Skip to main content

Advertisement

Log in

Shock-metamorphic features in amphiboles from the Xiuyan crater of China

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Amphibole-bearing gneiss fragments are common in the impact breccias of the Xiuyan crater, China. Three kinds of amphibole-bearing gneiss fragments with different shock-metamorphic levels have been identified. Shock-metamorphic features of amphiboles in these gneisses were investigated in situ by optical microscope, electron microprobe, Raman spectroscopy, and X-ray diffraction. Amphiboles in the weakly shocked gneiss (shock pressure less than 10 GPa) basically remain intact. Amphiboles in the moderately shocked gneiss (shock pressure range between 35 and 45 GPa) show strong deformation, reduced optical interference color, and partial loss of OH. In the strongly shocked gneiss (shock pressure above 50 GPa), amphiboles are completely melted and dendritic pyroxenes crystallize from the melt. The formation of dendritic pyroxenes shows nearly complete loss of water in the amphibole melt at shock-induced high temperature above 1,500 °C. The occurrence of both diopside and pigeonite dendrites crystallized in the same amphibole melt shows inhomogenous melt composition and rapid cooling of the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anthony JW, Bideaux RA, Bladh KW, Nichols MC (1995) Handbook of mineralogy: Volume II Silicates. Mineralogical Society of America: US, Tucson, Arizona

  • Apopei AI, Buzgar N (2010) The Raman study of amphiboles. Analele Stiintifice ale Universitatii Al I Cuza din Iasi Geologie 56:57–84

    Google Scholar 

  • Belyatinskaya IV, Feldman VI, Milyavsky VV, Borodina TI, Valyano GE, Belyakov AA (2010) Shock-metamorphic transformations of rock-forming minerals of layered amphibolite of the southern Urals. Mosc Univ Geol Bull 65:289–300

    Article  Google Scholar 

  • Chao ECT (1967) Shock effects in certain rock-forming minerals. Science 156:192–202

    Article  Google Scholar 

  • Chen M, Sharp TG, El Goresy A, Wopenka B, Xie X (1996) The majorite-pyrope solid solution + magnesiowüstite: constraints on the history of shock veins in chondrites. Science 271:1570–1573

    Article  Google Scholar 

  • Chen M, Xiao W, Xie X, Tan D, Cao Y (2010a) Xiuyan crater, China: impact origin confirmed. Chin Sci Bull 55:1777–1781

    Article  Google Scholar 

  • Chen M, Xiao W, Xie X (2010b) Coesite and quartz characteristic of crystallization from shock-produced silica melt in the Xiuyan crater. Earth Planet Sci Lett 297:306–314

    Article  Google Scholar 

  • Chen M, Koeberl C, Xiao W, Xie X, Tan D (2011) Planar deformation features in quartz from impact-produced polymict breccia of the Xiuyan crater, China. Meteorit Planet Sci 46:729–736

    Article  Google Scholar 

  • Chen M, Yin F, Li X, Xie X, Xiao W, Tan D (2013a) Natural occurrence of reidite in the Xiuyan crater of China. Meteorit Planet Sci 48:796–805

    Article  Google Scholar 

  • Chen M, Gu X, Xie X, Yin F (2013b) High-pressure polymorph of TiO2-II from the Xiuyan crater of China. Chinese Sci Bull 58:4655–4662

    Article  Google Scholar 

  • Deer WA (1963) Rock-forming minerals: Vol. 2 Chain silicates. Longmans, London

  • Evans BW (2007) The synthesis and stability of some end-member amphiboles. Rev Mineral Geochem 67:261–286

    Article  Google Scholar 

  • Feldman VI (1992) The conditions of shock metamorphism. Geol Soc Am Spec Pap 293:121–132

    Article  Google Scholar 

  • Floran RJ, Prinz M, Hlava P, Keil K, Nehru C, Hinthorne J (1978) The Chassigny meteorite: a cumulate dunite with hydrous amphibole-bearing melt inclusions. Geochim Cosmochim Acta 42:1213–1229

    Article  Google Scholar 

  • Freeman AG, Frazer FW (1968) Pseudo polymorphic transition: the amphibole → pyroxene reaction. Nature 220:67–68

    Article  Google Scholar 

  • Grieve RAF, Langenhorst F, Stöffler D (1996) Shock metamorphism of quartz in nature and experiment: II significance in geoscience. Meteorit Planet Sci 31:6–35

    Article  Google Scholar 

  • Harrison WJ, Hörz F (1981) Experimental shock metamorphism of calcic plagioclase. Lunar Planet Sci XII:395–397

    Google Scholar 

  • Hawthorne FC, Oberti R (2007) Classification of the amphiboles. Rev Mineral Geochem 67:55–88

    Article  Google Scholar 

  • Huang E (2002) Raman spectroscopic study of amphiboles. Dissertation, National Cheng Kung University

  • Inoue T, Irifune T, Yurimoto H, Miyagi I (1998) Decomposition of K-amphibole at high pressures and implications for subduction zone volcanism. Phys Earth Planet Int 107:221–231

    Article  Google Scholar 

  • Kloprogge JT, Visser D, Ruan H, Frost RL (2001) Infrared and Raman spectroscopy of holmquistite, Li2(Mg, Fe2 +)3(Al, Fe3 +)2(Si, Al)8O22(OH)2. J Mater Sci Lett 20:1497–1499

    Article  Google Scholar 

  • Lange MA, Ahrens TJ (1982) Impact induced dehydration of serpentine and the evolution of planetary atmospheres. J Geophys Res 87:A451–A456

