The most frequent interfaces in olivine aggregates: the GBCD and its importance for grain boundary related processes

  • Katharina Marquardt
  • Gregory S. Rohrer
  • Luiz Morales
  • Erik Rybacki
  • Hauke Marquardt
  • Brian Lin
Original Paper

Abstract

Rocks consist of crystal grains separated by grain boundaries that impact the bulk rock properties. Recent studies on metals and ceramics showed that the grain boundary plane orientation is more significant for grain boundary properties than other characteristics such as the sigma value or disorientation (in the Earth’s science community more frequently termed misorientation). We determined the grain boundary character distribution (GBCD) of synthetic and natural polycrystalline olivine, the most abundant mineral of Earth’s upper mantle. We show that grain boundaries of olivine preferentially contain low index planes, in agreement with recent findings on other oxides (e.g. MgO, TiO2, Al2O3 etc.). Furthermore, we find evidence for a preferred orientation relationship of 90° disorientations about the [001] direction forming tilt and twist grain boundaries, as well as a preference for the 60° disorientation about the [100] axis. Our data indicate that the GBCD, which is an intrinsic property of any mineral aggregate, is fundamental for understanding and predicting grain boundary related processes.

Keywords

Olivine Grain boundaries Grain boundary plane GBCD GBPD TEM EBSD Grain Boundary processes Grain boundary energy Interfacial energy 

Notes

Acknowledgments

We thank the comments of Uli Faul and one anonymous reviewer that led to largely extended methods description and helped to eliminate formulations leading to misunderstanding. KM thanks Patrick Cordier for his encouragement to proceed with this project, Robert Farla and Caroline Bollinger for their open minded discussion and critical comments. KM acknowledges support by the German Science Foundation through Grants MA 6287/2-1 to KM and, HE 2015/11-1 to Wilhelm Heinrich KM further acknowledges funding by the Helmholtz Postdoc Programme, Project PD-043. HM acknowledges support by the German Science Foundation through Grant MA 4534/3-1.

References

  1. Adjaoud O, Marquardt K, Jahn S (2012) Atomic structures and energies of grain boundaries in Mg2SiO4 forsterite from atomistic modeling. Phys Chem Miner 39:749–760. doi: 10.1007/s00269-012-0529-5 CrossRefGoogle Scholar
  2. Atkinson A, Taylor RI (1979) The diffusion of Ni in the bulk and along dislocations in NiO single crystals. Philos Mag A 39:581–595. doi: 10.1080/01418617908239293 CrossRefGoogle Scholar
  3. Bagdassarov N, Laporte D, Thompson AB (2000) Physics and chemistry of partially molten rocks. Kluwer Academic Publishers, BerlinCrossRefGoogle Scholar
  4. Becker JK, Bons PD, Jessell MW (2008) A new front-tracking method to model anisotropic grain and phase boundary motion in rocks. Comput Geosci 34:201–212. doi: 10.1016/j.cageo.2007.03.013 CrossRefGoogle Scholar
  5. Bollmann W (1962) On the analysis of dislocation networks. Philos Mag 7:1513–1533. doi: 10.1080/14786436208213290 CrossRefGoogle Scholar
  6. Bollmann W (1970) Crystal defects and crystalline interfaces. Springer, New YorkCrossRefGoogle Scholar
  7. Brandon DG (1966) The structure of high-angle grain boundaries. Acta Metall 14:1479–1484CrossRefGoogle Scholar
  8. Brandon D (2010) 25 Year perspective defining grain boundaries: an historical perspective The development and limitations of coincident site lattice models. Mater Sci Technol 26:762–773. doi: 10.1179/026708310X12635619987989 CrossRefGoogle Scholar
