Advertisement

Retrogressed lawsonite blueschists from the NW Iberian Massif: PTt constraints from thermodynamic modelling and 40Ar/39Ar geochronology

  • Alicia López-CarmonaEmail author
  • Jacobo Abati
  • Pavel Pitra
  • James K. W. Lee
Original Paper

Abstract

Blueschist facies terranes in the Variscan Ibero-Armorican Arc are restricted to scarce and relatively small areas. One of these examples is the Ceán Unit, which is the westernmost exposure of the middle allochthonous sheet of the Variscan belt in the Malpica–Tui Complex (NW Iberian Massif). The Ceán Unit is a highly condensed metamorphic succession with a lower part in the blueschist facies and an upper part without HP relicts. It comprises variable proportions of glaucophane–chloritoid-bearing metapelites and mafic rocks with abundant well-preserved pseudomorphs after euhedral lawsonite. Both lithologies show systematic changes in texture and mineral composition that are spatially related depending on deformation. The metamorphic evolution of the metabasic rocks has been constrained in the PT space through pseudosection approach and is characterised by H2O-undersaturated prograde evolution induced by the crystallisation of lawsonite. Peak conditions in the blueschist/LT-eclogite facies have been constrained at ca. 2.2 GPa and 560 °C. Exhumation-related metamorphism is characterised by a nearly isothermal decompression from the lawsonite-bearing fields to fields with stable albite at P ≈ 1 GPa. This lead to the pseudomorphism of lawsonite in the early-decompression stages, and a subsequent amphibolite–greenschist facies overprint at P < 0.8 GPa and T ≈ 440–480 °C. The preservation of the lawsonite crystal shape despite complete retrogression indicates that pseudomorphism occurred as a static process and that particular levels of the blueschist host rock were not affected by penetrative deformation during exhumation. 40Ar/39Ar step heating of phengitic muscovite from the pelitic schists interbedded with the lawsonite pseudomorph-bearing metabasic rocks yield plateau ages of ca. 363 ± 2 and 354 ± 1 Ma. The older age is interpreted as the age of the peak blueschist facies metamorphism. The age of 355 Ma is interpreted as a cooling age and is inferred to represent some point relatively close to peak conditions at the onset of the isothermal decompression. 40Ar/39Ar dating of muscovite from the quartzo-feldspathic mylonites of the Bembibre–Ceán detachment, at the base of the Ceán Unit, yields an age of ca. 337 ± 3 Ma, interpreted as the age of the post-nappe extensional tectonics. Similar data obtained from the blueschists of Ile de Groix (Armorican Massif; Bosse et al. in Chem Geol 220:21–45, 2005) support the equivalence of the Ceán Unit and the Upper Unit of Ile de Groix along the Ibero-Armorican Arc and suggest that these units share a blueschist facies event constrained at ca. 360–370 Ma, that is inferred to represent the Late Devonian–Early Carboniferous subduction of the northern margin of Gonwana beneath Laurussia.

Keywords

Lawsonite blueschist Pseudomorphs after lawsonite H2Ibero-Armorican Arc 

Notes

Acknowledgments

We thank C. Valdehita from the Universidad Complutense de Madrid for her technical support and advices in 40Ar/39Ar mineral separation. We appreciate the technical assistance of D.A. Archibald and H. Fournier from the Queen’s University 40Ar/39Ar Geochronology Laboratory. We are grateful to G. Gutiérrez-Alonso and J.Fernández-Suárez that kindly allow us to use their unpublished age constraints. Stimulating discussions with A. García-Casco, J.R. Martínez Catalán, M. Ballèvre and R. Arenas has considerably enriched the quality of this manuscript. We wish to thank the Executive Editor Dr. Tim Grove, Dr. Clare Warren and an anonymous referee, for their constructive comments and suggestions. This work was financially supported by the Spanish Project CGL2012-34618 (Ministerio de Economía y Competitividad) and an NSERC Discovery grant to JKWL.

