystallogr 45:505–523. doi:10.1107/S0108767389002291
Gurmani SF, Jahn S, Brasse H, Schilling FR (2011) Atomic scale view on partially molten rocks: molecular dynamics simulations of melt-wetted olivine grain boundaries. J Geophys Res 116:B12209. doi:10.1029/2011JB008519
Hammond WC, Humphreys ED (2000) Upper mantle seismic wave attenuation: effects of realistic partial melt distribution. J Geophys Res 105:10987. doi:10.1029/2000JB900042
Hartmann K, Wirth R, Markl G (2008) P-T-X-controlled element transport through granulite-facies ternary feldspar from Lofoten, Norway. Contrib Mineral Petrol 156:359–375
Hartmann K, Wirth R, Heinrich W (2010) Synthetic near Σ5 (210)/[100] grain boundary in YAG fabricated by direct bonding: structure and stability. Phys Chem Miner 37:291–300. doi:10.1007/s00269-009-0333-z
Hayden LA, Watson EB (2008) Grain boundary mobility of carbon in earth’s mantle: a possible carbon flux from the core. Proc Natl Acad Sci USA 105:8537–8541. doi:10.1073/pnas.0710806105
Heilbronner R, Tullis J (2006) Evolution of c axis pole figures and grain size during dynamic recrystallization: results from experimentally sheared quartzite. J Geophys Res Solid Earth 111:1–19. doi:10.1029/2005JB004194
Heinemann S, Wirth R, Gottschalk M, Dresen G (2005) Synthetic [100] tilt grain boundaries in forsterite: 9.9 to 21.5°. Phys Chem Miner 32:229–240. doi:10.1007/s00269-005-0448-9
Hiraga T, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system I: analytical techniques, thermodynamics, and segregation characteristics. Geochim Cosmochim Acta 71:1266–1280. doi:10.1016/j.gca.2006.11.019
Hiraga T, Anderson IM, Kohlstedt DL et al (2003) Chemistry of grain boundaries in mantle rocks. Am Miner 88:1015–1019. doi:10.1038/nature02259
Hiraga T, Hirschmann MM, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system II: applications of interface enrichment to mantle geochemistry. Geochim Cosmochim Acta 71:1281–1289
Hirth G, Kohlstedt DL (1995) Experimental constraints on the dynamics of the partially molten upper mantle: deformation in the diffusion creep regime. J Geophys Res 100:1981–2001. doi:10.1029/94JB02128
Jackson I (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. Specimen fabrication and mechanical testing. J Geophys Res 109:B06201. doi:10.1029/2003JB002406
Kaur I, Mishin Y, Gust W (1995) Fundamentals of grain and interphase boundary diffusion, 3rd edn. Wiley, Chichester
Keller LM, Götze LC, Rybacki E, Dresen G, Abart R (2010) Enhancement of solid-state reaction rates by non-hydrostratic stress effects on polycrystalline diffusion kinetics. Am Miner 95:1399–1407. doi:10.2138/am.2010.3372
Khorashadizadeh A, Raabe D, Zaefferer S et al (2011) Five-parameter grain boundary analysis by 3D EBSD of an ultra fine grained CuZr alloy processed by equal channel angular pressing. Adv Eng Mater 13:237–244. doi:10.1002/adem.201000259
Kim C-S, Rohrer GS (2004) Geometric and crystallographic characterization of WC surfaces and grain boundaries in WC-Co composites. Interface Sci 12:19–27. doi:10.1023/B:INTS.0000012291.81411.dc
Kim CS, Hu Y, Rohrer GS, Randle V (2005) Five-parameter grain boundary distribution in grain boundary engineered brass. Scr Mater 52:633–637. doi:10.1016/j.scriptamat.2004.11.025
King AH, Singh A (1994) The coincidence site lattice model to non-cubic materials. J Phys Chem Solids 55:1023–1033
Kruhl JH, Wirth R, Morales LFG (2013) Quartz grain boundaries as fluid pathways in metamorphic rocks. J Geophys Res Solid Earth 118:1957–1967. doi:10.1002/jgrb.50099
Larsen ES, Hurlbut CS, Buie BF, Burgess CH (1941) Igneous rocks of the Highwood Mountains, Montana. Bull Geol Soc Am 52:1841–1856
Le Claire AD (1963) The analysis of grain boundary diffusion measurements. Br J Appl Phys 14:351–356