  9. Campbell GH, Plitzko JM, King WE et al (2004) Copper Segregation to the Σ 5 (310)/[001] symmetric tilt grain boundary in aluminum. Interface Sci 12:165–174CrossRefGoogle Scholar
  10. Chadwick GA, Smith DA (eds) (1976) Grain boundary structure and properties. Academic Press, London, pp 388. ISBN: 0121662500, 9780121662509Google Scholar
  11. Cmíral M, Fitz Gerald JD, Faul UH, Green DH (1998) A close look at dihedral angles and melt geometry in olivine-basalt aggregates: a TEM study. Contrib Mineral Petrol 130:336–345CrossRefGoogle Scholar
  12. Conrad B (1935) Notiz über Zwillinge und Drillinge gesteinsbildender Olivine. Schweizerische Mineral und Petrogr Mitteilungen 15:160–167Google Scholar
  13. Cordier P, Demouchy S, Beausir B et al (2014) Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature. doi: 10.1038/nature13043 Google Scholar
  14. Dai L, Li H, Hu H, Shan S (2008) Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions. J Geophys Res 113:B12211. doi: 10.1029/2008JB005820 CrossRefGoogle Scholar
  15. Dai L, Li H, Hu H et al (2013) Electrical conductivity of Alm82Py15Grs3 almandine-rich garnet determined by impedance spectroscopy at high temperatures and high pressures. Tectonophysics 608:1086–1093. doi: 10.1016/j.tecto.2013.07.004 CrossRefGoogle Scholar
  16. De Leeuw NH, Parker SC, Catlow CRA, Price GD (2000) Modelling the effect of water on the surface structure and stability of forsterite. Phys Chem Miner 27:332–341. doi: 10.1007/s002690050262 CrossRefGoogle Scholar
  17. Deer WA, Howie RA, Zussman J (1992) An introduction to the rock forming minerals, 2nd edn. Prentice Hall, Englewood CliffsGoogle Scholar
  18. Dillon SJ, Rohrer GS (2009) Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth. Acta Mater 57:1–7. doi: 10.1016/j.actamat.2008.08.062 CrossRefGoogle Scholar
  19. Farla RJM, Gerald JDF, Kokkonen H et al (2011) Slip-system and EBSD analysis on compressively deformed fine-grained polycrystalline olivine. Geol Soc Lond Spec Publ 360:225–235. doi: 10.1144/SP360.13 CrossRefGoogle Scholar
  20. Farver J, Yund R (2000) Silicon diffusion in forsterite aggregates: implications for diffusion accommodated creep. Geophys Res Lett 27:2337–2340CrossRefGoogle Scholar
  21. Farver JR, Yund A, Rubie C (1994) Magnesium grain boundary diffusion in forsterite aggregates at 1000°–1300°C and 0.1 MPa to 10 GPa. J Geophys Res 99(94):19809–19819CrossRefGoogle Scholar
  22. Faul UH (2001) Melt retention and segregation beneath mid-ocean ridges. Nature 410:920–923. doi: 10.1038/35073556 CrossRefGoogle Scholar
  23. Faul UH, Fitz Gerald JD (1999) Grain misorientations in partially molten olivine aggregates: an electron backscatter diffraction study. Phys Chem Miner 26:187–197. doi: 10.1007/s002690050176 CrossRefGoogle Scholar
  24. Faul UH, Fitz Gerald JD, Jackson I (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications. J Geophys Res 109:202. doi: 10.1029/2003JB002407 Google Scholar
  25. Fitz Gerald JD, Parsons I, Cayzer N (2006) Nanotunnels and pull-aparts: defects of exsolution lamellae in alkali feldspars. Am Mineral 91:772–783. doi: 10.2138/am.2006.2029 CrossRefGoogle Scholar
  26. Fliervoet TF, Drury MR, Chopra PN (1999) Crystallographic preferred orientations and misorientations in some olivine rocks deformed by diffusion or dislocation creep. Tectonophysics 303:1–27. doi: 10.1016/S0040-1951(98)00250-9 CrossRefGoogle Scholar
  27. Frank F (1951) The resultant content of dislocations in an arbitrary intercrystalline boundary. Rep. a Symp. Plast. Deform. Cryst. solids. Carnegie Inst. TechnolGoogle Scholar