Supplementary material

410_2014_987_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 32 kb)
410_2014_987_MOESM2_ESM.doc (86 kb)
Table 2 Representative microprobe analyses in the minerals of the matrix foliation (S2) from sample CA. C–core; R–rim; g P-tail–crystallization tails; lawps pseudomorphs after lawsonite (DOC 86 kb)
410_2014_987_MOESM3_ESM.doc (90 kb)
Table 3 Representative microprobe analyses in the inclusions in garnet (S1 and S2 foliations in g1 and g2, respectively) from sample CA. C–core; R–rim (DOC 89 kb)
410_2014_987_MOESM4_ESM.doc (73 kb)
Table 4 Representative microprobe analyses in the minerals of the lawsonite pseudomoprhs from sample CA. C–core; R–rim (DOC 73 kb)
410_2014_987_MOESM5_ESM.doc (86 kb)
Table 5 Representative microprobe analyses in the minerals of the albite porphyroblasts from sample AG. C–core; R–rim (DOC 86 kb)
410_2014_987_MOESM6_ESM.doc (67 kb)
Table 6 Summary of the 40Ar/39Ar step-heating results and representative microprobe analysis on muscovites from samples MT1 and LM. XK = K/(Ca + Na + K); XCa = Ca/(Ca + Na + K). Mineral formulas were calculated using AX software (Holland and Powell, 2000 in Powell and Holland 2002 http:/www.esc.cam.ac.uk/research/research-groups/holland/ax) (DOC 67 kb)
410_2014_987_MOESM7_ESM.xls (37 kb)
Table 7 40Ar/39Ar analyses on muscovite concentrates from sample MT1. The plateau was inferred considering the steps indicated in bold italics. The age spectrum is shown in Fig. 7a (XLS 37 kb)
410_2014_987_MOESM8_ESM.xls (36 kb)
Table 8 40Ar/39Ar analyses on muscovite concentrates from sample LM. The plateau was inferred considering the steps indicated in bold italics. The age spectrum is shown in Fig. 7b (XLS 36 kb)
410_2014_987_MOESM9_ESM.xls (38 kb)
Table 9 40Ar/39Ar analyses on muscovite concentrates from sample LM. The plateau was inferred considering the steps indicated in bold italics. The age spectrum is shown in Fig. 7c (XLS 38 kb)
410_2014_987_MOESM10_ESM.xls (34 kb)
Table 10 40Ar/39Ar analyses of a single grain of muscovite from sample LM. The plateau was inferred considering the steps indicated in bold italics. The age spectrum is shown in Fig. 7d (XLS 33 kb)
410_2014_987_MOESM11_ESM.tif (37.2 mb)
Idealized stratigraphic column for the Ceán Unit in the Malpica–Tui Complex. Photographs showing field aspects of the Bembibre–Ceán Detachment (a), metasediments intercalated with metavolcanics (b), Ceán pelitic schists (c and k) and Cambre metabasic rocks (d-j). The intermediate part of the sequence is dominated by lawsonite and garnet-bearing amphibolites (d-f) that going upwards grade into greenschists with garnet porphyroblasts (g, i) that contain epidote-rich layers (h). The top of the succession is dominated by greenschists with albite porphyroblasts (j) and bituminous schists without garnet (k). Stars and arrows indicate the location of the photographs in each level. Sample locations are also indicated. The stratigraphic column is modified from Díez Fernández (2011) (TIFF 38141 kb)
410_2014_987_MOESM12_ESM.tif (25.2 mb)
Back-scattered electron images showing detailed textures in the Cambre metabasic rocks. (a) ilm replacing ru in the matrix foliation; (b-c) symplectitic intergrowth of Ca-amphiboles and ab in the S2-foliation; (d-e) Zoned amphiboles in crystallization tails in garnet; (f) act grain showing exolution lamellae of hb in the outermost rim of a type 2 garnet porphyroblast; (g) pa + mu intergrowth inside a cluster in a law-pseudomorph; (h) Incipient sph coronae around ru. Mineral abbreviations are after Holland and Powell (1998) (TIFF 25796 kb)
410_2014_987_MOESM13_ESM.tif (7.7 mb)
