Skip to main content
Log in

The most frequent interfaces in olivine aggregates: the GBCD and its importance for grain boundary related processes

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Rocks consist of crystal grains separated by grain boundaries that impact the bulk rock properties. Recent studies on metals and ceramics showed that the grain boundary plane orientation is more significant for grain boundary properties than other characteristics such as the sigma value or disorientation (in the Earth’s science community more frequently termed misorientation). We determined the grain boundary character distribution (GBCD) of synthetic and natural polycrystalline olivine, the most abundant mineral of Earth’s upper mantle. We show that grain boundaries of olivine preferentially contain low index planes, in agreement with recent findings on other oxides (e.g. MgO, TiO2, Al2O3 etc.). Furthermore, we find evidence for a preferred orientation relationship of 90° disorientations about the [001] direction forming tilt and twist grain boundaries, as well as a preference for the 60° disorientation about the [100] axis. Our data indicate that the GBCD, which is an intrinsic property of any mineral aggregate, is fundamental for understanding and predicting grain boundary related processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adjaoud O, Marquardt K, Jahn S (2012) Atomic structures and energies of grain boundaries in Mg2SiO4 forsterite from atomistic modeling. Phys Chem Miner 39:749–760. doi:10.1007/s00269-012-0529-5

    Article  Google Scholar 

  • Atkinson A, Taylor RI (1979) The diffusion of Ni in the bulk and along dislocations in NiO single crystals. Philos Mag A 39:581–595. doi:10.1080/01418617908239293

    Article  Google Scholar 

  • Bagdassarov N, Laporte D, Thompson AB (2000) Physics and chemistry of partially molten rocks. Kluwer Academic Publishers, Berlin

    Book  Google Scholar 

  • Becker JK, Bons PD, Jessell MW (2008) A new front-tracking method to model anisotropic grain and phase boundary motion in rocks. Comput Geosci 34:201–212. doi:10.1016/j.cageo.2007.03.013

    Article  Google Scholar 

  • Bollmann W (1962) On the analysis of dislocation networks. Philos Mag 7:1513–1533. doi:10.1080/14786436208213290

    Article  Google Scholar 

  • Bollmann W (1970) Crystal defects and crystalline interfaces. Springer, New York

    Book  Google Scholar 

  • Brandon DG (1966) The structure of high-angle grain boundaries. Acta Metall 14:1479–1484

    Article  Google Scholar 

  • Brandon D (2010) 25 Year perspective defining grain boundaries: an historical perspective The development and limitations of coincident site lattice models. Mater Sci Technol 26:762–773. doi:10.1179/026708310X12635619987989

    Article  Google Scholar 

  • Campbell GH, Plitzko JM, King WE et al (2004) Copper Segregation to the Σ 5 (310)/[001] symmetric tilt grain boundary in aluminum. Interface Sci 12:165–174

    Article  Google Scholar 

  • Chadwick GA, Smith DA (eds) (1976) Grain boundary structure and properties. Academic Press, London, pp 388. ISBN: 0121662500, 9780121662509

  • Cmíral M, Fitz Gerald JD, Faul UH, Green DH (1998) A close look at dihedral angles and melt geometry in olivine-basalt aggregates: a TEM study. Contrib Mineral Petrol 130:336–345

    Article  Google Scholar 

  • Conrad B (1935) Notiz über Zwillinge und Drillinge gesteinsbildender Olivine. Schweizerische Mineral und Petrogr Mitteilungen 15:160–167

    Google Scholar 

  • Cordier P, Demouchy S, Beausir B et al (2014) Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature. doi:10.1038/nature13043

    Google Scholar 

  • Dai L, Li H, Hu H, Shan S (2008) Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions. J Geophys Res 113:B12211. doi:10.1029/2008JB005820

    Article  Google Scholar 

  • Dai L, Li H, Hu H et al (2013) Electrical conductivity of Alm82Py15Grs3 almandine-rich garnet determined by impedance spectroscopy at high temperatures and high pressures. Tectonophysics 608:1086–1093. doi:10.1016/j.tecto.2013.07.004

