Amphibole perspective to unravel pre-eruptive processes and conditions in volcanic plumbing systems beneath intermediate arc volcanoes: a case study from Ciomadul volcano (SE Carpathians)

  • Balázs KissEmail author
  • Szabolcs Harangi
  • Theodoros Ntaflos
  • Paul R. D. Mason
  • Elemér Pál-Molnár
Original Paper


Ciomadul is the youngest volcano in the Carpathian–Pannonian region produced crystal-rich high-K dacites that contain abundant amphibole phenocrysts. The amphiboles in the studied dacites are characterized by large variety of zoning patterns, textures, and a wide range of compositions (e.g., 6.4–15 wt% Al2O3, 79–821 ppm Sr) often in thin-section scale and even in single crystals. Two amphibole populations were observed in the dacite: low-Al hornblendes represent a cold (<800 °C) silicic crystal mush, whereas the high-Al pargasites crystallized in a hot (>900 °C) mafic magma. Amphibole thermobarometry suggests that the silicic crystal mush was stored in an upper crustal storage (~8–12 km). This was also the place where the erupted dacitic magma was formed during the remobilization of upper crustal silicic crystal mush body by hot mafic magma indicated by simple-zoned and composite amphiboles. This includes reheating (by ~200 °C) and partial remelting of different parts of the crystal mush followed by intensive crystallization of the second mineral population (including pargasites). Breakdown textures of amphiboles imply that they were formed by reheating in case of hornblendes, suggesting that pre-eruptive heating and mixing could take place within days or weeks before the eruption. The decompression rim of pargasites suggests around 12 days of magma ascent in the conduit. Several arc volcanoes produce mixed intermediate magmas with similar bimodal amphibole cargo as the Ciomadul, but in our dacite the two amphibole population can be found even in a single crystal (composite amphiboles). Our study indicates that high-Al pargasites form as a second generation in these magmas after the mafic replenishment into a silicic capture zone; thus, they cannot unambiguously indicate a deeper mafic storage zone beneath these volcanoes. The simple-zoned and composite amphiboles provide direct evidence that significant compositional variations of amphiboles do not necessarily mean variation in the pressure of crystallization even if the Al-tschermak substitution can be recognized, suggesting that amphibole barometers that consider only amphibole composition may often yield unrealistic pressure variation.


Amphibole perspective Intermediate magmas Magma mixing Volcano plumbing system Thermobarometry Amphibole texture and zoning patterns 



This research has been supported by the Hungarian Scientific Research Fund (OTKA No. 68587). Kiss Balázs in this research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 `National Excellence Program’. Ioan Seghedi, Csaba Jánosi, and Alex Szakács provided invaluable help during the field trip campaigns. Fruitful discussions with Malcolm Rutherford, Filippo Ridolfi, Gerhard Wörner, Jon Blundy, and Olivier Bachmann at different stages of this study have helped to refine our model and clarify our ideas on amphibole formation and on the nature of the magma storage zone beneath intermediate volcanoes. M. Éva Jankovics are thanked for improvements in English and figures. Tamás Sági, Zsolt Bendő, and Franz Kiraly are acknowledged for help during SEM and EMPA analyses. Constructive comments provided by Olivier Bachmann and Michael J. Krawczynski and the editor Timothy L. Grove helped us to refine significantly the original manuscript.