X-Ray maps and chemical profiles illustrating zoning of garnet porphyroblasts from the Cambre metabasic rocks. (a) Euhedral porphyroblasts displaying an optical zoning interpreted as types 1 and 2 garnets (profile 1). (b) Subidioblastic type 2 garnet grains in the matrix foliation (profile 2) and (c) included in the pseudomorphs (profiles 3). Thick dashed lines on the X-ray maps indicate the position of the profiles. C–core; R–rim (TIFF 7909 kb)

References

  1. Abati J (2002) Petrología metamórfica y geocronología de la unidad culminante del Complejo de Ordenes en la región de Carballo (Galicia, NW del Macizo Ibérico): Sada–A Coruña, vol 20. A Coruña, Ediciós do Castro, p 269Google Scholar
  2. Abati J, Dunning GR (2002) Edad U-Pb en monacitas y rutilos de los paragneisses de la Unidad de Agualada (Complejo de Ordenes, NW del Macizo Ibérico). Geogaceta 32:95–98Google Scholar
  3. Abati J, Gerdes A, Fernández Suárez J, Arenas R, Whitehouse MJ, Díez Fernández R (2010) Magmatism and early-Variscan continental subduction in the northern Gondwana margin recorded in zircons from the basal units of Galicia, NW Spain. Geol Soc Am Bull Bull 122:219–235CrossRefGoogle Scholar
  4. Arenas R, Rubio Pascual FJ, Diaz Garcia F, Martínez Catalán JR (1995) High-pressure micro-inclusions and development of an inverted metamorphic gradient in the Santiago Schists (Ordenes Complex, NW Iberian Massif, Spain): evidence of subduction and syncollisional decompression. J Metamorph Geol 13:141–164CrossRefGoogle Scholar
  5. Arenas R, Abati J, Martínez Catalán JR, Diaz Garcia F, Rubio Pascual FJ (1997) P–T evolution of eclogites from the Agualada Unit (Ordenes Complex, northwest Iberian Massif, Spain): implications for crustal subduction. Lithos 40:221–242CrossRefGoogle Scholar
  6. Arps CES (1981) Amphibolites and other mafic rocks of the Blastomylonitic Graben in Western Galicia, NW Spain: field relations and petrography. Leidse Geol Meded 52:57–71Google Scholar
  7. Ballèvre M, Pitra P, Bohn M (2003) Lawsonite growth in the epidote blueschists from the Ile de Groix (Armorican Massif, France): a potential geobarometer. J Metamorph Geol 21:723–735CrossRefGoogle Scholar
  8. Ballèvre M, Bosse V, Ducassou C, Pitra P (2009) Palaeozoic history of the Armorican Massif: models for the tectonic evolution of the suture zones. Comptes Rendus Geosci 341:174–201CrossRefGoogle Scholar
  9. Ballèvre M, Martínez Catalán JR, López-Carmona A et al (in press) Correlation of the nappe stack in the Ibero–Armorican arc across the Bay of Biscay: a joint French–Spanish project. In: Schulmann K, Oggiano G, Lardeaux JM, Janousek V, Martínez Catalán JR, Scrivener R (eds) The variscan orogeny: extent, timescale and the formation of the European Crust. London: Geol Soc Lond Special Pub Google Scholar
  10. Barrientos X, Selverstone J (1993) Infiltration vs. thermal overprinting of epidote blueschists, Ile de Groix, France. Geology 21:69–72CrossRefGoogle Scholar
  11. Bellido F, Brandle JL, Lasala M, Reyes J (1992) Consideraciones petrológicas y cronológicas sobre las rocas graníticas hercínicas de Galicia. Cuadernos del Laboratorio Xeologico de Laxe 17:241–261Google Scholar
  12. Bosse V, Ballèvre M, Vidal O (2002) Ductile thrusting recorded by the garnet isograd from blueschist-facies metapelites of the Ile de Groix, Armorican Massif, France. J Petrol 43:485–510CrossRefGoogle Scholar
  13. Bosse V, Féraud G, Ballèvre M, Peucat JJ, Corsini M (2005) Rb–Sr and 40Ar/39Ar ages in blueschists from the Ile de Groix (Armorican Massif, France): implications for closure mechanisms in isotopic systems. Chem Geol 220:21–45CrossRefGoogle Scholar
  14. Burov E, Francois T, Yamato P, Wolf S (2014) Mechanism of continental subduction and exhumation of HP and UHP rocks. Gond Res 25:464–493CrossRefGoogle Scholar
  15. Clarke GL, Powell R, Fitzherbert JA (2006) The lawsonite paradox: a comparison of field evidence and mineral equilibria modelling. J Metamorph Geol 24:715–725CrossRefGoogle Scholar
