Skip to main content

Hydrothermal processes in partially serpentinized peridotites from Costa Rica: evidence from native copper and complex sulfide assemblages

Abstract

Native metals and metal alloys are common in serpentinized ultramafic rocks, generally representing the redox and sulfur conditions during serpentinization. Variably serpentinized peridotites from the Santa Elena Ophiolite in Costa Rica contain an unusual assemblage of Cu-bearing sulfides and native copper. The opaque mineral assemblage consists of pentlandite, magnetite, awaruite, pyrrhotite, heazlewoodite, violarite, smythite and copper-bearing sulfides (Cu-pentlandite, sugakiite [Cu(Fe,Ni)8S8], samaniite [Cu2(Fe,Ni)7S8], chalcopyrite, chalcocite, bornite and cubanite), native copper and copper–iron–nickel alloys. Using detailed mineralogical examination, electron microprobe analyses, bulk rock major and trace element geochemistry, and thermodynamic calculations, we discuss two models to explain the formation of the Cu-bearing mineral assemblages: (1) they formed through desulfurization of primary sulfides due to highly reducing and sulfur-depleted conditions during serpentinization or (2) they formed through interaction with a Cu-bearing, higher temperature fluid (350–400 °C) postdating serpentinization, similar to processes in active high-temperature peridotite-hosted hydrothermal systems such as Rainbow and Logatchev. As mass balance calculations cannot entirely explain the extent of the native copper by desulfurization of primary sulfides, we propose that the native copper and Cu sulfides formed by local addition of a hydrothermal fluid that likely interacted with adjacent mafic sequences. We suggest that the peridotites today exposed on Santa Elena preserve the lower section of an ancient hydrothermal system, where conditions were highly reducing and water–rock ratios very low. Thus, the preserved mineral textures and assemblages give a unique insight into hydrothermal processes occurring at depth in peridotite-hosted hydrothermal systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abrajano TA, Pasteris JD (1989) Zambales ophiolite, Philippines. II. Sulfide petrology of the critical zone of the Acoje Massif. Contrib Mineral Petrol 103(1):64–77

    Article  Google Scholar 

  2. Agrinier P, Cannat M (1997) Oxygen-isotope constraints on serpentinization processes in ultramafic rocks from the mid-atlantic ridge (23°N). Proc Ocean Drill Prog Sci Results 153:381–388

    Google Scholar 

  3. Allen DE, Seyfried JWE (2004) Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems. Geochim Cosmochim Acta 68(6):1347–1354

    Article  Google Scholar 

  4. Alt JC, Shanks WCI (1998) Sulfur in serpentinized oceanic peridotites: serpentinization processes and microbial sulfate reduction. J Geophys Res 103:9917–9929

    Article  Google Scholar 

  5. Alt JC, Shanks WCI (2006) Stable isotope compositions of serpentinite seamounts in the Mariana forearc: serpentinization processes, fluid sources and sulfur metasomatism. Earth Planet Sci Lett 242:272–285

    Article  Google Scholar 

  6. Alt JC, Shanks WC, Bach W, Paulick H, Garrido CJ, Beaudoin G (2007) Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15°20′N (ODP Leg 209): a sulfur and oxygen isotope study. Geochem Geophys Geosyst 8(8)

  7. Alt JC, Schwarzenbach EM, Früh-Green GL, Shanks WC III, Bernasconi SM, Garrido CJ, Crispini L, Gaggero L, Padrón-Navarta JA, Marchesi C (2013) The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178:40–54. doi:10.1016/j.lithos.2012.12.006

    Article  Google Scholar 

  8. Augustin N, Lackschewitz KS, Kuhn T, Devey CW (2008) Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N). Mar Geol 256(1–4):18–29. doi:10.1016/j.margeo.2008.09.004

    Article  Google Scholar 

  9. Augustin N, Paulick H, Lackschewitz KS, Eisenhauer A, Garbe-Schonberg D, Kuhn T, Botz R, Schmidt M (2012) Alteration at the ultramafic-hosted Logatchev hydrothermal field: constraints from trace element and Sr–O isotope data. Geochem Geophys Geosyst 13. doi:10.1029/2011gc003903