Li J, Dillon SJ, Rohrer GS (2009) Relative grain boundary area and energy distributions in nickel. Acta Mater 57:4304–4311
Lloyd GE, Farmer AB, Mainprice D (1997) Misorientation analysis and the formation and orientation of subgrain and grain boundaries. Tectonophysics 279:55–78. doi:10.1016/S0040-1951(97)00115-7
Marquardt K (2011) Bicrystals to study grain boundary diffusion: special versus random grain boundaries. In: Geophysical research abstracts, vol 13, abstr 6790
Marquardt K, Petrishcheva E, Gardés E et al (2011) Grain boundary and volume diffusion experiments in yttrium aluminium garnet bicrystals at 1723K: a miniaturized study. Contrib Mineral Petrol 162:739–749. doi:10.1007/s00410-011-0622-7
Massaro FR, Bruno M, Rubbo M (2014) Surface structure, morphology and (110) twin of aragonite. CrystEngComm 16:627. doi:10.1039/c3ce41654b
McLean D (1957) Grain boundaries in metals. Oxford Clarendon Press, Oxford
McTigue JW, McTigue J, Wenk H-R (1985) Microstructures and orientation relationships in the dry-state aragonit-calcite and calcit-lime phase transformations. Am Mineral 70:1253–1261
Milke R, Wiedenbeck M, Heinrich W (2001) Grain boundary diffusion of Si, Mg, and O in enstatite reaction rims; a SIMS study using isotopically doped reactants. Contrib Mineral Petrol 142:15–26
Morawiec A (1998) Proceedings of the third international conference on grain growth. In: Weiland H, Adams BL, Rollet AD (eds) Proceedings of the third international conference on grain growth, TMS, Warrendale, p 509
Morawiec A (2010) Orientations and rotations computations in crystallographic textures. Springer, Berlin
Nicolas A, Boudier F, Boullier AM (1973) Mechanisms of flow in naturally and experimentally deformed peridotites. Am J Sci 273:853–876. doi:10.2475/ajs.273.10.853
Pang Y, Wynblatt P (2006) Effects of Nb doping and segregation on the grain boundary plane distribution in TiO2. J Am Ceram Soc 89:666–671. doi:10.1111/j.1551-2916.2005.00759.x
Papillon F, Rohrer GS, Wynblatt P (2009) Effect of Segregating impurities on the grain-boundary character distribution of magnesium oxide. J Am Ceram Soc 92:3044–3051. doi:10.1111/j.1551-2916.2009.03327.x
Pennock G, Coleman M, Drury M, Randle V (2009) Grain boundary plane populations in minerals: the example of wet NaCl after low strain deformation. Contrib Mineral Petrol 158:53–67. doi:10.1007/s00410-008-0370-5
Peters MI, Reimanis IE (2003) Grain boundary grooving studies of yttrium aluminum garnet (YAG) bicrystals. J Am Ceram Soc 72:2002–2004
Poirier JP (1975) On the slip systems of olivine. J Geophys Res 80:4059–4061
Pond RC, Bollmann W (1979) The symmetry and interfacial structure of bicrystals. Philos Trans R Soc Lond Ser A Math Phys Sci 292:449–472
Pond RC, Vlachavas DS (1983) Bicrystallography. Proc R Soc Lond A Math Phys Sci 386:95–143
Randle V (2002) The coincidence site lattice and the “sigma enigma”. Mater Charact 47:411–416
Randle V, Davies H (2001) A comparison between three-dimensional and two-dimensional grain boundary plane analysis. Ultramicroscopy 90:153–162
Randle V, Rohrer GSS, Hu Y (2008) Five-parameter grain boundary analysis of a titanium alloy before and after low-temperature annealing. Scr Mater 58:183–186. doi:10.1016/j.scriptamat.2007.09.044
Rohrer GS (2007) The distribution of grain boundary planes in polycrystals. JOM J Miner Met Mater Soc 59:38–42
Rohrer GS (2011a) Grain boundary energy anisotropy: a review. J Mater Sci 46:5881–5895. doi:10.1007/s10853-011-5677-3
Rohrer GS (2011b) Measuring and interpreting the structure of grain-boundary networks. J Am Ceram Soc 94:633–646. doi:10.1111/j.1551-2916.2011.04384.x