  16. Dallmeyer RD, Martínez Catalán JR, Arenas R, Gil Ibarguchi JI, Gutierrez Alonso G, Farias P, Bastida F, Aller J (1997) Diachronous Variscan tectonothermal activity in the NW Iberian Massif: evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 277:307–337CrossRefGoogle Scholar
  17. Diener JFA, Powell R (2010) Influence of ferric iron on the stability of mineral assemblages. J Metamorph Geol 28:599–613CrossRefGoogle Scholar
  18. Diener JFA, Powell R (2012) Revised activity-composition models for clinopyroxene and amphibole. J Metamorph Geol 30:131–142CrossRefGoogle Scholar
  19. Diener JFA, Powell R, White RW (2008) Quantitative phase petrology of cordierite-orthoamphibole gneisses and related rocks. J Metamorph Geol 26:795–814CrossRefGoogle Scholar
  20. Díez Fernández R, Martínez Catalán JR, Arenas R, Abati J (2011) Tectonic evolution of a continental subduction-exhumation channel: variscan structure of the basal allochthonous units in NW Spain. Tectonics TC30:3009Google Scholar
  21. Díez Fernández R, Martínez Catalán JR, Arenas R, Abati J (2012) The onset of the assembly of Pangaea in NW Iberia: constraints on the kinematics of continental subduction. Gondwana Res 22:20–25CrossRefGoogle Scholar
  22. Dipple GM, Ferry JM (1992) Fluid flow and stable isotopic alteration in rocks at elevated temperatures with applications to metamorphism. Geochim Cosmochim Acta 56:3539–3550CrossRefGoogle Scholar
  23. Dodson MH (1973) Closure temperature in geochronological and petrological systems. Contrib Mineral Petrol 40:259–274CrossRefGoogle Scholar
  24. Duprat-Oualid S, Yamato P, Pitra P (2013) Major role of shear heating on intracontinental inverted metamorphism: inference from a thermo-kinematic parametric study. Tectonophysics 608:812–831CrossRefGoogle Scholar
  25. Enami M, Suzuki K, Liou JG, Bird DK (1993) Al–Fe3+ and F–OH substitutions in titanite and constraints on their P–T dependence. Eur J Mineral 5:219–231Google Scholar
  26. Engvik AK, Austrheim H, Andersen TB (2000) Structural, mineralogical and petrophysical effects on deep crustal rocks of fluid limited polymetamorphism, Western Gneiss Region, Norway. J Geol Soc Lond 157:121–134CrossRefGoogle Scholar
  27. Ernst WG (1973) Blueschists metamorphism and P–T regimes in active subduction zones. Tectonophysics 17:255–272CrossRefGoogle Scholar
  28. Evans BW (1990) Phase relations of epidote–blueschists. Lithos 25:3–23CrossRefGoogle Scholar
  29. Fleck RJ, Sutter JF, Elliot DH (1977) Interpretation of discordant 40Ar/39Ar age-spectra of Mesozoic tholeiites from Antarctica. Geochim Cosmochim Acta 41:15–32CrossRefGoogle Scholar
  30. Franz G, Spear FS (1985) Aluminious titanite (sphene) from the Eclogite zone, south-central Tauern Window, Austria. Chem Geol 50:33–46CrossRefGoogle Scholar
  31. Gallastegui G (1993) Petrología del macizo granodiorítico de Baio-Vigo (Pontevedra, España). Universidad de Oviedo, Oviedo, p 356 (unpub.)Google Scholar
  32. Gerya TV, Stöckhert B, Perchuk AL (2002) Exhumation of high-pressure metamorphic rocks in subduction channel: a numerical simulation. Tectonics 21. doi: 10.1029/2002TC001406
  33. Gil Ibarguchi JI, Ortega Gironés E (1985) Petrology, structure and geotectonic implications of glaucophane-bearing eclogites and related rocks fromthe Malpica–Tuy unit, Galicia, northwest Spain. Chem Geol 50:145–162CrossRefGoogle Scholar
  34. Gómez Barreiro J, Martínez Catalán JR, Arenas R, Castiñeiras P, Abati J, Díaz García F, Wijbrans JR (2007) Tectonic evolution of the upper allochthon of the Órdenes Complex (northwestern Iberian Massif): structural constraints to a polyorogenic peri-Gondwanan terrane. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collision, vol 423. Geol Soc Am Bull Special Paper, pp 315–332Google Scholar
