Dynamics of mineral crystallization from precipitated slab-derived fluid phase: first in situ synchrotron X-ray measurements

  • Nadia MalaspinaEmail author
  • Matteo Alvaro
  • Marcello Campione
  • Heribert Wilhelm
  • Fabrizio Nestola
Original Paper


Remnants of the fluid phase at ultrahigh pressure (UHP) in subduction environments may be preserved as primary multiphase inclusions in UHP minerals. The mode of crystallization of daughter minerals during precipitation within the inclusion and/or the mechanism of interaction between the fluid at supercritical conditions and the host mineral are still poorly understood from a crystallographic point of view. A case study is represented by garnet–orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatized at ~4 GPa, 750 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary inclusions in garnet display a size within a few tens of micrometres and negative crystal shapes. Infilling minerals (spinel: 10–20 vol%; amphibole, chlorite, talc, mica: 80–90 vol%) occur with constant volume proportions and derive from trapped solute-rich aqueous fluids. To constrain the possible mode of precipitation of daughter minerals, we performed for the first time a single-crystal X-ray diffraction experiment by synchrotron radiation at Diamond Light Source. In combination with electron probe microanalyses, this measurement allowed the unique identification of each mineral phase and reciprocal orientations. We demonstrated the epitaxial relationship between spinel and garnet and between some hydrous minerals. Such information is discussed in relation to the physico-chemical aspects of nucleation and growth, shedding light on the mode of mineral crystallization from a fluid phase trapped at supercritical conditions.


Multiphase inclusion Garnet Synchrotron X-ray diffraction Epitaxy Ultrahigh pressure Subduction 



We acknowledge R.J Angel for providing OrientXPlot software and M. Bruno for constructive discussion. Comments by A. van den Kerkhof and an anonymous reviewer, and the editorial handling by J. Hoefs, helped to improve the manuscript. N. Malaspina thanks the financial support by the University of Milano Bicocca FAR12/13 (12-1-2009100-139). This work also benefited from the Italian Ministry of Education, University and Research (MIUR) [PRIN-2012R33ECR], and from the ERC Grant No. 307322 (to F. Nestola).


  1. Agilent (2012) CrysAlis PRO and CrysAlis RED. Agilent Technologies, Santa ClaraGoogle Scholar
  2. Angel RJ, Downs RT, Finger LW (2000) High-temperature–high-pressure diffractometry. High-temperature and high-pressure crystal chemistry. Rev Miner Geochem 41:559–596CrossRefGoogle Scholar
  3. Ayers JC, Dunkle S, Gao S, Miller CF (2002) Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U–Th–Pb dating of zircon and monazite. Chem Geol 186:315–331. doi: 10.1016/S0009-2541(02)00008-6 CrossRefGoogle Scholar
  4. Bakker RJ (2009) Reequilibration of fluid inclusions: bulk-diffusion. Lithos 112:277–288. doi: 10.1016/j.lithos.2009.03.006 CrossRefGoogle Scholar
  5. Bakker RJ, Jansen JBH (1991) Experimental post-entrapment water loss from synthetic CO2–H2O inclusions in natural quartz. Geochim Cosmochim Acta 55:2215–2230. doi: 10.1016/0016-7037(91)90098-P CrossRefGoogle Scholar
  6. Bakker RJ, Jansen JBH (1994) A mechanism for preferential H2O leakage from fluid inclusions in quartz, based on TEM observations. Contrib Mineral Petrol 116:7–20CrossRefGoogle Scholar
  7. Bruno M (2014) The energy and crystal morphology of diamond inclusions to explain their genesis. Rend Online Soc Geol It 31:285. doi: 10.3301/ROL.2014.140 Google Scholar
  8. Busing WR, Levy HA (1967) Angle calculations for 3- and 4-circle X-ray and neutron diffractometers. Acta Crystallogr 22(4):457–464. doi: 10.1107/S0365110X67000970 CrossRefGoogle Scholar
  9. Carswell DA, Van Roermund HML (2005) On multi-phase mineral inclusions associated with microdiamond formation in mantle-derived peridotite lens at Bardane on Fjortøft, west Norway. Eur J Mineral 17:31–42. doi: 10.1127/0935-1221/2005/0017-0031 CrossRefGoogle Scholar