    Article  Google Scholar 

  • De Leeuw NH, Parker SC, Catlow CRA, Price GD (2000) Modelling the effect of water on the surface structure and stability of forsterite. Phys Chem Miner 27:332–341. doi:10.1007/s002690050262

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock forming minerals, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Dillon SJ, Rohrer GS (2009) Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth. Acta Mater 57:1–7. doi:10.1016/j.actamat.2008.08.062

    Article  Google Scholar 

  • Farla RJM, Gerald JDF, Kokkonen H et al (2011) Slip-system and EBSD analysis on compressively deformed fine-grained polycrystalline olivine. Geol Soc Lond Spec Publ 360:225–235. doi:10.1144/SP360.13

    Article  Google Scholar 

  • Farver J, Yund R (2000) Silicon diffusion in forsterite aggregates: implications for diffusion accommodated creep. Geophys Res Lett 27:2337–2340

    Article  Google Scholar 

  • Farver JR, Yund A, Rubie C (1994) Magnesium grain boundary diffusion in forsterite aggregates at 1000°–1300°C and 0.1 MPa to 10 GPa. J Geophys Res 99(94):19809–19819

    Article  Google Scholar 

  • Faul UH (2001) Melt retention and segregation beneath mid-ocean ridges. Nature 410:920–923. doi:10.1038/35073556

    Article  Google Scholar 

  • Faul UH, Fitz Gerald JD (1999) Grain misorientations in partially molten olivine aggregates: an electron backscatter diffraction study. Phys Chem Miner 26:187–197. doi:10.1007/s002690050176

    Article  Google Scholar 

  • Faul UH, Fitz Gerald JD, Jackson I (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications. J Geophys Res 109:202. doi:10.1029/2003JB002407

    Google Scholar 

  • Fitz Gerald JD, Parsons I, Cayzer N (2006) Nanotunnels and pull-aparts: defects of exsolution lamellae in alkali feldspars. Am Mineral 91:772–783. doi:10.2138/am.2006.2029

    Article  Google Scholar 

  • Fliervoet TF, Drury MR, Chopra PN (1999) Crystallographic preferred orientations and misorientations in some olivine rocks deformed by diffusion or dislocation creep. Tectonophysics 303:1–27. doi:10.1016/S0040-1951(98)00250-9

    Article  Google Scholar 

  • Frank F (1951) The resultant content of dislocations in an arbitrary intercrystalline boundary. Rep. a Symp. Plast. Deform. Cryst. solids. Carnegie Inst. Technol

  • Friedel J (1964) Deslocations in crystals. Addison-Wesley Publishing Company, Pergamon Press, Reading

    Google Scholar 

  • Garapic G, Faul UH, Brisson E (2013) High-resolution imaging of the melt distribution in partially molten upper mantle rocks: evidence for wetted two-grain boundaries. Geochem Geophys Geosyst 14:1–11. doi:10.1029/2012GC004547

    Article  Google Scholar 

  • Gardés E, Wunder B, Marquardt K, Heinrich W (2012) The effect of water on intergranular mass transport: new insights from diffusion-controlled reaction rims in the MgO–SiO2 system. Contrib Mineral Petrol 164:1–16. doi:10.1007/s00410-012-0721-0

    Article  Google Scholar 

  • Ghanbarzadeh S, Prodanović M, Hesse MA (2014) Percolation and grain boundary wetting in anisotropic texturally equilibrated pore networks. Phys Rev Lett 113:048001. doi:10.1103/PhysRevLett.113.048001

    Article  Google Scholar 

  • Ghosh DB, Karki BB (2014) First principles simulations of the stability and structure of grain boundaries in Mg2SiO4 forsterite. Phys Chem Miner 41:163–171. doi:10.1007/s00269-013-0633-1

    Article  Google Scholar 

  • Gleiter H, Chalmers B (1972) High-angle grain boundaries. Pergamon Press, Oxford