  35. Gómez Barreiro J, Martínez Catalán JR, Díez Fernández R, Arenas R, Díaz García F (2010) Upper crust reworking during gravitational collapse: the Bembibre–Pico Sacro detachment system (NW Iberia). J Geol Soc Lond 167:769–784CrossRefGoogle Scholar
  36. González Lodeiro F, Hernández Urroz J, Martínez Catalán J, Naval Balbin A, Ortega Girones E, de Pablo Macía G (1984) Santiago de Compostela. Mapa Geológico de España E 1:200000. Instituto Geológico y Minero de España, MadridGoogle Scholar
  37. Gottardi R, Kao PH, Saar MO, Teyssier C (2013) Effects of permeability fields on fluid, heat, and oxygen isotope transport in extensional detachment systems. Geochem Geophy Geosyst 14:1493–1522CrossRefGoogle Scholar
  38. Grasemann B, Fritz H, Vannay JC (1999) Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India); implications for a decelerating strain path and the extrusion of orogenic wedges. J Struct Geol 21:837–853CrossRefGoogle Scholar
  39. Harlov D, Tropper P, Seifert W, Nijland T, Förster HJ (2006) Formation of Al-rich titanite (CaTiSiO4O–CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2. Lithos 88:72–84CrossRefGoogle Scholar
  40. Harrison T, Célérier J, Aikman A, Hermann J, Heizler J (2009) Diffusion of 40Ar in muscovite. Geochim Cosmochim Acta 73:1039–1051CrossRefGoogle Scholar
  41. Heinrich W, Althaus E (1988) Experimental determination of the reactions 4 lawsonite + 1 albite = 1 paragonite + 2 zoisite + 2 quartz + 6 H2O and 4 lawsonite + 1 jadeite = 1 paragonite + 2 zoisite + 1 quartz + 6 H2O. Neues Jb Miner Monat 11:516–528Google Scholar
  42. Holényi K, Annerstein H (1987) Iron in titanite: a Mössbauer-spectroscopy study. Can Mineral 25:429–433Google Scholar
  43. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343CrossRefGoogle Scholar
  44. Holland TJB, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145:492–501CrossRefGoogle Scholar
  45. Holland TJB, Baker J, Powell R (1998) Mixing properties and activity-composition and relationships of chlorites in the system MgO–FeO–Al2O3–SiO2–H2O. Eur J Mineral 10:395–406Google Scholar
  46. Le Bayon B, Pitra P, Ballèvre M, Bohn M (2006) Reconstructing P–T paths during continental collision using multi-stage garnet (Gran Paradiso nappe, Western Alps). J Metamorph Geol 24:477–496CrossRefGoogle Scholar
  47. Lee JKW (1995) Multipath diffusion in geochronology. Contrib Mieral Petrol 120:60–82CrossRefGoogle Scholar
  48. Liou JG (1981) Petrology of metamorphosed oceanic rocks in the Central Range of Taiwan. Mem Geol Soc China 4:291–342Google Scholar
  49. Liou JG, Zhang RY, Ernst WG, Rumble D III, Maruyama S (1998) High pressure minerals from deeply subducted metamorphic rocks. In: Hemley RJ (ed) Ultrahigh-pressure mineralogy: physics and chemistry of the earth’s deep interior. Rev Miner 37:33–96Google Scholar
  50. Lister GS, Baldwin SL (1996) Modelling the effect of arbitrary P-T-t histories on argon diffusion in minerals using the MacArgon program for the Apple Mcintosh. Tectonophysics 253:83–109CrossRefGoogle Scholar
  51. Llana-Fúnez S (2001) La estructura de la unidad de Malpica–Tui (Cordillera varisca en Iberia). In: Serie de Tesis Doctorales 1, vol. Instituto Geológico y Minero de España, Madrid, p 295Google Scholar
  52. Llana-Fúnez S, Marcos A (2002) Structural record during exhumation and emplacement of high-pressure-low-to intermediate-temperature rocks in the Malpica–Tui unit (Variscan Belt of Iberia). In: Martínez Catalán JR, Hatcher RD Jr, Arenas R, Díaz García F (eds) Variscan-Appalachian dynamics: the building of the late Paleozoic bassamen, vol 364. Geol Soc Am Bull Special Paper, pp 125–142Google Scholar