    Article  Google Scholar 

  • Martin RF (2007) Amphiboles in the igneous environment. Rev Mineral Geochem 67:323–358

    Article  Google Scholar 

  • Minitti ME, Rutherford MJ, Tayor BE, Dyar MD, Schultz PH (2008) Assessment of shock effects on amphibole water contents and hydrogen isotope compositions: 1 amphibolite experiments. Earth Planet Sci Lett 266:46–60

    Article  Google Scholar 

  • Price GD, Putnis A, Agrell SO (1979) Electron petrography of shock-produced veins in the Tenham chondrite. Contrib Miner Petrol 71:211–218

    Article  Google Scholar 

  • Rinaudo C, Belluso E, Gastaldi D (2004) Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineral Mag 68:455–465

    Article  Google Scholar 

  • Rubin AE, Scott ERD, Keil K (1997) Shock metamorphism of enstatite chondrites. Geochim Cosmochim Acta 61:847–858

    Article  Google Scholar 

  • Sazonova LV, Milyavskii VV, Borodina TI, Sokolov SN, Zhuk AZ (2007) Shock metamorphism of plagioclase and amphibole (experimental data). Izvestiya, Phys Solid Earth 43:707–712

    Article  Google Scholar 

  • Shurvell HF, Rintoul L, Fredericks PM (2001) Infrared and Raman spectra of jade and jade minerals. Int J Vibr Spec 5:4 (see http://www.ijvs.com)

    Google Scholar 

  • Stöffler D (1966) Zones of impact metamorphism in the crystalline rocks of the Nordlinger Ries crater. Contrib Miner Petrol 12:15–24

    Article  Google Scholar 

  • Stöffler D (1971) Progressive metamorphism and classification of shocked and brecciated crystalline rocks at impact craters. J Geophys Res 76:5541–5551

    Article  Google Scholar 

  • Stöffler D (1972) Deformation and transformation of rock-forming minerals by natural and experimental shock processes: I. Behavior of minerals under shock compression. Fortschr Mineral 49:50–113

    Google Scholar 

  • Stöffler D, Grieve RAF (2007) Impactites. In: Fettes D, Desmons J (eds) Metamorphic rocks: a classification and glossary of terms, recommendations of the International Union of Geological Sciences Subcommission on the systematics of metamorphic rocks. Cambridge University Press, Cambridge, UK, pp 82–92, 111–125, and 126–242

  • Stöffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: I Basic observation and theory. Meteoritics 29:155–181

    Article  Google Scholar 

  • Stöffler D, Ostertag R, Jammes C, Pfannschmidt G, Gupta P, Simon S, Papike J, Beauchamp R (1986) Shock metamorphism and petrography of the Shergotty achondrite. Geochim Cosmochim Acta 50:889–903

    Article  Google Scholar 

  • Stöffler D, Keil K, Edward R (1991) Shock metamorphism of ordinary chondrites. Geochim Cosmochim Acta 55:3845–3867

    Article  Google Scholar 

  • Su W, Zhang M, Redfern SAT, Gao J, Klemd R (2009) OH in zoned amphiboles of eclogite from the western Tianshan, NW-China. Int J Earth Sci 98:1299–1309

    Article  Google Scholar 

  • Tomioka N, Fujino K (1999) Akimotoite, (Mg, Fe)SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite. Am Mineral 84:267–271

    Google Scholar 

  • Tribaudino M, Mantovani L, Bersani D, Lottici PP (2012) Raman spectroscopy of (Ca, Mg)MgSi2O6 clinopyroxenes. Am Mineral 97:1339–1347

    Article  Google Scholar 

  • Tyburczy JA, Krishnamurthy RV, Epstein S, Ahrens TJ (1990) Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: implications for planetary accretion. Earth Planet Sci Lett 98:245–260

    Article  Google Scholar 

  • Velde B, Syono Y, Kikuchi M, Boyer H (1989) Raman microprobe study of synthetic diaplectic plagioclase feldspars. Phys Chem Miner 16:436–441

    Article  Google Scholar 

  • Wang A, Jolliff BL, Haskin LA, Kuebler KE, Viskupic KM (2001) Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. Am Mineral 86:790–806

    Google Scholar 

  • White WB (1975) Structure interpretation of lunar and terrestrial minerals by Raman spectroscopy. In: Karr CJ (ed) Infrared and Raman spectroscopy of lunar and terrestrial minerals. Academic Press, New York, pp 325–358

    Chapter  Google Scholar 

  • Xie X, Chen M, Wang D (2001) Shock-related mineralogical features and P–T history of the Suizhou L6 chondrite. Eur J Mineral 13:1177–1190

    Article  Google Scholar 

  • Xu H, Veblen DR, Luo G, Xue J (1996) Transmission electron microscopy study of the thermal decomposition of tremolite into clinopyroxene. Am Mineral 81:1126–1132

    Google Scholar 

Download references

Acknowledgments

We are grateful to Xiangping Gu (Central South University, Changsha, China) for the help in XRD analysis, and to C. Koeberl, an anonymous reviewer, and the handing editor Hans Keppler for constructive comments and suggestions on our manuscript. This work was supported by GIGCAS 135 Project (Grant No. Y234071001) and National Natural Science Foundation of China (Grant No. 41172044). This is contribution No. IS-1845 from GIGCAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yin.

Additional information

Communicated by H. Keppler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, F., Chen, M. Shock-metamorphic features in amphiboles from the Xiuyan crater of China. Contrib Mineral Petrol 167, 999 (2014). https://doi.org/10.1007/s00410-014-0999-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-0999-1

Keywords

Navigation