Rohrer GS, El-Dasher BS, Miller HM et al (2004a) Distribution of grain boundary planes at coincident site lattice misorientations. Mat Res Soc Symp Proc. doi:10.1557/PROC-819-N7.2
Rohrer GS, Saylor DM, El Dasher B, Adams BL, Rollett AD, Wynblatt P (2004b) The distribution of internal interfaces in polycrystals. Zeitschrift Für Metallkunde 95(4):197–214. doi:10.3139/146.017934
Saylor DM, Rohrer GS (2002) Determining crystal habits from observations of planar sections. J Am Ceram Soc 804:2799–2804
Saylor DM, Morawiec A, Rohrer GS (2002) Distribution and energies of grain boundaries in magnesia as a function of five degrees of freedom. J Am Ceram Soc 85:3081–3083. doi:10.1111/j.1151-2916.2002.tb00583.x
Saylor DM, Morawiec A, Rohrer GS (2003a) Distribution of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater 51:3675–3686. doi:10.1016/s1359-6454(03)00181-2
Saylor DM, Morawiec A, Rohrer GS (2003b) The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater 51:3675–3686. doi:10.1016/S1359-6454(03)00182-4
Saylor DM, Dasher B, Sano T, Rohrer GS (2004a) Distribution of grain boundaries in SrTiO3 as a function of five macroscopic parameters. J Am Ceram Soc 87:670–676
Saylor DM, El Dasher BS, Rollett AD, Rohrer GS (2004b) Distribution of grain boundaries in aluminum as a function of five macroscopic parameters. Acta Mater 52:3649–3655
Saylor DM, El-dasher BS, Adams BL, Rohrer GS (2004c) Measuring the five-parameter grain-boundary distribution from observations of planar sections. Metall Mater Trans A 35:1981–1989
Schmeling H, Kruse JP, Richard G (2012) Effective shear and bulk viscosity of partially molten rock based on elastic moduli theory of a fluid filled poroelastic medium. Geophys J Int 190:1571–1578. doi:10.1111/j.1365-246X.2012.05596.x
Schwarz SM, Kempshall BW, Giannuzzi LA, Stevie FA (2002) Utilizing the SIMS technique in the study of grain boundary diffusion along twist grain boundaries in the Cu(Ni) system. Acta Mater 50:5079–5084
Scott JM, Waight TE, van der Meer PHA et al (2014) Metasomatized ancient lithospheric mantle beneath the young Zealandia microcontinent and its role in HIMU-like intraplate magmatism. Geochem Geophys Geosyst. doi:10.1002/2014GC005300
Smith CS (1948) Grains, phases, and interfaces: an interpretation of microstructure. Trans AIME 175(5):15–51. doi:10.1007/s11661-010-0215-5
Sobolev SV, Zeyen H, Stoll G et al (1996) Upper mantle temperatures from teleseismic tomography of French Massif Central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt. Earth Planet Sci Lett 139:147–163. doi:10.1016/0012-821X(95)00238-8
Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Clarendon Press, Wotton-under-Edge
Suzuki K (1987) Grain-boundary enrichment of incompatible elements in some mantle peridotites. Chem Geol 63:319–334. doi:10.1016/0009-2541(87)90169-0
Takei Y (1998) Constitutive mechanical relations of solid-liquid composites in terms of grain boundary contiguity. J Geophys Res 103:18183–18203
Takei Y, Holtzman BK (2009) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model. J Geophys Res Solid Earth 114:1–19. doi:10.1029/2008JB005850
Tommasi A, Vauchez A, Ionov DA (2008) Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth Planet Sci Lett 272:65–77. doi:10.1016/j.epsl.2008.04.020
Tommasi A, Knoll M, Vauchez A et al (2009) Structural reactivation in plate tectonics controlled by olivine crystal anisotropy. Nat Geosci 2:423–427. doi:10.1038/ngeo528
Toomey DR, Wilcock WSD, Conder JA et al (2002) Asymmetric mantle dynamics in the MELT region of the East Pacific Rise. Earth Planet Sci Lett 200:287–295. doi:10.1016/S0012-821X(02)00655-6
Tröger WE (1967) Optische Bestimmung der gesteinsbildenden Minerale, Stuttgart
Vauchez A, Tommasi A, Mainprice D (2012) Faults (shear zones) in the earth’s mantle. Tectonophysics 558–559:1–27. doi:10.1016/j.tecto.2012.06.006