  28. Friedel J (1964) Deslocations in crystals. Addison-Wesley Publishing Company, Pergamon Press, ReadingGoogle Scholar
  29. Garapic G, Faul UH, Brisson E (2013) High-resolution imaging of the melt distribution in partially molten upper mantle rocks: evidence for wetted two-grain boundaries. Geochem Geophys Geosyst 14:1–11. doi: 10.1029/2012GC004547 CrossRefGoogle Scholar
  30. Gardés E, Wunder B, Marquardt K, Heinrich W (2012) The effect of water on intergranular mass transport: new insights from diffusion-controlled reaction rims in the MgO–SiO2 system. Contrib Mineral Petrol 164:1–16. doi: 10.1007/s00410-012-0721-0 CrossRefGoogle Scholar
  31. Ghanbarzadeh S, Prodanović M, Hesse MA (2014) Percolation and grain boundary wetting in anisotropic texturally equilibrated pore networks. Phys Rev Lett 113:048001. doi: 10.1103/PhysRevLett.113.048001 CrossRefGoogle Scholar
  32. Ghosh DB, Karki BB (2014) First principles simulations of the stability and structure of grain boundaries in Mg2SiO4 forsterite. Phys Chem Miner 41:163–171. doi: 10.1007/s00269-013-0633-1 CrossRefGoogle Scholar
  33. Gleiter H, Chalmers B (1972) High-angle grain boundaries. Pergamon Press, OxfordGoogle Scholar
  34. Grimmer H (1989) Coincidence orientations of grains in rhombohedral materials. Acta Crystallogr Sect A Found Crystallogr 45:505–523. doi: 10.1107/S0108767389002291 CrossRefGoogle Scholar
  35. Gurmani SF, Jahn S, Brasse H, Schilling FR (2011) Atomic scale view on partially molten rocks: molecular dynamics simulations of melt-wetted olivine grain boundaries. J Geophys Res 116:B12209. doi: 10.1029/2011JB008519 CrossRefGoogle Scholar
  36. Hammond WC, Humphreys ED (2000) Upper mantle seismic wave attenuation: effects of realistic partial melt distribution. J Geophys Res 105:10987. doi: 10.1029/2000JB900042 CrossRefGoogle Scholar
  37. Hartmann K, Wirth R, Markl G (2008) P-T-X-controlled element transport through granulite-facies ternary feldspar from Lofoten, Norway. Contrib Mineral Petrol 156:359–375CrossRefGoogle Scholar
  38. Hartmann K, Wirth R, Heinrich W (2010) Synthetic near Σ5 (210)/[100] grain boundary in YAG fabricated by direct bonding: structure and stability. Phys Chem Miner 37:291–300. doi: 10.1007/s00269-009-0333-z CrossRefGoogle Scholar
  39. Hayden LA, Watson EB (2008) Grain boundary mobility of carbon in earth’s mantle: a possible carbon flux from the core. Proc Natl Acad Sci USA 105:8537–8541. doi: 10.1073/pnas.0710806105 CrossRefGoogle Scholar
  40. Heilbronner R, Tullis J (2006) Evolution of c axis pole figures and grain size during dynamic recrystallization: results from experimentally sheared quartzite. J Geophys Res Solid Earth 111:1–19. doi: 10.1029/2005JB004194 Google Scholar
  41. Heinemann S, Wirth R, Gottschalk M, Dresen G (2005) Synthetic [100] tilt grain boundaries in forsterite: 9.9 to 21.5°. Phys Chem Miner 32:229–240. doi: 10.1007/s00269-005-0448-9 CrossRefGoogle Scholar
  42. Hiraga T, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system I: analytical techniques, thermodynamics, and segregation characteristics. Geochim Cosmochim Acta 71:1266–1280. doi: 10.1016/j.gca.2006.11.019 CrossRefGoogle Scholar
  43. Hiraga T, Anderson IM, Kohlstedt DL et al (2003) Chemistry of grain boundaries in mantle rocks. Am Miner 88:1015–1019. doi: 10.1038/nature02259 CrossRefGoogle Scholar
  44. Hiraga T, Hirschmann MM, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system II: applications of interface enrichment to mantle geochemistry. Geochim Cosmochim Acta 71:1281–1289CrossRefGoogle Scholar