  10. Dobrzhinetskaya LF, Wirth R (2010) Ultradeep mantle rocks and diamonds in the light of advanced scientific technologies. In: Cloetingh S, Negendank J (eds) New frontiers of integrated earth. Springer, Dordrecht, pp 373–395Google Scholar
  11. Dobrzhinetskaya LF, Green HW, Mitchell TE, Dickerson RM (2001) Metamorphic diamonds: mechanism of growth and oxides inclusions. Geology 29:253–266. doi: 10.1130/0091-7613(2001)029<0263:MDMOGA>2.0.CO;2 CrossRefGoogle Scholar
  12. Dobrzhinetskaya LF, Liu Z, Cartigny P, Zhang J, Tchkhetia NN, Green HW II, Hemley RJ (2006) Synchrotron infrared and Raman spectroscopy of microdiamonds from Erzgebirge, Germany. Earth Planet Sci Lett 248:340–349. doi: 10.1016/j.epsl.2006.05.037 CrossRefGoogle Scholar
  13. Dvir O, Pettke T, Fumagalli P, Kessel R (2011) Fluids in the peridotite–water system up to 6 GPa and 800°C: new experimental constrains on dehydration reactions. Contrib Mineral Petrol 161:829–844. doi: 10.1007/s00410-010-0567-2 CrossRefGoogle Scholar
  14. Ferrando S, Frezzotti ML, Dallai L, Compagnoni R (2005) Multiphase solid inclusions in UHP rocks (Su-Lu, China): remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chem Geol 223:68–81. doi: 10.1016/j.chemgeo.2005.01.029 CrossRefGoogle Scholar
  15. Frezzotti ML, Ferrando S (2015) The chemical behavior of fluids released during deep subduction based on fluid inclusions. Am Mineral 100:352–377. doi: 10.2138/am-2015-4933CCBYNC CrossRefGoogle Scholar
  16. Frezzotti ML, Selverstone J, Sharp ZD, Compagnoni R (2011) Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci 4:703–706. doi: 10.1038/NGEO1246 CrossRefGoogle Scholar
  17. Frezzotti ML, Ferrando S, Tecce F, Castelli D (2012) Water content and nature of solutes in shallow-mantle fluids from fluid inclusions. Earth Planet Sci Lett 351–352:70–83. doi: 10.1016/j.epsl.2012.07.023 CrossRefGoogle Scholar
  18. Fumagalli P, Zanchetta S, Poli S (2009) Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study. Contrib Mineral Petrol 158:723–737. doi: 10.1007/s00410-009-0407-4 CrossRefGoogle Scholar
  19. Hermann J (2002) Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol 143:219–235. doi: 10.1007/s00410-001-0336-3 CrossRefGoogle Scholar
  20. Hillier AC, Ward MD (1996) Epitaxial interactions between molecular overlayers and ordered substrates. Phys Rev B 54:14037–14051. doi: 10.1103/PhysRevB.54.14037 CrossRefGoogle Scholar
  21. Hollister LS (1990) Enrichment of CO2 in fluid inclusions in quartz by removal of H2O during crystal-plastic deformation. J Struct Geol 12:895–901. doi: 10.1016/0191-8141(90)90062-4 CrossRefGoogle Scholar
  22. Jahn BM, Fan Q, Yang JJ, Henin O (2003) Petrogenesis of the Maowu pyroxenite–eclogite from the UHP metamorphic terrane of Dabieshan: chemical and isotopic constraints. Lithos 70:243–267. doi: 10.1016/S0024-4937(03)00101-4 CrossRefGoogle Scholar
  23. Konzett J, Ulmer P (1999) The stability of hydrous potassic phases in lherzolitic mantle: an experimental study to 9.5 GPa in simplified and natural bulk compositions. J Petrol 40:629–652. doi: 10.1093/petrology/40.4.629 CrossRefGoogle Scholar
  24. Korsakov AK, Hermann J (2006) Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet Sci Lett 241:104–118. doi: 10.1016/j.epsl.2005.10.037 CrossRefGoogle Scholar
  25. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  26. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch W, Nickel EH, Rock NMS, Shumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the internationsl mineralogical association, commission on new minerals and mineral names. Can Mineral 35:219–246Google Scholar
  27. Liou JG, Zhang RY (1998) Petrogenesis of an ultrahigh-pressure garnet-bearing ultramafic body from Maowu, Dabie Mountains, east-central China. Isl Arc 7:115–134. doi: 10.1046/j.1440-1738.1998.00188.x CrossRefGoogle Scholar
  28. Liou JG, Zhang RY, Eide EA, Matuyama S, Wang X, Ernst WG (1996) Metamorphism and tectonics of high-P belts in Dabie–Sulu Regions, eastern China. In: Yin A, Harrison TM (eds) The tectonics evolution of Asia. Cambridge University Press, Cambridge, pp 300–343Google Scholar
