Advertisement

Pressure and temperature dependence of CO2 solubility in hydrous rhyolitic melt: implications for carbon transfer to mantle source of volcanic arcs via partial melt of subducting crustal lithologies

  • Megan S. Duncan
  • Rajdeep Dasgupta
Original Paper

Abstract

We conducted high pressure and temperature experiments to determine pressure and temperature dependence of CO2 solubility in natural hydrous rhyolitic melts. The goal was to constrain the limit of CO2 transfer via hydrous silicic melt derived from subducting crust at sub-arc depths. We performed two sets of experiments: (1) to determine the FTIR absorption coefficients CO2 species (CO 2 mol. and CO3 2−) for natural rhyolitic glass and (2) to constrain the effect of temperature on CO2 solubility in rhyolitic melts. The values of ε and ε*, linear and integrated absorption coefficients, for CO 2 mol. matched previous studies, and values for CO3 2− had not been previously calculated for rhyolitic compositions. The use of the new ε values leads to lower total CO2 solubility for rhyolitic glasses compared to those obtained using ε values determined from albitic compositions. Further, we assessed the uncertainty of our fluid compositions and the quench effects on carbon speciation in glasses and constrained the pressure [ΔV and ln(K 0)] and temperature (ΔH) dependence of the CO2 dissolution reactions with the updated ε values. The calculated values of ΔV, ln(K 0) and ΔH were used to calculate total CO2 in rhyolitic melts as a function of pressure and temperature. Finally, our model was applied to calculate CO2 carrying capacity of rhyolitic slab melts for any given subduction zones.

Keywords

CO2 solubility CO2 speciation Rhyolite FTIR absorption coefficient Carbon cycle Subduction zones 

Notes

Acknowledgments

We gratefully acknowledge the thorough and critical reviews by Roman Botcharnikov and an anonymous reviewer as well as comments by the journal associate editor Mark Ghiorso. We also thank Mark Ghiorso for making the CO2–H2O solubility model of Ghiorso and Gualda (2015) available to us prior to formal publication. Cin-Ty Lee is thanked for giving us access to the FTIR laboratory. This work received funding from NSF Grant OCE-1338842 and Deep Carbon Observatory.

Supplementary material

410_2015_1144_MOESM1_ESM.pdf (4 mb)
Supplementary material 1 (PDF 4128 kb)