  45. Hirth G, Kohlstedt DL (1995) Experimental constraints on the dynamics of the partially molten upper mantle: deformation in the diffusion creep regime. J Geophys Res 100:1981–2001. doi: 10.1029/94JB02128 CrossRefGoogle Scholar
  46. Jackson I (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. Specimen fabrication and mechanical testing. J Geophys Res 109:B06201. doi: 10.1029/2003JB002406 Google Scholar
  47. Kaur I, Mishin Y, Gust W (1995) Fundamentals of grain and interphase boundary diffusion, 3rd edn. Wiley, ChichesterGoogle Scholar
  48. Keller LM, Götze LC, Rybacki E, Dresen G, Abart R (2010) Enhancement of solid-state reaction rates by non-hydrostratic stress effects on polycrystalline diffusion kinetics. Am Miner 95:1399–1407. doi: 10.2138/am.2010.3372 CrossRefGoogle Scholar
  49. Khorashadizadeh A, Raabe D, Zaefferer S et al (2011) Five-parameter grain boundary analysis by 3D EBSD of an ultra fine grained CuZr alloy processed by equal channel angular pressing. Adv Eng Mater 13:237–244. doi: 10.1002/adem.201000259 CrossRefGoogle Scholar
  50. Kim C-S, Rohrer GS (2004) Geometric and crystallographic characterization of WC surfaces and grain boundaries in WC-Co composites. Interface Sci 12:19–27. doi: 10.1023/B:INTS.0000012291.81411.dc CrossRefGoogle Scholar
  51. Kim CS, Hu Y, Rohrer GS, Randle V (2005) Five-parameter grain boundary distribution in grain boundary engineered brass. Scr Mater 52:633–637. doi: 10.1016/j.scriptamat.2004.11.025 CrossRefGoogle Scholar
  52. King AH, Singh A (1994) The coincidence site lattice model to non-cubic materials. J Phys Chem Solids 55:1023–1033CrossRefGoogle Scholar
  53. Kruhl JH, Wirth R, Morales LFG (2013) Quartz grain boundaries as fluid pathways in metamorphic rocks. J Geophys Res Solid Earth 118:1957–1967. doi: 10.1002/jgrb.50099 CrossRefGoogle Scholar
  54. Larsen ES, Hurlbut CS, Buie BF, Burgess CH (1941) Igneous rocks of the Highwood Mountains, Montana. Bull Geol Soc Am 52:1841–1856CrossRefGoogle Scholar
  55. Le Claire AD (1963) The analysis of grain boundary diffusion measurements. Br J Appl Phys 14:351–356CrossRefGoogle Scholar
  56. Li J, Dillon SJ, Rohrer GS (2009) Relative grain boundary area and energy distributions in nickel. Acta Mater 57:4304–4311CrossRefGoogle Scholar
  57. Lloyd GE, Farmer AB, Mainprice D (1997) Misorientation analysis and the formation and orientation of subgrain and grain boundaries. Tectonophysics 279:55–78. doi: 10.1016/S0040-1951(97)00115-7 CrossRefGoogle Scholar
  58. Marquardt K (2011) Bicrystals to study grain boundary diffusion: special versus random grain boundaries. In: Geophysical research abstracts, vol 13, abstr 6790Google Scholar
  59. Marquardt K, Petrishcheva E, Gardés E et al (2011) Grain boundary and volume diffusion experiments in yttrium aluminium garnet bicrystals at 1723K: a miniaturized study. Contrib Mineral Petrol 162:739–749. doi: 10.1007/s00410-011-0622-7 CrossRefGoogle Scholar
  60. Massaro FR, Bruno M, Rubbo M (2014) Surface structure, morphology and (110) twin of aragonite. CrystEngComm 16:627. doi: 10.1039/c3ce41654b CrossRefGoogle Scholar
  61. McLean D (1957) Grain boundaries in metals. Oxford Clarendon Press, OxfordGoogle Scholar
  62. McTigue JW, McTigue J, Wenk H-R (1985) Microstructures and orientation relationships in the dry-state aragonit-calcite and calcit-lime phase transformations. Am Mineral 70:1253–1261Google Scholar
  63. Milke R, Wiedenbeck M, Heinrich W (2001) Grain boundary diffusion of Si, Mg, and O in enstatite reaction rims; a SIMS study using isotopically doped reactants. Contrib Mineral Petrol 142:15–26CrossRefGoogle Scholar