  1. Adam J, Oberti R, Camara F, Green TH (2007) An Electron microprobe, LAM-ICP-MS and single-crystal X-ray structure refinement study of the effects of pressure, melt-H2O concentration and fO2 on experimentally produced basaltic amphiboles. Eur J Mineral 19(5):641–655CrossRefGoogle Scholar
  2. Almeev RR, Ariskin AA, Ozerov AY, Kononkova NN (2002) Problems of the stoichiometry and thermobarometry of magmatic amphiboles: an example of hornblende from the andesites of Bezymyannyi volcano, Eastern Kamchatka. Geochem Int 40(8):723–738Google Scholar
  3. Anderson JL, Smith DR (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. Am Mineral 80:549–559Google Scholar
  4. Anderson JL, Barth AP, Wooden JL, Mazdab F (2008) Thermometers and thermobarometers in granitic systems. Rev Mineral Geochem 69(1):121–142CrossRefGoogle Scholar
  5. Bachmann O, Dungan MA (2002) Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. Am Mineral 87(8–9):1062–1076Google Scholar
  6. Barclay J, Carmichael ISE (2004) A hornblende basalt from Western Mexico: water-saturated phase relations constrain a pressure–temperature window of eruptibility. J Petrol 45(3):485–506CrossRefGoogle Scholar
  7. Blundy J, Cashman K (2008) Petrologic reconstruction of magmatic system variables and processes. Rev Mineral Geochem 69(1):179–239CrossRefGoogle Scholar
  8. Blundy JD, Holland TJB (1990) Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib Mineral Petrol 104(2):208–224CrossRefGoogle Scholar
  9. Browne BL (2005) Petrologic and experimental constraints on magma mixing and ascent: examples from Japan and Alaska. Ph.D. Thesis, University of Alaska FairbanksGoogle Scholar
  10. Browne BL, Gardner JE (2006) The influence of magma ascent path on the texture, mineralogy, and formation of hornblende reaction rims. Earth and Planetary Science Letters 246(3–4):161–176CrossRefGoogle Scholar
  11. Chalot-Prat F, Gîrbacea R (2000) Partial delamination of continental mantle lithosphere, uplift-related crust-mantle decoupling, volcanism and basin formation: a new model for the Pliocene–Quaternary evolution of the southern East-Carpathians, Romania. Tectonophysics 327:83–107CrossRefGoogle Scholar
  12. Chambefort I, Dilles JH, Longo AA (2013) Amphibole geochemistry of the yanacocha volcanics, peru: evidence for diverse sources of magmatic volatiles related to gold ores. J Petrol 54(5):1017–1046CrossRefGoogle Scholar
  13. Coombs ML, Gardner JE (2004) Reaction rim growth on olivine in silicic melts: implications for magma mixing. Am Mineral 89(5–6):748–758Google Scholar
  14. Coombs ML, Sisson TW, Bleick HA, Henton SM, Nye CJ, Payne AL, Cameron CE, Larsen JF, Wallace KL, Bull KF (2013) Andesites of the 2009 eruption of Redoubt Volcano, Alaska. J Volcanol Geoth Res 259:349–372CrossRefGoogle Scholar
  15. Costa F, Singer B (2002) Evolution of holocene dacite and compositionally zoned magma, volcán San Pedro, Southern Volcanic Zone, Chile. J Petrol 43(8):1571–1593CrossRefGoogle Scholar
  16. Costa F, Scaillet B, Pichavant M (2004) Petrological and experimental constraints on the pre-eruption conditions of holocene dacite from Volcán San Pedro (36°S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. J Petrol 45(4):855–881CrossRefGoogle Scholar
  17. Costa F, Andreastuti S, Bouvet de Maisonneuve C, Pallister JS (2013) Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J Volcanol Geotherm Res 261:209–235CrossRefGoogle Scholar
  18. Couch S, Sparks RSJ, Carroll MR (2001) Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 411:1037–1039CrossRefGoogle Scholar
  19. De Angelis SH, Larsen J, Coombs M (2013) Pre-eruptive magmatic conditions at Augustine volcano, Alaska, 2006: evidence from amphibole geochemistry and texture. J Petrol 0(0):1–23Google Scholar
  20. Eichelberger JC, Chertkoff DG, Dreher ST, Nye CJ (2000) Magmas in collision: rethinking chemical zonation in silicic magmas. Geology 28:603–606CrossRefGoogle Scholar
  21. Ernst WG, Liu J (1998) Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB—a semiquantitative thermobarometer. Am Mineral 83:952–969Google Scholar