    Google Scholar 

  • Grimmer H (1989) Coincidence orientations of grains in rhombohedral materials. Acta Crystallogr Sect A Found Crystallogr 45:505–523. doi:10.1107/S0108767389002291

    Article  Google Scholar 

  • Gurmani SF, Jahn S, Brasse H, Schilling FR (2011) Atomic scale view on partially molten rocks: molecular dynamics simulations of melt-wetted olivine grain boundaries. J Geophys Res 116:B12209. doi:10.1029/2011JB008519

    Article  Google Scholar 

  • Hammond WC, Humphreys ED (2000) Upper mantle seismic wave attenuation: effects of realistic partial melt distribution. J Geophys Res 105:10987. doi:10.1029/2000JB900042

    Article  Google Scholar 

  • Hartmann K, Wirth R, Markl G (2008) P-T-X-controlled element transport through granulite-facies ternary feldspar from Lofoten, Norway. Contrib Mineral Petrol 156:359–375

    Article  Google Scholar 

  • Hartmann K, Wirth R, Heinrich W (2010) Synthetic near Σ5 (210)/[100] grain boundary in YAG fabricated by direct bonding: structure and stability. Phys Chem Miner 37:291–300. doi:10.1007/s00269-009-0333-z

    Article  Google Scholar 

  • Hayden LA, Watson EB (2008) Grain boundary mobility of carbon in earth’s mantle: a possible carbon flux from the core. Proc Natl Acad Sci USA 105:8537–8541. doi:10.1073/pnas.0710806105

    Article  Google Scholar 

  • Heilbronner R, Tullis J (2006) Evolution of c axis pole figures and grain size during dynamic recrystallization: results from experimentally sheared quartzite. J Geophys Res Solid Earth 111:1–19. doi:10.1029/2005JB004194

    Google Scholar 

  • Heinemann S, Wirth R, Gottschalk M, Dresen G (2005) Synthetic [100] tilt grain boundaries in forsterite: 9.9 to 21.5°. Phys Chem Miner 32:229–240. doi:10.1007/s00269-005-0448-9

    Article  Google Scholar 

  • Hiraga T, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system I: analytical techniques, thermodynamics, and segregation characteristics. Geochim Cosmochim Acta 71:1266–1280. doi:10.1016/j.gca.2006.11.019

    Article  Google Scholar 

  • Hiraga T, Anderson IM, Kohlstedt DL et al (2003) Chemistry of grain boundaries in mantle rocks. Am Miner 88:1015–1019. doi:10.1038/nature02259

    Article  Google Scholar 

  • Hiraga T, Hirschmann MM, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system II: applications of interface enrichment to mantle geochemistry. Geochim Cosmochim Acta 71:1281–1289

    Article  Google Scholar 

  • Hirth G, Kohlstedt DL (1995) Experimental constraints on the dynamics of the partially molten upper mantle: deformation in the diffusion creep regime. J Geophys Res 100:1981–2001. doi:10.1029/94JB02128

    Article  Google Scholar 

  • Jackson I (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. Specimen fabrication and mechanical testing. J Geophys Res 109:B06201. doi:10.1029/2003JB002406

    Google Scholar 

  • Kaur I, Mishin Y, Gust W (1995) Fundamentals of grain and interphase boundary diffusion, 3rd edn. Wiley, Chichester

    Google Scholar 

  • Keller LM, Götze LC, Rybacki E, Dresen G, Abart R (2010) Enhancement of solid-state reaction rates by non-hydrostratic stress effects on polycrystalline diffusion kinetics. Am Miner 95:1399–1407. doi:10.2138/am.2010.3372

    Article  Google Scholar 

  • Khorashadizadeh A, Raabe D, Zaefferer S et al (2011) Five-parameter grain boundary analysis by 3D EBSD of an ultra fine grained CuZr alloy processed by equal channel angular pressing. Adv Eng Mater 13:237–244. doi:10.1002/adem.201000259