References

  1. Auzanneau E, Vielzeuf D, Schmidt MW (2006) Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol 152:125–148CrossRefGoogle Scholar
  2. Behn MD, Kelemen PB, Hirth G, Hacker BR, Massonne HJ (2011) Diapirs as the source of the sediment signature in arc lavas. Nat Geosci 4:641–646CrossRefGoogle Scholar
  3. Behrens H, Tamic N, Holtz F (2004a) Determination of the molar absorption coefficient for the infrared absorption band of CO2 in rhyolitic glasses. Am Mineral 89:301–306Google Scholar
  4. Behrens H, Ohlhorst S, Holtz F, Champenois M (2004b) CO2 solubility in dacitic melts equilibrated with H2O–CO2 fluids: implications for modeling the solubility of CO2 in silicic melts. Geochim Cosmochim Acta 68:4687–4703CrossRefGoogle Scholar
  5. Behrens H, Misiti V, Freda C, Vetere F, Botcharnikov RE, Scarlato P (2009) Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250°C and pressure from 50 to 500 MPa. Am Mineral 94:105–120CrossRefGoogle Scholar
  6. Blank JG, Stolper EM, Carroll MR (1993) Solubilities of carbon dioxide and water in rhyolitic melt at 850°C and 750 bars. Earth Planet Sci Lett 119:27–36CrossRefGoogle Scholar
  7. Blundy J, Cashman KV, Rust A, Witham F (2010) A case for CO2-rich arc magmas. Earth Planet Sci Lett 290:289–301CrossRefGoogle Scholar
  8. Brooker RA, Kohn SC, Holloway JR, McMillan PF, Carroll MR (1999) Solubility, speciation and dissolution mechanisms for CO2 in melts on the NaAlO2–SiO2 join. Geochim Cosmochim Acta 63:3549–3565CrossRefGoogle Scholar
  9. Brooker RA, Kohn SC, Holloway JR, McMillan PF (2001) Structural controls on the solubility of CO2 in silicate melts Part I: bulk solubility data. Chem Geol 174:225–239CrossRefGoogle Scholar
  10. Cartigny P, Pineau F, Aubaud C, Javoy M (2008) Towards a consistent mantle carbon flux estimate: insights from volatile systematics (H2O/Ce, dD, CO2/Nb) in the North Atlantic mantle (14°N and 34°N). Earth Planet Sci Lett 265:672–685CrossRefGoogle Scholar
  11. Class C, Miller DM, Goldstein SL, Langmuir CH (2000) Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochem Geophys Geosys 1:1004CrossRefGoogle Scholar
  12. Currie CA, Beaumont C, Huismans RS (2007) The fate of subducted sediments: a case for backarc intrusion and underplating. Geology 35:1111–1114CrossRefGoogle Scholar
  13. Dasgupta R (2013) Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem 75:183–229CrossRefGoogle Scholar
  14. Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13CrossRefGoogle Scholar
  15. Dixon JE, Pan V (1995) Determination of the molar absorptivity of dissolved carbonate in basanitic glass. Am Mineral 80:1339–1342Google Scholar
  16. Dolejš D, Manning CE (2010) Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems. Geofluids 10:20–40Google Scholar
  17. Duan XZ (2014) A general model for predicting the solubility behavior of H2O–CO2 fluids in silicate melts over a wide range of pressure, temperature and compositions. Geochim Cosmochim Acta 125:582–609CrossRefGoogle Scholar
  18. Duncan MS, Dasgupta R (2014) CO2 solubility and speciation in rhyolitic sediment partial melts at 1.5–3.0 GPa—implications for carbon flux in subduction zones. Geochim Cosmochim Acta 124:328–347CrossRefGoogle Scholar
  19. Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102:14991–15019CrossRefGoogle Scholar
  20. Fine G, Stolper E (1985) The speciation of carbon dioxide in sodium aluminosilicate glasses. Contrib Mineral Petrol 91:105–121CrossRefGoogle Scholar
  21. Fine G, Stolper E (1986) Dissolved carbon dioxide in basaltic glasses—concentrations and speciation. Earth Planet Sci Lett 76:263–278CrossRefGoogle Scholar
  22. Fogel RA, Rutherford MJ (1990) The solubility of carbon dioxide in rhyolitic melts—a quantitative FTIR study. Am Mineral 75:1311–1326Google Scholar
  23. Ghiorso MS, Gualda GAR (2015) An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib Mineral Petrol. doi: 10.1007/s00410-015-1141-8
  24. Gorman PJ, Kerrick DM, Connolly JAD (2006) Modeling open system metamorphic decarbonation of subducting slabs. Geochem Geophys Geosys 7:Q04007CrossRefGoogle Scholar
  25. Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142:375–396CrossRefGoogle Scholar
  26. Hermann J, Green DH (2001) Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett 188:149–168CrossRefGoogle Scholar
  27. Hermann J, Spandler CJ (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49:717–740CrossRefGoogle Scholar
  28. Hirschmann MM, Dasgupta R (2009) The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem Geol 262:4–16CrossRefGoogle Scholar
  29. Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosys 1:1999GC000014Google Scholar
  30. Konschak A, Keppler H (2014) The speciation of carbon dioxide in silicate melts. Contrib Mineral Petrol 167:998CrossRefGoogle Scholar
  31. Lange RA, Carmichael ISE (1987) Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2 liquids—new measurements and derived partial molar properties. Geochim Cosmochim Acta 51:2931–2946CrossRefGoogle Scholar