  22. Fillerup MA, Knapp JH, Knapp CC, Raileanu V (2010) Mantle earthquakes in the absence of subduction? Continental delamination in the Romanian Carpathians. Lithosphere 2(5):333–340CrossRefGoogle Scholar
  23. Gill JB (1981) Orogenic andesites and plate tectonics. Springer, BerlinCrossRefGoogle Scholar
  24. Gîrbacea R, Frisch W (1998) Slab in the wrong place: lower lithospheric mantle delamination in the last stage of the Eastern Carpathian subduction retreat. Geology 26(7):611–614CrossRefGoogle Scholar
  25. Grove T, Elkins-Tanton L, Parman S, Chatterjee N, Müntener O, Gaetani G (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145(5):515–533CrossRefGoogle Scholar
  26. Grove T, Baker M, Price R, Parman S, Elkins-Tanton L, Chatterjee N, Müntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib Mineral Petrol 148(5):542–565CrossRefGoogle Scholar
  27. Hammarstrom JM, Zen E (1986) Aluminum in hornblende; an empirical igneous geobarometer. Am Mineral 71(11–12):1297–1313Google Scholar
  28. Harangi S (2007) A Kárpát-Pannon térség legutolsó vulkáni kitörései—lesz-e még folytatás? (The last volcanic eruptions in the Carpathian-Pannonian Region—to be continued?). Földrajzi Közlemények 131(4):271–288Google Scholar
  29. Harangi S, Lenkey L (2007) Genesis of the Neogene to Quaternary volcanism in the Carpathian–Pannonian region: role of subduction, extension, and mantle plume. Geol Soc Am Spec Pap 418:67–92Google Scholar
  30. Harangi S, Mason PRD, Lukács R (2005) Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: in situ trace element data of glass shards and mineral chemical constraints. J Volcanol Geotherm Res 143(4):237–257CrossRefGoogle Scholar
  31. Harangi S, Molnár M, Vinkler AP, Kiss B, Jull ATJ, Leonard AG (2010) Radiocarbon dating of the last volcanic eruptions of Ciomadul Volcano, Southeast Carpathians, Eastern-Central Europe. Radiocarbon 52(3):1498–1507Google Scholar
  32. Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447CrossRefGoogle Scholar
  33. Holtz F, Johannes W, Tamic N, Behrens H (2001) Maximum and minimum water contents of granitic melts generated in the crust: a re-evaluation and implications. Lithos 56:1–14CrossRefGoogle Scholar
  34. Holtz F, Sato H, Lewis J, Benrens H, Nakada S (2005) Experimental petrology of the 1991–1995 Unzen dacite, Japan. Part I: phase relations, phase composition and pre-eruptive conditions. J Petrol 46(2):319–337CrossRefGoogle Scholar
  35. Humphreys MCS, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch volcano: insights from phenocryst zoning. J Petrol 47(12):2303–2334CrossRefGoogle Scholar
  36. Humphreys M, Christopher T, Hards V (2009a) Microlite transfer by disaggregation of mafic inclusions following magma mixing at Soufriere Hills volcano, Montserrat. Contrib Mineral Petrol 157(5):609–624CrossRefGoogle Scholar
  37. Humphreys MCS, Edmonds M, Christopher T, Hards V (2009b) Chlorine variations in the magma of Soufrière Hills volcano, Montserrat: insights from Cl in hornblende and melt inclusions. Geochim Cosmochim Acta 73(19):5693–5708CrossRefGoogle Scholar
  38. Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4:43–47CrossRefGoogle Scholar
  39. Johnson MC, Rutherford MJ (1989a) Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17(9):837–841CrossRefGoogle Scholar
  40. Johnson MC, Rutherford MJ (1989b) Experimentally determined conditions in the Fish Canyon Tuff, Colorado, magma chamber. J Petrol 30(3):711–737CrossRefGoogle Scholar
  41. Karátson D, Telbisz T, Harangi S, Magyari E, Dunkl I, Kiss B, Jánosi C, Veres D, Braun M, Fodor E, Biró T, Kósik S, von Eynatten H, Lin D (2013) Morphometrical and geochronological constraints on the youngest eruptive activity in East-Central Europe at the Ciomadul (Csomád) lava dome complex, East Carpathians. J Volcanol Geotherm Res 255:43–56CrossRefGoogle Scholar
  42. Kent AJR, Darr C, Koleszar AM, Salisbury MJ, Cooper KM (2010) Preferential eruption of andesitic magmas through recharge filtering. Nat Geosci 3(9):631–636CrossRefGoogle Scholar
  43. Koleszar AM, Kent AJR (2011) Compositional diversity and plumbing systems: evidence from amphiboles from Mount Hood, Oregon. AGU abstract #V52A-01Google Scholar