    Article  Google Scholar 

  • Kim C-S, Rohrer GS (2004) Geometric and crystallographic characterization of WC surfaces and grain boundaries in WC-Co composites. Interface Sci 12:19–27. doi:10.1023/B:INTS.0000012291.81411.dc

    Article  Google Scholar 

  • Kim CS, Hu Y, Rohrer GS, Randle V (2005) Five-parameter grain boundary distribution in grain boundary engineered brass. Scr Mater 52:633–637. doi:10.1016/j.scriptamat.2004.11.025

    Article  Google Scholar 

  • King AH, Singh A (1994) The coincidence site lattice model to non-cubic materials. J Phys Chem Solids 55:1023–1033

    Article  Google Scholar 

  • Kruhl JH, Wirth R, Morales LFG (2013) Quartz grain boundaries as fluid pathways in metamorphic rocks. J Geophys Res Solid Earth 118:1957–1967. doi:10.1002/jgrb.50099

    Article  Google Scholar 

  • Larsen ES, Hurlbut CS, Buie BF, Burgess CH (1941) Igneous rocks of the Highwood Mountains, Montana. Bull Geol Soc Am 52:1841–1856

    Article  Google Scholar 

  • Le Claire AD (1963) The analysis of grain boundary diffusion measurements. Br J Appl Phys 14:351–356

    Article  Google Scholar 

  • Li J, Dillon SJ, Rohrer GS (2009) Relative grain boundary area and energy distributions in nickel. Acta Mater 57:4304–4311

    Article  Google Scholar 

  • Lloyd GE, Farmer AB, Mainprice D (1997) Misorientation analysis and the formation and orientation of subgrain and grain boundaries. Tectonophysics 279:55–78. doi:10.1016/S0040-1951(97)00115-7

    Article  Google Scholar 

  • Marquardt K (2011) Bicrystals to study grain boundary diffusion: special versus random grain boundaries. In: Geophysical research abstracts, vol 13, abstr 6790

  • Marquardt K, Petrishcheva E, Gardés E et al (2011) Grain boundary and volume diffusion experiments in yttrium aluminium garnet bicrystals at 1723K: a miniaturized study. Contrib Mineral Petrol 162:739–749. doi:10.1007/s00410-011-0622-7

    Article  Google Scholar 

  • Massaro FR, Bruno M, Rubbo M (2014) Surface structure, morphology and (110) twin of aragonite. CrystEngComm 16:627. doi:10.1039/c3ce41654b

    Article  Google Scholar 

  • McLean D (1957) Grain boundaries in metals. Oxford Clarendon Press, Oxford

    Google Scholar 

  • McTigue JW, McTigue J, Wenk H-R (1985) Microstructures and orientation relationships in the dry-state aragonit-calcite and calcit-lime phase transformations. Am Mineral 70:1253–1261

    Google Scholar 

  • Milke R, Wiedenbeck M, Heinrich W (2001) Grain boundary diffusion of Si, Mg, and O in enstatite reaction rims; a SIMS study using isotopically doped reactants. Contrib Mineral Petrol 142:15–26

    Article  Google Scholar 

  • Morawiec A (1998) Proceedings of the third international conference on grain growth. In: Weiland H, Adams BL, Rollet AD (eds) Proceedings of the third international conference on grain growth, TMS, Warrendale, p 509

  • Morawiec A (2010) Orientations and rotations computations in crystallographic textures. Springer, Berlin

    Google Scholar 

  • Nicolas A, Boudier F, Boullier AM (1973) Mechanisms of flow in naturally and experimentally deformed peridotites. Am J Sci 273:853–876. doi:10.2475/ajs.273.10.853

    Article  Google Scholar 

  • Pang Y, Wynblatt P (2006) Effects of Nb doping and segregation on the grain boundary plane distribution in TiO2. J Am Ceram Soc 89:666–671. doi:10.1111/j.1551-2916.2005.00759.x

    Article  Google Scholar 

  • Papillon F, Rohrer GS, Wynblatt P (2009) Effect of Segregating impurities on the grain-boundary character distribution of magnesium oxide. J Am Ceram Soc 92:3044–3051. doi:10.1111/j.1551-2916.2009.03327.x