  10. Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M (2004) Seawater–peridotite interactions: first insights form ODP Leg 209, MAR 15°N. Geochem Geophys Geosyst 5(9):22. doi:10.1029/2004GC000744

    Article  Google Scholar 

  11. Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys Res Lett 33. doi:10.1029/2006GL025681

  12. Bach W, Rosner M, Jöns N, Rausch S, Robinson LF, Paulick H, Erzinger J (2011) Carbonate veins trace seawater circulation during exhumation and uplift of mantle rock: results from ODP Leg 209. Earth Planet Sci Lett 311:242–252

    Article  Google Scholar 

  13. Barkov AY, Tarkian M, Laajoki KVO, Gehör SA (1998) Primary platinum-bearing copper from the Lesnaya Varaka ultramafic alkaline complex, Kola Peninsula, northwestern Russia. Miner Petrol 62(1–2):61–72

    Article  Google Scholar 

  14. Bau M (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem Geol 93:219–230

    Article  Google Scholar 

  15. Baumgartner PO, Denyer P (2006) Evidence for middle Cretaceous accretion at Santa Elena Peninsula (Santa Rosa Accretionary Complex), Costa Rica. Geol Acta 4(1–2):179–191

    Google Scholar 

  16. Beard JS, Frost BR, Fryer P, McCaig AM, Searle RC, Ildefonse B, Zinin P, Sharma SK (2009) Onset and progression of serpentinization and magnetite formation in olivine-rich troctolite from IODP Hole U1309D. J Petrol 50(3):387–403

    Article  Google Scholar 

  17. Boschi C, Früh-Green GL, Delacour A, Karson JA, Kelley DS (2006a) Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°). Geochem Geophys Geosyst 7. doi:10.1029/2005GC001074

  18. Boschi C, Früh-Green GL, Escartin J (2006b) Occurrence and significance of serpentinite-hosted, talc- and AMPHIBOLE-RICH fault rocks in modern oceanic settings and ophiolite complexes: an overview. Ofioliti 31(2):129–140

    Google Scholar 

  19. Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane- and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem. Appl Environ Microbiol 72(9):6257–6270

    Article  Google Scholar 

  20. Brazelton WJ, Mehta MP, Kelley DS, Baross JA (2011) Physiological differentiation within a single-species biofilm fueled by serpentinization. mBio 2(4). doi:10.1128/mBio.00127-11

  21. Candela PA (2003) Ores in the Earth’s crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 411–431

    Chapter  Google Scholar 

  22. Cannat M, Bideau D, Bougault H (1992) Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15°37′N and 16°52′N. Earth Planet Sci Lett 109(1–2):87–106

    Article  Google Scholar 

  23. Cannat M, Fontaine F, Escartin J (2010) Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. In: Rona PA, Devey CW, Dyment J, Murton BJ (eds) Diversity of hydrothermal systems on slow spreading ocean ridges, vol 188. American Geophysical Union, Washington

    Chapter  Google Scholar 

  24. Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem Geol 191:345–359

    Article  Google Scholar 

  25. Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541

    Article  Google Scholar 

  26. Craig JR (1971) Violarite stability relations. Am Mineral 56:1303–1311

    Google Scholar 

  27. Craig JR (1973) Pyrite-pentlandite assemblages and other low-temperature relations in the Fe–Ni–S system. Am J Sci 273A:496–510

    Google Scholar 

  28. Delacour A, Früh-Green GL, Bernasconi SM (2008a) Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309). Geochim Cosmochim Acta 72(20):5111–5127

    Article  Google Scholar 

  29. Delacour A, Früh-Green GL, Bernasconi SM, Kelley DS (2008b) Sulfur in peridotites and gabbros at Lost City (30°N, MAR): implications for hydrothermal alteration and microbial activity during serpentinization. Geochim Cosmochim Acta 72(20):5090–5110

    Article  Google Scholar 

  30. Delacour A, Früh-Green GL, Frank M, Gutjahr M, Kelley DS (2008c) Sr- and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR): implications for fluid fluxes and lithospheric heterogeneity. Chem Geol 254(1–2):19–35. doi:10.1016/j.chemgeo.2008.05.018