  53. López-Carmona A, Abati J, Reche J (2010) Petrologic modeling of chloritoid-glaucophane schists from the NW Iberian Massif. Gondwana Res 17:377–391CrossRefGoogle Scholar
  54. López-Carmona A, Kusky TM, Santosh M, Abati J (2011) P-T and structural constraints of lawsonite and epidote blueschists from Liberty Creek and Seldovia: tectonic implications for early stages of subduction along the southern Alaska convergent margin. Lithos 121:100–116CrossRefGoogle Scholar
  55. López-Carmona A, Pitra P, Abati J (2013) Blueschist-facies metapelites from the Malpica–Tui Unit (NW Iberian Massif): phase equilibria modelling and H2O and Fe2O3 influence in high-pressure assembalges. J Metamorph Geol 31:263–280CrossRefGoogle Scholar
  56. Lyubetskaya T, Ague JJ (2009) Modeling the magnitudes and directions of regional metamorphic fluid flow in collisional orogens. J Petrol 50:1505–1531CrossRefGoogle Scholar
  57. Manon MR (2008) Heat capacity of high pressure minerals and phase equilibria of Cretan blueschists. Michigan: The University of Michigan, pp 192 (unpub.)Google Scholar
  58. Martínez Catalán JR, Arenas R, Díaz García F, Rubio Pascual FJ, Abati J, Marquínez J (1996) Variscan exhumation of a subducted Paleozoic continental margin: the basal units of the Ordenes Complex, Galicia, NW Spain. Tectonics 15:106–121CrossRefGoogle Scholar
  59. Martínez Catalán JR, Díaz García F, Arenas R, Abati J et al (2002) Thrust and detachment systems in the ordenes complex (northwestern Spain): implications for the Variscan-Appalachian geodynamics. In: Martínez Catalán JR, Hatcher RD, Arenas R, Diaz Garcia F (eds) Variscan-Appalachian dynamics: the building of the late Paleozoic basement: Geol Soc Am Bull Special Paper 364:163–182Google Scholar
  60. Martínez Catalán JR, Arenas R, Díaz García F et al (2007) Space and time in the tectonic evolution of the northwestern Iberian Massif: implications for the Variscan belt. Geol Soc Am Bull Mem 200:403–423CrossRefGoogle Scholar
  61. Martínez Catalán JR, Arenas R, Abati J, Sánchez Martínez S et al (2009) A rootless suture and the loss of the roots of a mountain chain: the Variscan belt of NW Iberia. Comptes Rendus Geosci 341:114–126CrossRefGoogle Scholar
  62. Maruyama S, Liou JG, Terabayashi M (1996) Blueschists and eclogites of the world and their exhumation. Int Geol Rev 38:485–594CrossRefGoogle Scholar
  63. Meinhold G (2010) Rutile and its application in earth sciences. Earth Sci Rev 102:1–28CrossRefGoogle Scholar
  64. Miller C, Satir M, Frank W (1980) High pressure metamorphism in the Tauern Window. Mitteilungen der Österreichischen Geologischen Gesellschaft 71:89–97Google Scholar
  65. Newton RC, Fyfe WS (1976) High-pressure metamorphism. In: Bailey DK, Macdonald R (eds) The evolution of the crystalline rocks. Academic Press, London, pp 101–186Google Scholar
  66. Okamoto K, Maruyama S (1999) The high pressure stability limits of lawsonite in the MORB + H2O system. Am Mineral 84:362–373Google Scholar
  67. Ortega-Gutiérrez F, Solari LA, Solé J et al (2004) Polyphase, high-temperature eclogite-facies metamorphism in the Chuacus Complex, central Guatemala; petrology, geochronology, and tectonic implications. Int Geol Rev 46:445–470CrossRefGoogle Scholar
  68. Peacock SM (1987) Thermal effects of metamorphic fluids in subduction zones. Geology 15:1057–1060CrossRefGoogle Scholar
  69. Philippon M, Brun JP, Gueydan F (2009) Kinematic records of subduction and exhumation in the Ile de Groix Blueschist (Hercynian belt; Western France). J Struct Geol 31:1308–1321CrossRefGoogle Scholar
  70. Philippon M, Gueydan F, Pitra P, Brun JP (2013) Preservation of subduction-related prograde deformation in lawsonite pseudomorph-bearing rocks. J Metamorph Geol 31:571–583CrossRefGoogle Scholar