  44. Koleszar AM, Kent AJR, Wallace PJ, Scott WE (2012) Controls on long-term low explosivity at andesitic volcanoes: insights from Mount Hood, Oregon. J Volcanol Geotherm Res 219–220:1–14CrossRefGoogle Scholar
  45. Krawczynski M, Grove T, Behrens H (2012) Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contrib Mineral Petrol 164(2):317–339CrossRefGoogle Scholar
  46. Larsen J (2006) Rhyodacite magma storage conditions prior to the 3430 yBP caldera-forming eruption of Aniakchak volcano, Alaska. Contrib Mineral Petrol 152(4):523–540CrossRefGoogle Scholar
  47. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJC, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. Can Mineral 35:219–246Google Scholar
  48. Lorinczi P, Houseman GA (2009) Lithospheric gravitational instability beneath the Southeast Carpathians. Tectonophysics 474(1–2):322–336CrossRefGoogle Scholar
  49. Martel C, Pichavant M, Holtz F, Scaillet B, Bourdier J-L, Traineau H (1999) Effects of fO2 and H2O on andesite phase relations between 2 and 4 kbar. J Geophys Res Solid Earth 104(B12):29453–29470CrossRefGoogle Scholar
  50. Mason PRD, Kraan WJ (2002) Attenuation of spectral interferences during laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS) using an rf only collision and reaction cell. J Anal At Spectrom 17:858–867CrossRefGoogle Scholar
  51. Mason PRD, Downes H, Thirlwall M, Seghedi I, Szakács A, Lowry D, Mattey D (1996) Crustal assimilation as a major petrogenetic process in the East Carpathian Neogene and Quaternary continental margin arc, Romania. J Petrol 37(4):927–959CrossRefGoogle Scholar
  52. Mason PRD, Seghedi I, Szakács A, Downes H (1998) Magmatic constraints on geodynamic models of subduction int he East Carpathians, Romania. Tectonophysics 297:157–176CrossRefGoogle Scholar
  53. McGuire AV, Francis CA, Dyar Darby M (1992) Mineral standards for electron microprobe analysis of oxygen. Am Mineral 77:1087–1091Google Scholar
  54. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355CrossRefGoogle Scholar
  55. Murphy MD, Sparks RSJ, Barclay J, Caroll MR, Brewer TS (2000) Remobilization of Andesite Magma by Intrusion of Mafic Magma at the Soufriere Hills Volcano, Montserrat, West Indies. J Petrol 41(1):21–42CrossRefGoogle Scholar
  56. Nakada S (1991) Magmatic processes in titanite-bearing dacites, Central Andes of Chile and Bolivia. Am Mineral 76(3–4):548–560Google Scholar
  57. Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38(5):757–775CrossRefGoogle Scholar
  58. Nakamura M (1995) Continuous mixing of crystal mush and replenished magma in the ongoing Unzen eruption. Geology 23(9):807–810CrossRefGoogle Scholar
  59. Pallister JS, Hoblitt RP, Meeker GP, Knight RJ, Siems DF (1996) Magma mixing at Mount Pinatubo: petrographic and chemical evidence from the 1991 deposits. In: Newhall CG, Punongbayan RS (eds) Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle, pp 687–731Google Scholar
  60. Pallister JS, Thornber CR, Cashman KV, Clynne MA, Lowers HA, Mandeville CW, Brownfield IK, Meeker GP (2008) Petrology of the 2004–2006 Mount St. Helens lava dome—implications for magmatic plumbing and eruption triggering. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of mount St. Helens, 2004–2006, USGS Professional Paper, vol 1750, pp 674–702Google Scholar
  61. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144CrossRefGoogle Scholar
  62. Pécskay Z, Lexa J, Szakács A, Balogh K, Seghedi I, Konecny V, Kovács M, Márton E, Kaliciak M, Széky-Fux V, Póka T, Gyarmati P, Edelstein O, Rosu E, Zec B (1995) Space and time distribution of Neogene-Quaternary volcanism in the Carpatho-Pannonian Region. Acta Vulcanol. Special Issue 7(2):15–28Google Scholar
  63. Peltz S, Vajdea E, Balogh K, Pécskay Z (1987) Contributions to the geochronological study of the volcanic processes int he Calimani and Hargitha Mountains (East Carpathians, Romania). Dari de Seama ale Sedintelor Institutul de Geologie si Geofizica 72–73:323–338Google Scholar
  64. Pichavant M, Martel C, Bourdier J-L, Scaillet B (2002) Physical conditions, structure, and dynamics of a zoned magma chamber: mount Pelée (Martinique, Lesser Antilles Arc). J Geophys Res 107(B5):1–28Google Scholar