  64. Morawiec A (1998) Proceedings of the third international conference on grain growth. In: Weiland H, Adams BL, Rollet AD (eds) Proceedings of the third international conference on grain growth, TMS, Warrendale, p 509Google Scholar
  65. Morawiec A (2010) Orientations and rotations computations in crystallographic textures. Springer, BerlinGoogle Scholar
  66. Nicolas A, Boudier F, Boullier AM (1973) Mechanisms of flow in naturally and experimentally deformed peridotites. Am J Sci 273:853–876. doi: 10.2475/ajs.273.10.853 CrossRefGoogle Scholar
  67. Pang Y, Wynblatt P (2006) Effects of Nb doping and segregation on the grain boundary plane distribution in TiO2. J Am Ceram Soc 89:666–671. doi: 10.1111/j.1551-2916.2005.00759.x CrossRefGoogle Scholar
  68. Papillon F, Rohrer GS, Wynblatt P (2009) Effect of Segregating impurities on the grain-boundary character distribution of magnesium oxide. J Am Ceram Soc 92:3044–3051. doi: 10.1111/j.1551-2916.2009.03327.x CrossRefGoogle Scholar
  69. Pennock G, Coleman M, Drury M, Randle V (2009) Grain boundary plane populations in minerals: the example of wet NaCl after low strain deformation. Contrib Mineral Petrol 158:53–67. doi: 10.1007/s00410-008-0370-5 CrossRefGoogle Scholar
  70. Peters MI, Reimanis IE (2003) Grain boundary grooving studies of yttrium aluminum garnet (YAG) bicrystals. J Am Ceram Soc 72:2002–2004Google Scholar
  71. Poirier JP (1975) On the slip systems of olivine. J Geophys Res 80:4059–4061CrossRefGoogle Scholar
  72. Pond RC, Bollmann W (1979) The symmetry and interfacial structure of bicrystals. Philos Trans R Soc Lond Ser A Math Phys Sci 292:449–472CrossRefGoogle Scholar
  73. Pond RC, Vlachavas DS (1983) Bicrystallography. Proc R Soc Lond A Math Phys Sci 386:95–143CrossRefGoogle Scholar
  74. Randle V (2002) The coincidence site lattice and the “sigma enigma”. Mater Charact 47:411–416CrossRefGoogle Scholar
  75. Randle V, Davies H (2001) A comparison between three-dimensional and two-dimensional grain boundary plane analysis. Ultramicroscopy 90:153–162CrossRefGoogle Scholar
  76. Randle V, Rohrer GSS, Hu Y (2008) Five-parameter grain boundary analysis of a titanium alloy before and after low-temperature annealing. Scr Mater 58:183–186. doi: 10.1016/j.scriptamat.2007.09.044 CrossRefGoogle Scholar
  77. Rohrer GS (2007) The distribution of grain boundary planes in polycrystals. JOM J Miner Met Mater Soc 59:38–42CrossRefGoogle Scholar
  78. Rohrer GS (2011a) Grain boundary energy anisotropy: a review. J Mater Sci 46:5881–5895. doi: 10.1007/s10853-011-5677-3 CrossRefGoogle Scholar
  79. Rohrer GS (2011b) Measuring and interpreting the structure of grain-boundary networks. J Am Ceram Soc 94:633–646. doi: 10.1111/j.1551-2916.2011.04384.x CrossRefGoogle Scholar
  80. Rohrer GS, El-Dasher BS, Miller HM et al (2004a) Distribution of grain boundary planes at coincident site lattice misorientations. Mat Res Soc Symp Proc. doi: 10.1557/PROC-819-N7.2 Google Scholar
  81. Rohrer GS, Saylor DM, El Dasher B, Adams BL, Rollett AD, Wynblatt P (2004b) The distribution of internal interfaces in polycrystals. Zeitschrift Für Metallkunde 95(4):197–214. doi: 10.3139/146.017934 CrossRefGoogle Scholar
  82. Saylor DM, Rohrer GS (2002) Determining crystal habits from observations of planar sections. J Am Ceram Soc 804:2799–2804Google Scholar
  83. Saylor DM, Morawiec A, Rohrer GS (2002) Distribution and energies of grain boundaries in magnesia as a function of five degrees of freedom. J Am Ceram Soc 85:3081–3083. doi: 10.1111/j.1151-2916.2002.tb00583.x CrossRefGoogle Scholar