  71. Pitra P, Ballèvre M, Ruffet G (2010) Inverted metamorphic field gradient towards a Variscan suture zone (Champtoceaux Complex, Armorican Massif, France). J Metamorph Geol 28:183–208CrossRefGoogle Scholar
  72. Powell R, Holland TJB (1988) An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J Metamorph Geol 6:173–204CrossRefGoogle Scholar
  73. Ring U, Brandon MT, Willett SD, Lister GS (1999) Exhumation processes. In: Ring U, Brandon MT, Lister GS, Willett SD (eds) Exhumation Processes: normal faulting, ductile flow and erosion. Geol Soc London Spec Publ, vol 154, pp 1–27Google Scholar
  74. Rodríguez Aller J (2005) Recristalización y deformación de litologías supracorticales sometidas a metamorfismo de alta presión (Complejo de Malpica–Tui, NO del Macizo Ibérico), vol 29. O Castro, A Coruña, p 410Google Scholar
  75. Rodríguez Aller J, Cosca MA, Gil Ibarguchi JI, Dallmeyer RD (2003) Strain partitioning and preservation of 40Ar/39Ar ages during Variscan exhumation of a subducted crust (Malpica–Tui complex, NW Spain). Lithos 70:111–139CrossRefGoogle Scholar
  76. Rubio Pascual FJ, Arenas R, Díaz García F, Martínez Catalán JR, Abati J (2002) Eclogites and eclogite-amphibolites from the Santiago Unit (Ordenes Complex, NW Iberian Massif, Spain): a case study of contrasting high-pressure metabasites in a context of crustal subduction. In: Martínez Catalán JR, Hatcher RD, Arenas R, Díaz García F (eds) Variscan-Appalachian dynamics: the building of the late paleozoic basement. Geol Soc Am Bull Special Paper, pp 105–124Google Scholar
  77. Ruffet G, Féraud G, Ballévre M, Kiénast J (1995) Plateau ages and excess argon in phengites: an 40Ar/39Ar laser probe study of Alpine micas (Sesia Zone, Western Alps, northern Italy). Chem Geol 121:327–343CrossRefGoogle Scholar
  78. Santos Zalduegui JF, Schärer U, Gil Ibarguchi JI (1995) Isotope constraints on the age and origin of magmatism and metamorphism in the Malpica–Tuy allochthon, Galicia, NW-Spain. Chem Geol 121:91–103CrossRefGoogle Scholar
  79. Schliestedt M, Matthews A (1987) Transformation of blueschist to greenschist facies rocks as a consequence of fluid infiltration, Sifnos (Cyclades), Greece. Contrib Mineral Petrol 9:237–250CrossRefGoogle Scholar
  80. Serrano-Pinto M, Casquet C, Ibarrola E, Corretgé LG, Portugal-Ferreira M (1988) Sintese geocronológica dos granitoides do macizo hesperico. In: Bea F et al (eds) Geologia de los granitoides y rocas asociadas del macizo Hespérico. Rueda, Madrid, pp 69–86Google Scholar
  81. Shelley D, Bossière G (1999) Ile de Groix: retrogression and structural developments in an extensional régime. J Struct Geol 21:1441–1445CrossRefGoogle Scholar
  82. Sherlock S, Kelley S, Inger S, Harris N, Okay A (1999) 40Ar–39Ar and Rb–Sr geochronology of high-pressure metamorphism and exhumation history of the Tavsanli Zone, NW Turkey. Contrib Mineral Petrol 137:46–58Google Scholar
  83. Smye AJ, Greenwood LV, Holland TJB (2010) Garnet-chloritoid-kyanite assemblages: eclogite facies indicators of subduction constraints in orogenic belts. J Metamorph Geol 28:753–768Google Scholar
  84. Souche A, Medvedev S, Andersen TB, Dabrowski M (2013) Shear heating in extensional detachments: implications for the thermal history of the Devonian basins of W Norway. Tectonophysics. doi: 10.1016/j.tecto.2013.07.005 Google Scholar
  85. Stober I, Bucher K (2004) Fluid sinks within the earth’s crust. Geofluids 4:143–151CrossRefGoogle Scholar
  86. Stüwe K (1997) Effective bulk composition changes due to cooling: a model predicting complexities in retrograde reaction textures. Contrib Mineral Petrol 129:43–52CrossRefGoogle Scholar
  87. Tinkham DK, Zuluaga CA, Stowell HH (2003) Metapelite phase equilibria modelling in MnNCKFMASH: the effect of variable Al2O3 and MgO/(MgO + FeO) on mineral stability. Am Mineral 88:1174Google Scholar