  65. Popa M, Radulian M, Szakács A, Seghedi I, Zaharia B (2012) New seismic and tomography data in the southern part of the Harghita mountains (Romania, Southeastern Carpathians): connection with recent volcanic activity. Pure appl Geophys 169(9):1557–1573CrossRefGoogle Scholar
  66. Ren Y, Stuart GW, Houseman GA, Dando B, Ionescu C, Hegedüs E, Radovanović S, Shen Y (2012) Upper mantle structures beneath the Carpathian–Pannonian region: implications for the geodynamics of continental collision. Earth Planet Sci Lett 349–350:139–152CrossRefGoogle Scholar
  67. Reubi O, Blundy J (2009) A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 461:1269–1273CrossRefGoogle Scholar
  68. Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa. Contrib Mineral Petrol 163(5):877–895CrossRefGoogle Scholar
  69. Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160(1):45–66CrossRefGoogle Scholar
  70. Ruprecht P, Bachmann O (2010) Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. Geology 38:919–922CrossRefGoogle Scholar
  71. Rutherford MJ, Devine JD (1988) The May 18, 1980, eruption of Mount St. Helens Stability and chemistry of amphiboles in the magma chamber. J Geophys Res 93(B10):11949–11959CrossRefGoogle Scholar
  72. Rutherford MJ, Devine JD (2003) Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2002 Soufrière hills magma. J Petrol 44(8):1433–1453CrossRefGoogle Scholar
  73. Rutherford MJ, Devine JD (2008) Magmatic conditions and processes in the storage zone of the 2004–2006 Mount St. Helens Dacite. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, USGS Professional Paper, vol 1750, pp 703–725Google Scholar
  74. Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J Geophys Res 98(B11):19667–19685CrossRefGoogle Scholar
  75. Sato H, Nakada S, Fujii T, Nakamura M, Suzuki-Kamata K (1999) Groundmass pargasite in the 1991–1995 dacite of Unzen volcano: phase stability experiments and volcanological implications. J Volcanol Geotherm Res 89(1–4):197–212CrossRefGoogle Scholar
  76. Sato H, Holtz F, Behrens H, Botcharnikov R, Nakada S (2005) Experimental petrology of the 1991–1995 Unzen dacite, Japan. Part II: cl/OH partitioning between hornblende and melt and its implications for the origin of oscillatory zoning of hornblende phenocrysts. J Petrol 46(2):339–354CrossRefGoogle Scholar
  77. Scaillet B, Evans BW (1999) The 15 June 1991 eruption of Mount Pinatubo. I. phase equilibria and pre-eruption P–T–fO2–fH2O conditions of the dacite magma. J Petrol 40(3):381–411CrossRefGoogle Scholar
  78. Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110(2–3):304–310CrossRefGoogle Scholar
  79. Scott JAJ, Mather TA, Pyle DM, Rose WI, Chigna G (2012) The magmatic plumbing system beneath Santiaguito volcano, Guatemala. J Volcanol Geotherm Res 237–238:54–68CrossRefGoogle Scholar
  80. Seghedi I, Szakács A, Udrescu C, Stoian M, Grabari G (1987) Trace element geochemistry of the South Hargitha volcanics (East Carpathians): calc-alkaline and shoshonitic association. Dari de Seama ale Sedintelor Institutul de Geologie si Geofizica 72–73:381–397Google Scholar
  81. Seghedi I, Maţenco L, Downes H, Mason PRD, Szakács A, Pécskay Z (2011) Tectonic significance of changes in post-subduction Pliocene–Quaternary magmatism in the south east part of the Carpathian–Pannonian Region. Tectonophysics 502(1–2):146–157CrossRefGoogle Scholar
  82. Shane P, Smith VC (2013) Using amphibole crystals to reconstruct magma storage temperatures and pressures for the post-caldera collapse volcanism at Okataina volcano. Lithos 156–159:159–170CrossRefGoogle Scholar
  83. Simakin AG, Salova TP, Babansky AD (2009) Amphibole crystallization from a water-saturated andesite melt: experimental data at P = 2 kbar. Petrology 17(6):591–605CrossRefGoogle Scholar
  84. Simakin A, Zakrevskaya O, Salova T (2012) Novel Amphibole Geo-barometer with Application to Mafic Xenoliths. Earth Sci Res 1(2):82–97CrossRefGoogle Scholar
  85. Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113(2):143–166CrossRefGoogle Scholar