  29. Malaspina N, Hermann J, Scambelluri M, Compagnoni R (2006) Polyphase inclusions in garnet–orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth Planet Sci Lett 249:173–187. doi: 10.1016/j.epsl.2006.07.017 CrossRefGoogle Scholar
  30. Malaspina N, Hermann J, Scambelluri M (2009) Fluid/mineral interaction in UHP garnet peridotite. Lithos 107:38–52. doi: 10.1016/j.lithos.2008.07.006 CrossRefGoogle Scholar
  31. Malaspina N, Scambelluri M, Poli S, Van Roermund HLM, Langenhorst F (2010) The oxidation state of mantle wedge majoritic garnet websterites metasomatised by C-bearing subduction fluids. Earth Planet Sci Lett 298:417–426. doi: 10.1016/j.epsl.2010.08.022 CrossRefGoogle Scholar
  32. Manning CE (2004) The chemistry of subduction-zone fluids. Earth Planet Sci lett 223:1–16. doi: 10.1016/j.epsl.2004.04.030 CrossRefGoogle Scholar
  33. Manning CE (2007) Solubility of corundum + kyanite in H2O at 700°C and 10 kbar: evidence for Al–Si complexing at high pressure and temperature. Geofluids 7:258–269. doi: 10.1111/j.1468-8123.2007.00179.x CrossRefGoogle Scholar
  34. Manning CE, Aranovich LY (2014) Brines at high pressure and temperature: thermodynamic, petrologic and geochemical effects. Precambrian Res 253:6–16. doi: 10.1016/j.precamres.2014.06.025 CrossRefGoogle Scholar
  35. Mitchell RS, Giardini AA (1953) Notes and news: oriented olivine inclusions in diamond. Am Mineral 38:136–138Google Scholar
  36. Nestola F, Nimis P, Milani S, Angel RJ, Bruno M, Harris JW (2013) Crystallographic relationships between diamond and its olivine inclusions. An update. Mineral Mag 77:1840. doi: 10.1180/minmag.2013.077.5.6 CrossRefGoogle Scholar
  37. Nestola F, Nimis P, Angel RJ, Milani S, Bruno M, Prencipe M, Harris JW (2014) Olivine with diamond-imposed morphology included in diamond. Syngenesis or protogenesis? Int Geol Rev 56:1658–1667. doi: 10.1080/00206814.2014.956153 CrossRefGoogle Scholar
  38. Newton RC, Manning CE (2002) Solubility of enstatite + forsterite in H2O at deep crust/upper mantle conditions: 4 to 15 kbar and 700 to 900°C. Geochim Cosmochim Acta 66:4165–4176. doi: 10.1016/S0016-7037(02)00998-5 CrossRefGoogle Scholar
  39. Pan D, Spanu L, Harrison B, Sverjensky DA, Galli G (2013) Dielectric properties of water under extreme conditions and transport of carbonates in the deep earth. Proc Natl Acad Sci USA 110:6646–6650. doi: 10.1073/pnas.1221581110 CrossRefGoogle Scholar
  40. Pawley A (2003) Chlorite stability in mantle peridotite: the reaction clinochlore + enstatite = forsterite + pyrope + H2O. Contrib Mineral Petrol 144:449–456. doi: 10.1007/s00410-002-0409-y CrossRefGoogle Scholar
  41. Poli S, Schmidt MW (2002) Petrology of subducted slabs. Annu Rev Earth Planet Sci 30:207–235. doi: 10.1146/ CrossRefGoogle Scholar
  42. Putnis A (2014) Why mineral interfaces matter. Science 343:1441–1442. doi: 10.1126/science.1250884 CrossRefGoogle Scholar
  43. Ruiz-Agudo E, Putnis CV, Putnis A (2014) Coupled dissolution and precipitation at mineral–fluid interfaces. Chem Geol 383:132–146. doi: 10.1016/j.chemgeo.2014.06.007 CrossRefGoogle Scholar
  44. Scambelluri M, Philippot P (2001) Deep fluids in subduction zones. Lithos 55:213–227. doi: 10.1016/S0024-4937(00)00046-3 CrossRefGoogle Scholar
  45. Scambelluri M, Van Roermund HML, Pettke T (2010) Mantle wedge peridotites: fossil reservoirs of deep subduction zone processes: inferences from high and ultrahigh-pressure rocks from Bardane (Western Norway) and Ulten (Italian Alps). Lithos 120:186–201. doi: 10.1016/j.lithos.2010.03.001 CrossRefGoogle Scholar
  46. Seward TM (1981) Metal complex formation in aqueous solutions at elevated temperatures and pressures. Phys Chem Earth 13:113–132. doi: 10.1016/0079-1946(81)90008-2 CrossRefGoogle Scholar
  47. Sterner SM, Bodnar RJ (1989) Synthetic fluid inclusions—VII. Re-equilibration of fluid inclusions in quartz during laboratory simulated burial and uplift. J Metamorph Geol 7:243–260. doi: 10.1111/j.1525-1314.1989.tb00587.x CrossRefGoogle Scholar