  84. Saylor DM, Morawiec A, Rohrer GS (2003a) Distribution of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater 51:3675–3686. doi: 10.1016/s1359-6454(03)00181-2 CrossRefGoogle Scholar
  85. Saylor DM, Morawiec A, Rohrer GS (2003b) The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater 51:3675–3686. doi: 10.1016/S1359-6454(03)00182-4 CrossRefGoogle Scholar
  86. Saylor DM, Dasher B, Sano T, Rohrer GS (2004a) Distribution of grain boundaries in SrTiO3 as a function of five macroscopic parameters. J Am Ceram Soc 87:670–676CrossRefGoogle Scholar
  87. Saylor DM, El Dasher BS, Rollett AD, Rohrer GS (2004b) Distribution of grain boundaries in aluminum as a function of five macroscopic parameters. Acta Mater 52:3649–3655CrossRefGoogle Scholar
  88. Saylor DM, El-dasher BS, Adams BL, Rohrer GS (2004c) Measuring the five-parameter grain-boundary distribution from observations of planar sections. Metall Mater Trans A 35:1981–1989CrossRefGoogle Scholar
  89. Schmeling H, Kruse JP, Richard G (2012) Effective shear and bulk viscosity of partially molten rock based on elastic moduli theory of a fluid filled poroelastic medium. Geophys J Int 190:1571–1578. doi: 10.1111/j.1365-246X.2012.05596.x CrossRefGoogle Scholar
  90. Schwarz SM, Kempshall BW, Giannuzzi LA, Stevie FA (2002) Utilizing the SIMS technique in the study of grain boundary diffusion along twist grain boundaries in the Cu(Ni) system. Acta Mater 50:5079–5084CrossRefGoogle Scholar
  91. Scott JM, Waight TE, van der Meer PHA et al (2014) Metasomatized ancient lithospheric mantle beneath the young Zealandia microcontinent and its role in HIMU-like intraplate magmatism. Geochem Geophys Geosyst. doi: 10.1002/2014GC005300 Google Scholar
  92. Smith CS (1948) Grains, phases, and interfaces: an interpretation of microstructure. Trans AIME 175(5):15–51. doi: 10.1007/s11661-010-0215-5 Google Scholar
  93. Sobolev SV, Zeyen H, Stoll G et al (1996) Upper mantle temperatures from teleseismic tomography of French Massif Central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt. Earth Planet Sci Lett 139:147–163. doi: 10.1016/0012-821X(95)00238-8 CrossRefGoogle Scholar
  94. Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Clarendon Press, Wotton-under-EdgeGoogle Scholar
  95. Suzuki K (1987) Grain-boundary enrichment of incompatible elements in some mantle peridotites. Chem Geol 63:319–334. doi: 10.1016/0009-2541(87)90169-0 CrossRefGoogle Scholar
  96. Takei Y (1998) Constitutive mechanical relations of solid-liquid composites in terms of grain boundary contiguity. J Geophys Res 103:18183–18203CrossRefGoogle Scholar
  97. Takei Y, Holtzman BK (2009) Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model. J Geophys Res Solid Earth 114:1–19. doi: 10.1029/2008JB005850 Google Scholar
  98. Tommasi A, Vauchez A, Ionov DA (2008) Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth Planet Sci Lett 272:65–77. doi: 10.1016/j.epsl.2008.04.020 CrossRefGoogle Scholar
  99. Tommasi A, Knoll M, Vauchez A et al (2009) Structural reactivation in plate tectonics controlled by olivine crystal anisotropy. Nat Geosci 2:423–427. doi: 10.1038/ngeo528 CrossRefGoogle Scholar
  100. Toomey DR, Wilcock WSD, Conder JA et al (2002) Asymmetric mantle dynamics in the MELT region of the East Pacific Rise. Earth Planet Sci Lett 200:287–295. doi: 10.1016/S0012-821X(02)00655-6 CrossRefGoogle Scholar
  101. Tröger WE (1967) Optische Bestimmung der gesteinsbildenden Minerale, StuttgartGoogle Scholar