    Article  Google Scholar 

  • Pennock G, Coleman M, Drury M, Randle V (2009) Grain boundary plane populations in minerals: the example of wet NaCl after low strain deformation. Contrib Mineral Petrol 158:53–67. doi:10.1007/s00410-008-0370-5

    Article  Google Scholar 

  • Peters MI, Reimanis IE (2003) Grain boundary grooving studies of yttrium aluminum garnet (YAG) bicrystals. J Am Ceram Soc 72:2002–2004

    Google Scholar 

  • Poirier JP (1975) On the slip systems of olivine. J Geophys Res 80:4059–4061

    Article  Google Scholar 

  • Pond RC, Bollmann W (1979) The symmetry and interfacial structure of bicrystals. Philos Trans R Soc Lond Ser A Math Phys Sci 292:449–472

    Article  Google Scholar 

  • Pond RC, Vlachavas DS (1983) Bicrystallography. Proc R Soc Lond A Math Phys Sci 386:95–143

    Article  Google Scholar 

  • Randle V (2002) The coincidence site lattice and the “sigma enigma”. Mater Charact 47:411–416

    Article  Google Scholar 

  • Randle V, Davies H (2001) A comparison between three-dimensional and two-dimensional grain boundary plane analysis. Ultramicroscopy 90:153–162

    Article  Google Scholar 

  • Randle V, Rohrer GSS, Hu Y (2008) Five-parameter grain boundary analysis of a titanium alloy before and after low-temperature annealing. Scr Mater 58:183–186. doi:10.1016/j.scriptamat.2007.09.044

    Article  Google Scholar 

  • Rohrer GS (2007) The distribution of grain boundary planes in polycrystals. JOM J Miner Met Mater Soc 59:38–42

    Article  Google Scholar 

  • Rohrer GS (2011a) Grain boundary energy anisotropy: a review. J Mater Sci 46:5881–5895. doi:10.1007/s10853-011-5677-3

    Article  Google Scholar 

  • Rohrer GS (2011b) Measuring and interpreting the structure of grain-boundary networks. J Am Ceram Soc 94:633–646. doi:10.1111/j.1551-2916.2011.04384.x

    Article  Google Scholar 

  • Rohrer GS, El-Dasher BS, Miller HM et al (2004a) Distribution of grain boundary planes at coincident site lattice misorientations. Mat Res Soc Symp Proc. doi:10.1557/PROC-819-N7.2

    Google Scholar 

  • Rohrer GS, Saylor DM, El Dasher B, Adams BL, Rollett AD, Wynblatt P (2004b) The distribution of internal interfaces in polycrystals. Zeitschrift Für Metallkunde 95(4):197–214. doi:10.3139/146.017934

    Article  Google Scholar 

  • Saylor DM, Rohrer GS (2002) Determining crystal habits from observations of planar sections. J Am Ceram Soc 804:2799–2804

    Google Scholar 

  • Saylor DM, Morawiec A, Rohrer GS (2002) Distribution and energies of grain boundaries in magnesia as a function of five degrees of freedom. J Am Ceram Soc 85:3081–3083. doi:10.1111/j.1151-2916.2002.tb00583.x

    Article  Google Scholar 

  • Saylor DM, Morawiec A, Rohrer GS (2003a) Distribution of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater 51:3675–3686. doi:10.1016/s1359-6454(03)00181-2

    Article  Google Scholar 

  • Saylor DM, Morawiec A, Rohrer GS (2003b) The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater 51:3675–3686. doi:10.1016/S1359-6454(03)00182-4

    Article  Google Scholar 

  • Saylor DM, Dasher B, Sano T, Rohrer GS (2004a) Distribution of grain boundaries in SrTiO3 as a function of five macroscopic parameters. J Am Ceram Soc 87:670–676