    Article  Google Scholar 

  31. Denyer P, Gazel E (2009) The Costa Rican Jurassic to Miocene oceanic complexes: origin, tectonics and relations. J South Am Earth Sci 28(4):429–442. doi:10.1016/j.jsames.2009.04.010

    Article  Google Scholar 

  32. Deschamps F, Godard M, Guillot S, Hattori K (2013) Geochemistry of subduction zone serpentinites: a review. Lithos 178:96–127. doi:10.1016/j.lithos.2013.05.019

    Article  Google Scholar 

  33. Douville E, Charlou JL, Oelkers EH, Bienvenu P, Jove Colon CF, Donval JP, Fouquet Y, Prieur D, Appriou P (2002) The Rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol 184:37–48

    Article  Google Scholar 

  34. Eckstrand OR (1975) The Dumont Serpentinite: a model for control of nickeliferous opaque mineral assemblages by alteration reactions in ultramafic rocks. Econ Geol 70:183–201

    Article  Google Scholar 

  35. Fouquet Y, Knott R, Cambon P, Fallick AE, Rickard D, Desbruyeres D (1996) Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12°43′N on the East Pacific Rise. Earth Planet Sci Lett 144:147–162

    Article  Google Scholar 

  36. Fouquet Y, Charlou JL, Ondréas H, Radford-Knöery J, Donval JP, Douville E, Appriou R, Cambon P, Pellé H, Landuré JY, NOrmand A, Ponsevera E, German CR, Parson L, Barriga F, Costa IMA, Relvas J, Ribeiro A (1997) Discovery and first submersible investigations on the Rainbow hydrothermal field on the MAR (36°14′N). EOS Trans Am Geophys Union 78:F832 (abstract)

  37. Frost BR (1985) On the stability of sulfides, oxides, and native metals in serpentinite. J Petrol 26(1):31–63

    Article  Google Scholar 

  38. Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48(7):1351–1368. doi:10.1093/petrology/egm021

    Article  Google Scholar 

  39. Frost B, Evans KA, Swapp SM, Beard JS, Mothersole FE (2013) The process of serpentinization in dunite from New Caledonia. Lithos 178:24–39. doi:10.1016/j.lithos.2013.02.002

    Article  Google Scholar 

  40. Früh-Green GL, Plas A, Lécuyer C (1996) Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep (Site 895). Proc Ocean Drill Prog Sci Results 147:255–291

    Google Scholar 

  41. Früh-Green GL, Connolly JA, Plas A, Kelley DS, Grobéty B (2004) Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA, Craig Cary S (eds) The subseafloor biosphere at Mid-Ocean Ridges, 2004. American Geophysical Union, Washington

  42. Furukawa Y, Barnes HL (1996) Reactions forming smythite, Fe9S11. Geochim Cosmochim Acta 60(19):3581–3591

    Article  Google Scholar 

  43. Garuti G, Gorgoni C, Sighinolfi GP (1984) Sulfide mineralogy and chalcophile and siderophile element abundances in the Ivrea-Verbano mantle peridotites (Western Italian Alps). Earth Planet Sci Lett 70(1):69–87

    Article  Google Scholar 

  44. Gazel E, Denyer P, Baumgartner PO (2006) Magmatic and geotectonic significance of Santa Elena Peninsula, Costa Rica. Geol Acta 4(1–2):193–202

    Google Scholar 

  45. German CR, von Damm KL (2003) Hydrothermal processes. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 6. Elsevier Ltd., Amsterdam, pp 181–222

    Chapter  Google Scholar 

  46. German CR, Higgs NC, Thomson J, Mills RA, Elderfield H, Blusztajn J, Fleer AP, Bacon MP (1993) A geochemical study of metalliferous sediment from the TAG hydrothermal mound 26°08′N Mid-Atlantic Ridge. J Geophys Res 98:9683–9692

    Article  Google Scholar 

  47. Hauff F, Hoernle K, Van den Bogaard P, Alvarado GE, Garbe-Schönberg D (2000) Age and geochemistry of basaltic complexes in western Costa Rica: contributions to the geotectonic evolution of Central America. Geochem Geophys Geosyst 1