Villagomez DR, Toomey DR, Geist DJ et al (2014) Mantle flow and multistage melting beneath the Galapagos hotspot revealed by seismic imaging. Nat Geosci 7:151–156
Von Bargen N, Waff HS (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J Geophys Res Solid Earth 91:9261–9276. doi:10.1029/JB091iB09p09261
Vonlanthen P, Grobety B (2008) CSL grain boundary distribution in alumina and zirconia ceramics. Ceram Int 34:1459–1472
Walte NP, Bons PD, Koehn D (2003) Disequilibrium melt distribution during static recrystallization. Tectonophysics 31:1009–1012
Walte NP, Bons PD, Passchier CW (2005) Deformation of melt-bearing systems—insight from in situ grain-scale analogue experiments. J Struct Geol 27:1666–1679. doi:10.1016/j.jsg.2005.05.006
Wark DA, Watson EB (1998) Grain-scale permeabilities of texturally equilibrated, monomineralic rocks. Earth Planet Sci Lett 164:591–605
Wark DA, Williams CA, Watosn BE, Price JD (2003) Reassessment of pore shapes in microstructurally equilibrated rocks, with implications for permeability of the upper mantle. J Geophys Res 108:2050. doi:10.1029/2001JB001575
Watanabe T (2011) Grain boundary engineering: historical perspective and future prospects. J Mater Sci 46:4095–4115. doi:10.1007/s10853-011-5393-z
Watson GW, Oliver PM, Parker SC (1997) Computer simulation of the structure and stability of forsterite surfaces. Phys Chem Miner 25:70–78. doi:10.1007/s002690050088
Weins M, Chalmers B, Gleiter H, Ashby M (1969) Structure of high angle grain boundaries. Scr Metall 3:601–603
Wenk H-R, Bennett K, Canova GR, Molinari A (1991) Modelling plastic deformation of peridotite with the self-consistent theory. J Geophys Res 96:8337. doi:10.1029/91JB00117
Wheeler J, Prior DJ, Jiang Z et al (2001) The petrological significance of misorientations between grains. Contrib Mineral Petrol 141:109–124. doi:10.1007/s004100000225
Wirth R (1996) Thin amorphous films (1–2 nm) at olivine grain boundaries in mantle xenoliths from San Carlos, Arizona. Contrib Mineral Petrol 124:44–54
Wirth R (2004) Focused Ion Beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876. doi:10.1127/0935-1221/2004/0016-0863
Wooster WA (1982) Atomic arrangements on the twin boundaries of crystals of calcite and aragonite. Mineral Mag 46:265–268
Worden RH, Walker FDL, Parsons I, Brown WL (1990) Development of microporosity, diffusion channels and deuteric coarsening in perthitic alkali feldspar. Contrib Mineral Petrol 104:507–515
Yund RA (1997) Rates of grain boundary diffusion through enstatite and forsterite reaction rims. Contrib Mineral Petrol V126:224–236
Acknowledgments
We thank the comments of Uli Faul and one anonymous reviewer that led to largely extended methods description and helped to eliminate formulations leading to misunderstanding. KM thanks Patrick Cordier for his encouragement to proceed with this project, Robert Farla and Caroline Bollinger for their open minded discussion and critical comments. KM acknowledges support by the German Science Foundation through Grants MA 6287/2-1 to KM and, HE 2015/11-1 to Wilhelm Heinrich KM further acknowledges funding by the Helmholtz Postdoc Programme, Project PD-043. HM acknowledges support by the German Science Foundation through Grant MA 4534/3-1.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Timothy L. Grove.
Rights and permissions
About this article
Cite this article
Marquardt, K., Rohrer, G.S., Morales, L. et al. The most frequent interfaces in olivine aggregates: the GBCD and its importance for grain boundary related processes. Contrib Mineral Petrol 170, 40 (2015). https://doi.org/10.1007/s00410-015-1193-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00410-015-1193-9