  86. Streck MJ (2008) Mineral Textures and Zoning as Evidence for Open System Processes. In: Putirka KD, Tepley III FJ (eds) Reviews in Mineralogy and Geochemistry, vol 69. Mineralogical Society of America & Geochemical Society, pp 595–622Google Scholar
  87. Sun S-s, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345CrossRefGoogle Scholar
  88. Szakács A, Seghedi I (1986) Chemical diagnosis of the volcanics from the southeasternmost part of the Harghita Mountains—proposal for a new nomenclature. Revue Roumaine de Géologie 30:41–48Google Scholar
  89. Szakács A, Seghedi I (1995) The Călimani-Gurghiu-Harghita volcanic chain, East Carpathians, Romania: volcanological features. Acta Vulcanol 7(2):145–153Google Scholar
  90. Szakács A, Seghedi I (2013) The relevance of volcanic hazard in Romania: is there any? Environ Eng Manag J 12:125–135Google Scholar
  91. Szakács A, Seghedi I, Pécskay Z (1993) Peculiarities of South Harghita Mts. as the terminal segment of the Carpathian Neogene to Quaternary volcanic chain. Revue Roumaine de Géologie Géophysique et Géographie, Géologie 37:21–37Google Scholar
  92. Szakács A, Seghedi I, Pécskay Z (2002) The most recent volcanism in the Carpathian–Pannonian Region. Is there any volcanic hazard? In: The XVIIth Congress of Carpathian-Balkan Geological Association, vol 53. Geologica Carpathica, Bratislava, Slovakia, pp 193–194Google Scholar
  93. Thornber CR, Pallister JS, Lowers HA, Rowe MC, Mandeville CW, Meeker GP (2008) Chemistry, mineralogy, and petrology of amphibole in Mount St. Helens 2004–2006 dacite. In: Sherrod DR, Scott WE, Stauffer PH (eds) A Volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006, USGS Professional Paper, vol 1750, pp 727–754Google Scholar
  94. Turner SJ, Izbekov P, Langmuir C (2013) The magma plumbing system of Bezymianny Volcano: insights from a 54 year time series of trace element whole-rock geochemistry and amphibole compositions. J Volcanol Geotherm Res 263:108–121CrossRefGoogle Scholar
  95. Vaselli O, Minissale A, Tassi F, Magro G, Seghedi I, Ioane D, Szakács A (2002) A geochemical traverse across the Eastern Carpathians (Romania): constraints on the origin and evolution of the mineral water and gas discharges. Chem Geol 182(2–4):637–654CrossRefGoogle Scholar
  96. Viccaro M, Ferlito C, Cristofolini R (2007) Amphibole crystallization in the Etnean feeding system: mineral chemistry and trace element partitioning between Mg-hastingsite and alkali basaltic melt. Eur J Mineral 19(4):499–511CrossRefGoogle Scholar
  97. Vinkler AP, Harangi S, Ntaflos T, Szakács A (2007) A Csomád vulkán (Keleti-Kárpátok) horzsaköveinek kőzettani és geokémiai vizsgálata—petrogenetikai következtetések (Petrology and geochemistry of pumices from the Ciomadul volcano (Eastern Carpathians)—implications for petrogenetic processes). Földtani Közlöny (Bull. Hung. Geol. Soc.) 137(1):103–128Google Scholar
  98. Vyhnal CR, McSween HY, Speer JA (1991) Hornblende chemistry in southern Appalachian granitoids: implications for aluminum hornblende thermobarometry and magmatic epidote stability. Am Mineral 76:176–188Google Scholar
  99. Walker B Jr, Klemetti E, Grunder A, Dilles J, Tepley F, Giles D (2013) Crystal reaming during the assembly, maturation, and waning of an eleven-million-year crustal magma cycle: thermobarometry of the Aucanquilcha Volcanic Cluster. Contrib Mineral Petrol 165(4):663–682CrossRefGoogle Scholar
  100. Wolf KJ, Eichelberger JC (1997) Syneruptive mixing, degassing, and crystallization at Redoubt Volcano, eruption of December, 1989 to May 1990. J Volcanol Geoth Res 75(1–2):19–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Balázs Kiss
    • 1
    • 2
    • 5
    Email author
  • Szabolcs Harangi
    • 1
    • 2
  • Theodoros Ntaflos
    • 3
  • Paul R. D. Mason
    • 4
  • Elemér Pál-Molnár
    • 1
    • 5
  1. 1.MTA-ELTE Volcanology Research GroupBudapestHungary
  2. 2.Department of Petrology and GeochemistryEötvös Loránd UniversityBudapestHungary
  3. 3.Department of Lithospheric ResearchUniversity of ViennaViennaAustria
  4. 4.Department of Earth SciencesUtrecht UniversityUtrechtThe Netherlands
  5. 5.Vulcano Research Group, Department of Mineralogy, Geochemistry and PetrologyUniversity of SzegedSzegedHungary

Personalised recommendations