  48. Stöckhert B, Duyster J, Trepmann C, Massonne HJ (2001) Microdiamond daughter crystals precipitated from supercritical COH + silicate fluids included in garnet, Erzgebirge, Germany. Geology 29:391–394. doi: 10.1130/0091-7613(2001)029<0391:MDCPFS>2.0.CO;2 CrossRefGoogle Scholar
  49. Tiraboschi C, Tumiati S, Ulmer P, REcchia S, Pettke T, Fumagalli P, Poli S (2013) Composition of COH fluids up to 2.4 GPa: a multi-method approach. In: Goldschmidt 2013 conference abstracts. doi: 10.1180/minmag.2013.077.5.20
  50. Touret JLR, Frezzotti ML (2003) Fluid inclusions in high pressure and ultrahigh pressure metamorphic rocks. In: Carswell DA, Compagnoni R (eds) Ultrahigh-pressure metamorphism, vol 5. EMU notes in mineralogy, Eötvös University Press, Budapest, pp 467–487Google Scholar
  51. Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55:27–47. doi: 10.1016/S0024-4937(00)00037-2 CrossRefGoogle Scholar
  52. Van Roermund HML (2009) Recent progress in Scandian ultrahigh-pressure metamorphism in the northernmost domain of the Western Gneiss Complex, SW Norway: continental subduction down to 180–200 km depth. J Geol Soc 166:739–751. doi: 10.1144/0016-76492008-020 CrossRefGoogle Scholar
  53. Van Roermund HLM, Carswell DA, Drury MR, Heijboer TC (2002) Microdiamond in a megacrystic garnet websterite pod from Bardane on the island of Fjørtoft, western Norway: evidence for diamond formation in mantle rocks during deep continental subduction. Geology 30:959–962. doi: 10.1130/0091-7613(2002)030<0959:MIAMGW>2.0.CO;2 CrossRefGoogle Scholar
  54. Viti C, Frezzotti ML (2001) Transmission electron microscopy applied to fluid inclusion investigations. Lithos 55:125–138. doi: 10.1016/S0024-4937(00)00042-6 CrossRefGoogle Scholar
  55. Vrijmoed JC, Van Roermund HML, Davies GR (2006) Evidence for diamond-grade ultra-high pressure metamorphism and fluid interaction in the Svartberget Fe–Ti garnet peridotite–websterite body, Western Gneiss Region, Norway. Mineral Petrol 88:381–405. doi: 10.1007/s00710-006-0160-6 CrossRefGoogle Scholar
  56. Vrijmoed JC, Smith DC, Van Roermund HML (2008) Raman confirmation of microdiamond in the Svartberget Fe–Ti type garnet peridotite, Western Gneiss Region, Western Norway. Terra Nova 20:295–301. doi: 10.1111/j.1365-3121.2008.00820.x CrossRefGoogle Scholar
  57. Wirth R (2004) Focused ion beam (FIB): a novel technology for advanced application of micro- and nano-analysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876. doi: 10.1127/0935-1221/2004/0016-0863 CrossRefGoogle Scholar
  58. Wohlers A, Manning CE, Thompson AB (2011) Experimental investigation of the solubility of albite and jadeite in H2O, with paragonite + quartz at 500 and 600°C, and 1–2.25 GPa. Geochim Cosmochim Acta 75:2924–2939. doi: 10.1016/j.gca.2011.02.028 CrossRefGoogle Scholar
  59. Wunder B, Melzer S (2002) Interlayer vacancy characterization of synthetic phlogopitic micas by IR spectroscopy. Eur J Mineral 14:1129–1138. doi: 10.1127/0935-1221/2002/0014-1129 CrossRefGoogle Scholar
  60. Xue F, Rowley DB, Baker J (1996) Refolded syn-ultrahigh-pressure thrust sheets in the south Dabie complex, China: field evidence and tectonic implications. Geology 5:455–458. doi: 10.1130/0091-7613(1996)024<0455:RSUPTS>2.3.CO;2 CrossRefGoogle Scholar
  61. Zhang RY, Liou JG, Cong B (1995) Talc-, magnesite- and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. J Petrol 36:1011–1037. doi: 10.1093/petrology/36.4.1011 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nadia Malaspina
    • 1
    Email author
  • Matteo Alvaro
    • 2
  • Marcello Campione
    • 1
  • Heribert Wilhelm
    • 3
  • Fabrizio Nestola
    • 4
  1. 1.Dipartimento di Scienze dell’Ambiente e del Territorio e di Scienze della TerraUniversità degli Studi di Milano BicoccaMilanItaly
  2. 2.Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
  3. 3.Diamond Light SourceChiltonUK
  4. 4.Dipartimento di GeoscienzeUniversità degli Studi di PadovaPaduaItaly

Personalised recommendations