  102. Vauchez A, Tommasi A, Mainprice D (2012) Faults (shear zones) in the earth’s mantle. Tectonophysics 558–559:1–27. doi: 10.1016/j.tecto.2012.06.006 CrossRefGoogle Scholar
  103. Villagomez DR, Toomey DR, Geist DJ et al (2014) Mantle flow and multistage melting beneath the Galapagos hotspot revealed by seismic imaging. Nat Geosci 7:151–156CrossRefGoogle Scholar
  104. Von Bargen N, Waff HS (1986) Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J Geophys Res Solid Earth 91:9261–9276. doi: 10.1029/JB091iB09p09261 CrossRefGoogle Scholar
  105. Vonlanthen P, Grobety B (2008) CSL grain boundary distribution in alumina and zirconia ceramics. Ceram Int 34:1459–1472CrossRefGoogle Scholar
  106. Walte NP, Bons PD, Koehn D (2003) Disequilibrium melt distribution during static recrystallization. Tectonophysics 31:1009–1012Google Scholar
  107. Walte NP, Bons PD, Passchier CW (2005) Deformation of melt-bearing systems—insight from in situ grain-scale analogue experiments. J Struct Geol 27:1666–1679. doi: 10.1016/j.jsg.2005.05.006 CrossRefGoogle Scholar
  108. Wark DA, Watson EB (1998) Grain-scale permeabilities of texturally equilibrated, monomineralic rocks. Earth Planet Sci Lett 164:591–605CrossRefGoogle Scholar
  109. Wark DA, Williams CA, Watosn BE, Price JD (2003) Reassessment of pore shapes in microstructurally equilibrated rocks, with implications for permeability of the upper mantle. J Geophys Res 108:2050. doi: 10.1029/2001JB001575 CrossRefGoogle Scholar
  110. Watanabe T (2011) Grain boundary engineering: historical perspective and future prospects. J Mater Sci 46:4095–4115. doi: 10.1007/s10853-011-5393-z CrossRefGoogle Scholar
  111. Watson GW, Oliver PM, Parker SC (1997) Computer simulation of the structure and stability of forsterite surfaces. Phys Chem Miner 25:70–78. doi: 10.1007/s002690050088 CrossRefGoogle Scholar
  112. Weins M, Chalmers B, Gleiter H, Ashby M (1969) Structure of high angle grain boundaries. Scr Metall 3:601–603CrossRefGoogle Scholar
  113. Wenk H-R, Bennett K, Canova GR, Molinari A (1991) Modelling plastic deformation of peridotite with the self-consistent theory. J Geophys Res 96:8337. doi: 10.1029/91JB00117 CrossRefGoogle Scholar
  114. Wheeler J, Prior DJ, Jiang Z et al (2001) The petrological significance of misorientations between grains. Contrib Mineral Petrol 141:109–124. doi: 10.1007/s004100000225 CrossRefGoogle Scholar
  115. Wirth R (1996) Thin amorphous films (1–2 nm) at olivine grain boundaries in mantle xenoliths from San Carlos, Arizona. Contrib Mineral Petrol 124:44–54CrossRefGoogle Scholar
  116. Wirth R (2004) Focused Ion Beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876. doi: 10.1127/0935-1221/2004/0016-0863 CrossRefGoogle Scholar
  117. Wooster WA (1982) Atomic arrangements on the twin boundaries of crystals of calcite and aragonite. Mineral Mag 46:265–268CrossRefGoogle Scholar
  118. Worden RH, Walker FDL, Parsons I, Brown WL (1990) Development of microporosity, diffusion channels and deuteric coarsening in perthitic alkali feldspar. Contrib Mineral Petrol 104:507–515CrossRefGoogle Scholar
  119. Yund RA (1997) Rates of grain boundary diffusion through enstatite and forsterite reaction rims. Contrib Mineral Petrol V126:224–236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Katharina Marquardt
    • 1
  • Gregory S. Rohrer
    • 2
  • Luiz Morales
    • 3
  • Erik Rybacki
    • 3
  • Hauke Marquardt
    • 1
  • Brian Lin
    • 2
  1. 1.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  2. 2.Carnegie Mellon UniversityPittsburghUSA
  3. 3.Deutsches GeoForschungsZentrum PotsdamPotsdamGermany

Personalised recommendations