  32. Laurie A, Stevens G (2012) Water-present eclogite melting to produce Earth’s early felsic crust. Chem Geol 314:83–95CrossRefGoogle Scholar
  33. Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett 313:56–66CrossRefGoogle Scholar
  34. Morizet Y, Kohn SC, Brooker RA (2001) Annealing experiments on CO2-bearing jadeite glass: an insight into the true temperature dependence of CO2 speciation in silicate melts. Mineral Mag 65:701–707CrossRefGoogle Scholar
  35. Mysen BO, Virgo D (1980) The solubility behavior of CO2 in melts on the join NaAlSi3O8–CaAl2Si2O8–CO2 at high pressures and temperatures: a Raman spectroscopic study. Am Mineral 65:1166–1175Google Scholar
  36. Mysen BO, Eggler DH, Seitz MG, Holloway JR (1976) Carbon dioxide in silicate melts and crystals 1. Solubility measurements. Am J Sci 276:455–479CrossRefGoogle Scholar
  37. Newman S, Stolper EM, Epstein S (1986) Measurement of water in rhyolitic glasses: calibration of an infrared spectroscopic technique. Am Mineral 71:1527–1541Google Scholar
  38. Nowak M, Porbatzki D, Spickenbom K, Diedrich O (2003) Carbon dioxide speciation in silicate melts: a restart. Earth Planet Sci Lett 207:131–139CrossRefGoogle Scholar
  39. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300CrossRefGoogle Scholar
  40. Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944CrossRefGoogle Scholar
  41. Prouteau G, Scaillet B, Pichavant M, Maury R (2001) Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410:197–200CrossRefGoogle Scholar
  42. Qian Q, Hermann J (2013) Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation. Contrib Mineral Petrol 165:1195–1224CrossRefGoogle Scholar
  43. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar—implications for continental growth and crust-mantle recycling. J Petrol 36:891–931CrossRefGoogle Scholar
  44. Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455CrossRefGoogle Scholar
  45. Schmidt MW, Vielzeuf D, Auzanneau E (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett 228:65–84CrossRefGoogle Scholar
  46. Shimoda G, Tatsumi Y, Nohda S, Ishizaka K, Jahn BM (1998) Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducting sediments. Earth Planet Sci Lett 160:479–492CrossRefGoogle Scholar
  47. Silver LA (1988) Water in silicate glasses. Ph.D., California Institute of TechnologyGoogle Scholar
  48. Silver L, Stolper E (1989) Water in albitic glasses. J Petrol 30:667–709CrossRefGoogle Scholar
  49. Spandler C, Yaxley G, Green DH, Scott D (2010) Experimental phase and melting relations of metapelite in the upper mantle: implications for the petrogenesis of intraplate magmas. Contrib Mineral Petrol 160:569–589CrossRefGoogle Scholar
  50. Stolper E, Holloway JR (1988) Experimental determination of the solubility of carbon dioxide in molten basalt at low pressure. Earth Planet Sci Lett 87:397–408CrossRefGoogle Scholar
  51. Stolper E, Fine G, Johnson T, Newman S (1987) Solubility of carbon dioxide in albitic melt. Am Mineral 72:1071–1085Google Scholar
  52. Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosys 7:Q05017CrossRefGoogle Scholar
  53. Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183:73–90CrossRefGoogle Scholar
  54. Tamic N, Behrens H, Holtz F (2001) The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2–H2O fluid phase. Chem Geol 174:333–347CrossRefGoogle Scholar
  55. Thomsen TB, Schmidt MW (2008) Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett 267:17–31CrossRefGoogle Scholar
  56. Tsuno K, Dasgupta R (2011) Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon. Contrib Mineral Petrol 161:743–763CrossRefGoogle Scholar
  57. Tsuno K, Dasgupta R (2012) The effect of carbonates on near-solidus melting of pelite at 3 GPa: relative efficiency of H2O and CO2 subduction. Earth Planet Sci Lett 319:185–196CrossRefGoogle Scholar
  58. Tsuno K, Dasgupta R, Danielson L, Righter K (2012) Flux of carbonate melt from deeply subducted pelitic sediments: geophysical and geochemical implications for the source of Central American volcanic arc. Geophys Res Lett 39:L16307. doi: 10.1029/2012GL052606 CrossRefGoogle Scholar
  59. van Keken PE (2003) The structure and dynamics of the mantle wedge. Earth Planet Sci Lett 215:323–338CrossRefGoogle Scholar
  60. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240CrossRefGoogle Scholar
  61. Weaver BL, Tarney J (1984) Major and trace element composition of the continental lithosphere. Phys Chem Earth 15:39–68CrossRefGoogle Scholar
  62. Zhang C, Duan ZH (2009) A model for C–O–H fluid in the Earth’s mantle. Geochim Cosmochim Acta 73:2089–2102CrossRefGoogle Scholar
  63. Zhang C, Duan ZH (2010) GFluid: an Excel spreadsheet for investigating C–O–H fluid composition under high temperatures and pressures. Comp Geosci 36:569–572CrossRefGoogle Scholar
  64. Zhang YX, Stolper EM, Ihinger PD (1995) Kinetics of the reaction H2O + O = 2OH in rhyolitic and albitic glasses: preliminary results. Am Mineral 80:593–612Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Earth ScienceRice UniversityHoustonUSA

Personalised recommendations