  48. Herzberg C, Gazel E (2009) Petrological evidence for secular cooling in the mantle plumes. Nature 458(7238):619–622

    Article  Google Scholar 

  49. Hopkinson L, Beard JS, Boulter CA (2004) The hydrothermal plumbing of a serpentinite-hosted detachment: evidence from the West Iberia non-volcanic rifted continental margin. Mar Geol 204:301–315

    Article  Google Scholar 

  50. Hyndman RD, Peacock SM (2003) Serpentinization of the forearc mantle. Earth Planet Sci Lett 212(3–4):417–432. doi:10.1016/s0012-821x(03)00263-2

    Article  Google Scholar 

  51. Ikehata K, Hirata T (2012) Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, northern Japan. Econ Geol 107(7):1489–1497

    Article  Google Scholar 

  52. James RH, Elderfield H, Palmer MR (1995) The chemistry of hydrothermal fluids from the Broken Spur site, 29°N Mid-Atlantic Ridge. Geochim Cosmochim Acta 59(4):651–659

    Article  Google Scholar 

  53. Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comput Geosci 18:899–947

    Article  Google Scholar 

  54. Kaneda H, Takenouchi S, Shoji T (1986) Stability of pentlandite in the Fe–Ni–Co–S system. Miner Deposita 21:169–180

    Google Scholar 

  55. Kelley KA, Plank T, Ludden J, Staudigel H (2003) Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem Geophys Geosyst 4(6). doi:10.1029/2002GC000435

  56. Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig KA, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley DM, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434

    Article  Google Scholar 

  57. Kitakaze A (2008) Sugakiite, Cu(Fe, Ni)(8)S-8, a new mineral species from Hokkaido, Japan. Can Mineral 46:263–267

    Article  Google Scholar 

  58. Kitakaze A, Itoh H, Komatsu R (2011) Horomanite, (Fe, Ni Co, Cu)(9)S-8, and samaniite, Cu-2(Fe, Ni)(7)S-8, new mineral species from the Horoman peridotite massif, Hokkaido, Japan. J Mineral Petrol Sci 106(4):204–210

    Article  Google Scholar 

  59. Klein F, Bach W (2009) Fe–Ni–Co–O–S Phase relations in peridotite–seawater interactions. J Petrol 50(1):37–59

    Article  Google Scholar 

  60. Klein F, Bach W, Jöns N, McCollom T, Moskowitz B, Berquo T (2009) Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochim Cosmochim Acta 73:6868–6893

    Article  Google Scholar 

  61. Kodolanyi J, Pettke T, Spandler C, Kamber BS, Gmeling K (2012) Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J Petrol 53(2):235–270. doi:10.1093/petrology/egr058

    Article  Google Scholar 

  62. Langmuir C, Humphris S, Fornari D, VanDover C, VonDamm K, Tivey MK, Colodner D, Charlou JL, Desonie D, Wilson C, Fouquet Y, Klinkhammer G, Bougault H (1997) Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37 degrees N on the Mid-Atlantic Ridge. Earth Planet Sci Lett 148(1–2):69–91

    Article  Google Scholar 

  63. Lorand JP (1987) Cu–Fe–Ni–S mineral assemblages in upper-mantle peridotites from the Table Mountain and Blow-Me-Down Mountain ophiolite massifs (Bay of Islands area, Newfoundland): their relationships with fluids and silicate melts. Lithos 20:59–76

    Article  Google Scholar 

  64. Lorand JP (1989a) Abundance and distribution of Cu–Fe–Ni sulfides, sulfur, copper and platinum-group elements in orogenic-type spinel lherzolite massifs of Ariäge (northeastern Pyrenees, France). Earth Planet Sci Lett 93:50–64

    Article  Google Scholar 

  65. Lorand JP (1989b) Mineralogy and chemistry of Cu–Fe–Ni sulfides in orogenic-type spinel peridoite bodies from Ariege (Northeastern Pyrenees, France). Contrib Mineral Petrol 103(3):335–345

    Article  Google Scholar 

  66. Lorand JP, Gregoire M (2006) Petrogenesis of base metal sulphide assemblages of some peridotites from the Kaapvaal craton (South Africa). Contrib Mineral Petrol 151(5):521–538. doi:10.1007/s00410-006-0074-7