  88. Tracy RJ (1982) Compositional zoning and inclusions in metamorphic minerals. In: Ferry JM (ed) Characterization of metamorphism through mineral equilibria. Mineralogical Society of America, Washington, pp 355–397Google Scholar
  89. Tropper P, Manning CE, Essene EJ (2002) The substitution of Al and F in titanite at high pressure and temperature: experimental constraints on phase relations and solid solution properties. J Petrol 43:1787–1814CrossRefGoogle Scholar
  90. Van Calsteren PWC, Boblrijk NAIM, Hereda EH et al (1979) Isotopic dating of older elements (including the Cabo Ortegal mafic-ultramafic complex) in the Hercynian Origen of NW Spain: manifestations of a presumed Early Paleozoic mantle-plume. Chem Geol 24:35–56CrossRefGoogle Scholar
  91. Vega-Granillo R, Talavera-Mendoza O, Meza-Figueroa D et al (2007) Pressure–temperature–time evolution of Paleozoic high-pressure rocks of the Acatlán Complex (southern Mexico): implications for the evolution of the Iapetus and Rheic Oceans. Geol Soc Am Bull Bull 119:1249–1264CrossRefGoogle Scholar
  92. Villa JE, Hermann IM, Müntener O, Trommsdorff V (2000) 40Ar-39Ar dating of multiply zoned amphibole generations (Malenco, Italian Alps). Contrib Mineral Petrol 140:363–381CrossRefGoogle Scholar
  93. Walker JD, Geissman JW, Bowring SA, Babcock LE, compilers (2012) Geologic time scale v. 4.0: Geol Soc Am Bull doi: 10.1130/2012.CTS004R3C
  94. Warren CJ, Beaumont C, Jamieson RA (2008a) Deep subduction and rapid exhumation: role of crustal strength and strain weakening in continental subduction and ultrahigh-pressure rock exhumation. Tectonics 27:TC6002CrossRefGoogle Scholar
  95. Warren CJ, Beaumont C, Jamieson RA (2008b) Modelling tectonic styles and ultrahigh pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet Sci 267:129–145CrossRefGoogle Scholar
  96. Warren C, Sherlock S, Kelley S (2010) Interpreting high-pressure phengite 40Ar/39Ar laserprobe ages: an example from Saih Hatat, NE Oman. Contrib Mineral Petrol 161:991–1009CrossRefGoogle Scholar
  97. Warren CJ, Hanke F, Kelley SP (2012) When can muscovite 40Ar/39Ar dating constrain the timing of metamorphic exhumation? Chem Geol 291:79–86CrossRefGoogle Scholar
  98. Wheeler J (1996) DIFFARG: a program for simulating argon diffusion profiles in minerals. Comput Geosci 22:919–929CrossRefGoogle Scholar
  99. White RW, Powell R, Holland TJB, Worley B (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 18:497–511CrossRefGoogle Scholar
  100. White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527CrossRefGoogle Scholar
  101. Will T, Okrusch M, Schmädicke E, Chen G (1998) Phase relations in the greenschist-blueschist-amphibolite-eclogite facies in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O (NCFMASH), with application to metamorphic rocks from Samos, Greece. Contrib Mineral Petrol 132:85–102CrossRefGoogle Scholar
  102. Wing BA, Ferry JM (2002) Three-dimensional geometry of metamorphic fluid flow during Barrovian regional metamorphism from an inversion of combined petrologic and stable isotope data. Geology 30:639–642CrossRefGoogle Scholar
  103. Zuluaga CA, Stowell HH, Tinkham DK (2005) The effect of zoned garnet on metapelite pseudosection topology and calculatedmetamorphic P-T paths. Am Mineral 90:1619–1628CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alicia López-Carmona
    • 1
    • 2
    Email author
  • Jacobo Abati
    • 1
  • Pavel Pitra
    • 2
  • James K. W. Lee
    • 3
  1. 1.Departamento de Petrología y Geoquímica (UCM)Instituto de Geociencias (IGEO-CSIC)MadridSpain
  2. 2.Géosciences RennesUMR 6118Rennes CedexFrance
  3. 3.Department of Earth and Planetary SciencesMacquarie UniversityNorth RydeAustralia

Personalised recommendations