    Article  Google Scholar 

  • Saylor DM, El Dasher BS, Rollett AD, Rohrer GS (2004b) Distribution of grain boundaries in aluminum as a function of five macroscopic parameters. Acta Mater 52:3649–3655

    Article  Google Scholar 

  • Saylor DM, El-dasher BS, Adams BL, Rohrer GS (2004c) Measuring the five-parameter grain-boundary distribution from observations of planar sections. Metall Mater Trans A 35:1981–1989

    Article  Google Scholar 

  • Schmeling H, Kruse JP, Richard G (2012) Effective shear and bulk viscosity of partially molten rock based on elastic moduli theory of a fluid filled poroelastic medium. Geophys J Int 190:1571–1578. doi:10.1111/j.1365-246X.2012.05596.x

    Article  Google Scholar 

  • Schwarz SM, Kempshall BW, Giannuzzi LA, Stevie FA (2002) Utilizing the SIMS technique in the study of grain boundary diffusion along twist grain boundaries in the Cu(Ni) system. Acta Mater 50:5079–5084

    Article  Google Scholar 

  • Scott JM, Waight TE, van der Meer PHA et al (2014) Metasomatized ancient lithospheric mantle beneath the young Zealandia microcontinent and its role in HIMU-like intraplate magmatism. Geochem Geophys Geosyst. doi:10.1002/2014GC005300

    Google Scholar 

  • Smith CS (1948) Grains, phases, and interfaces: an interpretation of microstructure. Trans AIME 175(5):15–51. doi:10.1007/s11661-010-0215-5

    Google Scholar 

  • Sobolev SV, Zeyen H, Stoll G et al (1996) Upper mantle temperatures from teleseismic tomography of French Massif Central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt. Earth Planet Sci Lett 139:147–163. doi:10.1016/0012-821X(95)00238-8

    Article  Google Scholar 

  • Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Clarendon Press, Wotton-under-Edge

    Google Scholar 

  • Suzuki K (1987) Grain-boundary enrichment of incompatible elements in some mantle peridotites. Chem Geol 63:319–334. doi:10.1016/0009-2541(87)90169-0

    Article  Google Scholar 

  • Takei Y (1998) Constitutive mechanical relations of solid-liquid composites in terms of grain boundary contiguity. J Geophys Res 103:18183–18203

    Article  Google Scholar 

  • Takei Y, Holtzman BK (2009) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model. J Geophys Res Solid Earth 114:1–19. doi:10.1029/2008JB005850

    Google Scholar 

  • Tommasi A, Vauchez A, Ionov DA (2008) Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth Planet Sci Lett 272:65–77. doi:10.1016/j.epsl.2008.04.020

    Article  Google Scholar 

  • Tommasi A, Knoll M, Vauchez A et al (2009) Structural reactivation in plate tectonics controlled by olivine crystal anisotropy. Nat Geosci 2:423–427. doi:10.1038/ngeo528

    Article  Google Scholar 

  • Toomey DR, Wilcock WSD, Conder JA et al (2002) Asymmetric mantle dynamics in the MELT region of the East Pacific Rise. Earth Planet Sci Lett 200:287–295. doi:10.1016/S0012-821X(02)00655-6

    Article  Google Scholar 

  • Tröger WE (1967) Optische Bestimmung der gesteinsbildenden Minerale, Stuttgart

  • Vauchez A, Tommasi A, Mainprice D (2012) Faults (shear zones) in the earth’s mantle. Tectonophysics 558–559:1–27. doi:10.1016/j.tecto.2012.06.006

    Article  Google Scholar 

  • Villagomez DR, Toomey DR, Geist DJ et al (2014) Mantle flow and multistage melting beneath the Galapagos hotspot revealed by seismic imaging. Nat Geosci 7:151–156

    Article  Google Scholar 

  • Von Bargen N, Waff HS (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J Geophys Res Solid Earth 91:9261–9276. doi:10.1029/JB091iB09p09261

    Article  Google Scholar 

  • Vonlanthen P, Grobety B (2008) CSL grain boundary distribution in alumina and zirconia ceramics. Ceram Int 34:1459–1472