    Article  Google Scholar 

  67. Luguet A, Lorand JP, Seyler M (2003) Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: a coupled study of samples from the Kane Fracture Zone (45°W 23°20′N, MARK Area, Atlantic Ocean). Geochim Cosmochim Acta 67(8):1553–1570

    Article  Google Scholar 

  68. Marques AFA, Barriga F, Chavagnac V, Fouquet Y (2006) Mineralogy, geochemistry and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge. Miner Deposita 41:52–67

    Article  Google Scholar 

  69. Marques AFA, Barriga FJ, Scott SD (2007) Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: from serpentinization to the formation of Cu–Zn–(Co)-rich massive sulfides. Mar Geol 245(1–4):20–39

    Article  Google Scholar 

  70. Martin B, Fyfe WS (1970) Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. Chem Geol 6:185–202

    Article  Google Scholar 

  71. Mazza SE, Gazel E, Johnson EA, McAleer R, Kunk M, Spotila JA, Bizimis M, Coleman DS (2014) Volcanoes of the passive margin: the youngest magmatic event in Eastern North America. Geology 42(6):483–486. doi:10.1130/G35407.1

    Article  Google Scholar 

  72. Mével C (2003) Serpentinization of abyssal peridotites at mid-ocean ridges. C R Geoscience 335(10–11):825–852

    Article  Google Scholar 

  73. Misra KC, Fleet ME (1973) The chemical compositions of synthetic and natural pentlandite assemblages. Econ Geol 68:518–539

    Article  Google Scholar 

  74. Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45(12):2423–2458

    Article  Google Scholar 

  75. Paulick H, Bach W, Godard M, De Hoog JCM, Suhr G, Harvey J (2006) Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chem Geol 234:179–210

    Article  Google Scholar 

  76. Peretti A, Dubessy J, Mullis J, Frost BR, Trommsdorff V (1992) Highly reducing conditions during alpine metamorphism of the Malenco peridotite (Sondrio, northern Italy) indicated by mineral paragenesis and H2 in fluid inclusions. Contrib Mineral Petrol 112(2–3):329–340. doi:10.1007/bf00310464

    Article  Google Scholar 

  77. Petersen S, Kuhn K, Kuhn T, Augustin N, Hekinian R, Franz L, Borowski C (2009) The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14 degrees 45′N, Mid-Atlantic Ridge) and its influence on massive sulfide formation. Lithos 112(1–2):40–56. doi:10.1016/j.lithos.2009.02.008

    Article  Google Scholar 

  78. Pindell J, Kennan L, Stanek KP, Maresch MV, Draper G (2006) Foundations of Gulf of Mexico and Caribbean evolution: eight controversies resolved. Geol Acta 4(1–2):303–341

    Google Scholar 

  79. Puchelt H, Prichard HM, Berner Z, Maynard J (1996) Sulfide mineralogy, sulfur content, and sulfur isotope composition of mafic and ultramafic rocks from Leg 147. Proc Ocean Drill Prog Sci Results 147:91–101

    Google Scholar 

  80. Rona PA, Scott SD (1993) A special issue on sea-floor hydrothermal mineralization: new perspectives. Econ Geol 88:1935–1976

    Article  Google Scholar 

  81. Russel MJ, Hall AJ, Martin W (2010) Serpentinization as a source of energy at the origin of life. Geobiology 8(5):355–371

  82. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5). doi:10.1029/20003GC000597

  83. Savov IP, Ryan JG, D’Antonio M, Kelley K, Mattie P (2005) Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochem Geophys Geosyst 6. doi:10.1029/2004gc000777

  84. Scambelluri M, Tonarini S (2012) Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology 40(10):907–910. doi:10.1130/g33233.1

    Article  Google Scholar 

  85. Scambelluri M, Müntener O, Hermann J, Piccardo GB, Trommsdorff V (1995) Subduction of water into the mantle: history of an Alpine peridotite. Geology 23(5):459–462

    Article  Google Scholar 

  86. Schmidt K, Koschinsky A, Garbe-Schonberg D, de Carvalho LM, Seifert R (2007) Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15 degrees N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chem Geol 242(1–2):1–21. doi:10.1016/j.chemgeo.2007.01.023