    Article  Google Scholar 

  • Walte NP, Bons PD, Koehn D (2003) Disequilibrium melt distribution during static recrystallization. Tectonophysics 31:1009–1012

    Google Scholar 

  • Walte NP, Bons PD, Passchier CW (2005) Deformation of melt-bearing systems—insight from in situ grain-scale analogue experiments. J Struct Geol 27:1666–1679. doi:10.1016/j.jsg.2005.05.006

    Article  Google Scholar 

  • Wark DA, Watson EB (1998) Grain-scale permeabilities of texturally equilibrated, monomineralic rocks. Earth Planet Sci Lett 164:591–605

    Article  Google Scholar 

  • Wark DA, Williams CA, Watosn BE, Price JD (2003) Reassessment of pore shapes in microstructurally equilibrated rocks, with implications for permeability of the upper mantle. J Geophys Res 108:2050. doi:10.1029/2001JB001575

    Article  Google Scholar 

  • Watanabe T (2011) Grain boundary engineering: historical perspective and future prospects. J Mater Sci 46:4095–4115. doi:10.1007/s10853-011-5393-z

    Article  Google Scholar 

  • Watson GW, Oliver PM, Parker SC (1997) Computer simulation of the structure and stability of forsterite surfaces. Phys Chem Miner 25:70–78. doi:10.1007/s002690050088

    Article  Google Scholar 

  • Weins M, Chalmers B, Gleiter H, Ashby M (1969) Structure of high angle grain boundaries. Scr Metall 3:601–603

    Article  Google Scholar 

  • Wenk H-R, Bennett K, Canova GR, Molinari A (1991) Modelling plastic deformation of peridotite with the self-consistent theory. J Geophys Res 96:8337. doi:10.1029/91JB00117

    Article  Google Scholar 

  • Wheeler J, Prior DJ, Jiang Z et al (2001) The petrological significance of misorientations between grains. Contrib Mineral Petrol 141:109–124. doi:10.1007/s004100000225

    Article  Google Scholar 

  • Wirth R (1996) Thin amorphous films (1–2 nm) at olivine grain boundaries in mantle xenoliths from San Carlos, Arizona. Contrib Mineral Petrol 124:44–54

    Article  Google Scholar 

  • Wirth R (2004) Focused Ion Beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876. doi:10.1127/0935-1221/2004/0016-0863

    Article  Google Scholar 

  • Wooster WA (1982) Atomic arrangements on the twin boundaries of crystals of calcite and aragonite. Mineral Mag 46:265–268

    Article  Google Scholar 

  • Worden RH, Walker FDL, Parsons I, Brown WL (1990) Development of microporosity, diffusion channels and deuteric coarsening in perthitic alkali feldspar. Contrib Mineral Petrol 104:507–515

    Article  Google Scholar 

  • Yund RA (1997) Rates of grain boundary diffusion through enstatite and forsterite reaction rims. Contrib Mineral Petrol V126:224–236

    Article  Google Scholar 

Download references

Acknowledgments

We thank the comments of Uli Faul and one anonymous reviewer that led to largely extended methods description and helped to eliminate formulations leading to misunderstanding. KM thanks Patrick Cordier for his encouragement to proceed with this project, Robert Farla and Caroline Bollinger for their open minded discussion and critical comments. KM acknowledges support by the German Science Foundation through Grants MA 6287/2-1 to KM and, HE 2015/11-1 to Wilhelm Heinrich KM further acknowledges funding by the Helmholtz Postdoc Programme, Project PD-043. HM acknowledges support by the German Science Foundation through Grant MA 4534/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Marquardt.

Additional information

Communicated by Timothy L. Grove.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marquardt, K., Rohrer, G.S., Morales, L. et al. The most frequent interfaces in olivine aggregates: the GBCD and its importance for grain boundary related processes. Contrib Mineral Petrol 170, 40 (2015). https://doi.org/10.1007/s00410-015-1193-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1193-9

Keywords

Navigation