    Article  Google Scholar 

  87. Schwarzenbach EM, Früh-Green GL, Bernasconi SM, Alt JC, Shanks WC III, Gaggero L, Crispini L (2012) Sulfur geochemistry of peridotite-hosted hydrothermal systems: comparing the Ligurian ophiolites with oceanic serpentinites. Geochim Cosmochim Acta 91:283–305. doi:10.1016/j.gca.2012.05.021

    Article  Google Scholar 

  88. Schwarzenbach EM, Beard JS, Caddick MJ (2013a) Element transport in veins during serpentinization. Eos Trans AGU:MR33B-2328

  89. Schwarzenbach EM, Früh-Green GL, Bernasconi SM, Alt JC, Plas A (2013b) Serpentinization and the incorporation of carbon: a study of two ancient peridotite-hosted hydrothermal systems. Chem Geol 351:115–133. doi:10.1016/j.chemgeo.2013.05.016

    Article  Google Scholar 

  90. Staudigel H (2003) Hydrothermal alteration processes in the oceanic crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier Ltd., Amsterdam, pp 511–535

    Chapter  Google Scholar 

  91. Sun S-S (1982) Chemical composition and origin of the earth’s primitive mantle. Geochim Cosmochim Acta 46(2):179–192. doi:10.1016/0016-7037(82)90245-9

    Article  Google Scholar 

  92. Tournon J, Seyler M, Astorga A (1995) Les peridotites du Rio San Juan (Nicaragua et Costa Rica); jalons possibles d’une suture ultrabasique E-W en Amerique Centrale meridionale. C R Acad Sci Series II 320(8):757–764

  93. Tsushima N, Matsueda H, Ishihara S (1999) Polymetallic mineralization at the Nakakoshi copper deposits, central Hokkaido, Japan. Resour Geol 49(2):89–97. doi:10.1111/j.1751-3928.1999.tb00034.x

    Article  Google Scholar 

  94. Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268(5212):858–861

    Article  Google Scholar 

  95. Vaughan DJ, Craig JR (1997) Sulfide ore mineral stabilities, morphologies, and intergrowth textures. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York

    Google Scholar 

  96. von Damm KL (1990) Seafloor hydrothermal activity: black smoker chemistry and chimneys. Annu Rev Earth Planet Sci 18:173–204

    Article  Google Scholar 

  97. Zeng ZG, Wang QY, Wang XM, Chen S, Yin XB, Li ZX (2012) Geochemistry of abyssal peridotites from the super slow-spreading Southwest Indian Ridge near 65°E: implications for magma source and seawater alteration. J Earth Syst Sci 121(5):1317–1336

    Article  Google Scholar 

  98. Zhang ZC, Mao JW, Wang FS, Pirajno F (2006) Native gold and native copper grains enclosed by olivine phenocrysts in a picrite lava of the Emeishan large igneous province, SW China. Am Miner 91(7):1178–1183

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Beard for motivating discussions and J. Snow for providing additional samples. S. Mazza, W. Whalen and H. Brooks helped with sample preparation and analytical work, L. Fedele and R. Tracy helped with EMP analyses. The authors acknowledge the valuable cooperation of the Area de Concervacion Guanacaste, especially R. Blanco Segura (Research Program Coordinator) and M. M. Chavarría (Biodiversity especialities). Field assistance and participation by P. Madrigal, J. Calvo, M. Loocke and S. Wright was fundamental for field expeditions. Logistics and intellectual collaboration with P. Denyer (Central American School of Geology, UCR) was key for this project. We also thank O. Müntener, R. Frost and an anonymous reviewer for helpful comments that greatly improved the manuscript. This project was supported by the National Science Foundation award No. EAR-1019327 to Gazel. E.S. and M.C. gratefully acknowledge support from Virginia Tech Department of Geosciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Esther M. Schwarzenbach.

Additional information

Communicated by O. Müntener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 133 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schwarzenbach, E.M., Gazel, E. & Caddick, M.J. Hydrothermal processes in partially serpentinized peridotites from Costa Rica: evidence from native copper and complex sulfide assemblages. Contrib Mineral Petrol 168, 1079 (2014). https://doi.org/10.1007/s00410-014-1079-2

Download citation

Keywords

  • Native copper
  • Sulfides
  • Peridotite
  • Serpentinization
  • Santa Elena Ophiolite