An experimental study on the influence of fluorine and chlorine on phase relations in peralkaline phonolitic melts

  • Christopher GiehlEmail author
  • Michael A. W. Marks
  • Marcus Nowak
Original Paper


Fluorine and chlorine affect phase stabilities in magmatic rocks. We present phase equilibrium experiments investigating a peralkaline and iron-rich phonolitic composition with variable F and Cl contents. The starting composition represents a dyke rock, which is a possible parental melt to the peralkaline Ilímaussaq plutonic complex (South Greenland). Experiments were performed at 100 MPa, 1,000–650 °C and low oxygen fugacity adjusted with graphite-lined gold capsules in an internally heated argon pressure vessel and rapid quench cold seal pressure vessels. To cover this large T interval, we applied a two-step fractional crystallization strategy where glasses representing residual melt compositions at 800 °C were synthesized as starting material for consecutive experiments at lower T. In these experiments, oxidized starting glasses allocate oxygen by reduction of ferric iron and up to 1.2 wt% dissolved OH form through reaction with hydrogen provided by the pressure medium (H2O) in initially dry experiments. For OH determination, hydrated super-liquidus experiments in Au capsules were performed to calibrate the extinction coefficient for the fundamental OH stretching vibration using infrared spectroscopy (ε 3,415 = 48 ± 3 L mol−1 cm−1). Observed mineral phases in our experiments are titanomagnetite, fayalitic olivine, clinopyroxene, aenigmatite (Na2Fe5TiSi6O20), alkali feldspar and nepheline (±native iron) coexisting with residual melt. Above 1.5 wt% Fmelt concentrations, fluorite (CaF2) and hiortdahlite (Ca6Zr2Si4O16F4) are stable in favor of Ca-rich clinopyroxene. Sodalite (Na8Al6Si6O24Cl2) and eudialyte (Na15Ca6Fe3Zr3Si26O73(OH)3Cl2) form at Clmelt concentrations of 0.2–0.5 wt% (depending on T) and ZrO2 melt concentrations >0.7 wt% are additionally needed to stabilize eudialyte and hiortdahlite. Therefore, F and Cl may become compatible in such systems and have the potential to influence F/Cl melt ratios in evolving magmas.


Phase equilibrium experiment Liquid line of descent Halogens Phonolite Ilímaussaq Agpaitic Eudialyte Infrared spectroscopy Extinction coefficient 



Starting glasses were synthesized with the help of Annette Flicker, Fabian Burmann and Tobias Renz, and analyzed with Mössbauer spectroscopy by Christian Schröder. Gold and graphite capsules were issued by Barbara Maier, Holger Marxer assisted in doing IHPV experiments and Indra Gill-Kopp prepared experimental samples for different analytical methods. Harald Behrens (Hannover) analyzed hydrated glasses with Karl Fischer titration. Annette Flicker assisted during infrared spectroscopy and electron microprobe analyses were supported by Thomas Wenzel. Reviews of Renat Almeev, Tom Andersen and Bruno Scaillet refined the manuscript and helped to clarify important details. The Deutsche Forschungsgemeinschaft (Grants MA 2563/4-1 and NO 378/7-1) provided financial support which is thankfully acknowledged.

Supplementary material

410_2014_977_MOESM1_ESM.pdf (931 kb)
Supplementary material 1 (PDF 930 kb)
410_2014_977_MOESM2_ESM.xlsx (196 kb)
Supplementary material 2 (XLSX 190 kb)


  1. Aiuppa A (2009) Degassing of halogens from basaltic volcanism: insights from volcanic gas observations. Chem Geol 263(1–4):99–109. doi: 10.1016/j.chemgeo.2008.08.022 CrossRefGoogle Scholar
  2. Aiuppa A, Baker DR, Webster JD (2009) Halogens in volcanic systems. Chem Geol 263(1–4):1–18. doi: 10.1016/j.chemgeo.2008.10.005 Google Scholar
  3. Andersen T, Erambert M, Larsen AO, Selbekk RS (2010) Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: zirconium silicate mineral assemblages as indicators of alkalinity and volatile Fugacity in mildly agpaitic magma. J Petrol 51(11):2303–2325. doi: 10.1093/petrology/egq058 CrossRefGoogle Scholar
  4. Andersen T, Carr P, Erambert M (2012) Late-magmatic mineral assemblages with siderite and zirconian pyroxene and amphibole in the anorogenic Mt Gibraltar microsyenite, New South Wales, Australia, and their petrological implications. Lithos 151:46–56. doi: 10.1016/j.lithos.2011.09.012 CrossRefGoogle Scholar
  5. Appen AA (1952) Some general features of dependence of the properties of silicate glasses on their composition. Thesis, LeningradGoogle Scholar
  6. Armstrong JT (1988) Quantitative analysis of silicate and oxide materials: comparison of Monte Carlo, ZAF and Φ (ρz) procedures. In: Newbury DE (ed) Microbeam analysis—1988. San Francisco Press, San FranciscoGoogle Scholar
  7. Baasner A, Schmidt BC, Webb SL (2013) Compositional dependence of the rheology of halogen (F, Cl) bearing aluminosilicate melts. Chem Geol 346:172–183. doi: 10.1016/j.chemgeo.2012.09.020 CrossRefGoogle Scholar
  8. Bailey JC, Rose-Hansen J, Løvborg L, Sørensen H (1981) Evolution of Th and U whole-rock contents in the Ilimaussaq intrusion. Rapp Grønl Geol Unders 103:87–98Google Scholar
  9. Balcone-Boissard H, Villemant B, Boudon G (2010) Behavior of halogens during the degassing of felsic magmas. Geochem Geophys Geosyst 11(9):Q09005. doi: 10.1029/2010gc003028 CrossRefGoogle Scholar
  10. Bartels A, Holtz F, Linnen RL (2010) Solubility of manganotantalite and manganocolumbite in pegmatitic melts. Am Mineral 95(4):537–544. doi: 10.2138/am.2010.3157 CrossRefGoogle Scholar
  11. Behrens H, Misiti V, Freda C, Vetere F, Botcharnikov RE, Scarlato P (2009) Solubility of H(2)O and CO(2) in ultrapotassic melts at 1200 and 1250 degrees C and pressure from 50 to 500 MPa. Am Mineral 94(1):105–120. doi: 10.2138/am.2009.2796 CrossRefGoogle Scholar
  12. Berman R (1988) Internally consistent thermodynamic data for minerals in the system Na2O–K2O–CaOMgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. J Petrol 29:445–522CrossRefGoogle Scholar
  13. Berman R, Brown TH, Perkins EH (1987) Geø-Calc: software for calculation and display of P–T–X phase diagrams. Am Mineral 72:861–862Google Scholar
  14. Berndt J, Liebske C, Holtz F, Freise M, Nowak M, Ziegenbein D, Hurkuck W, Koepke J (2002) A combined rapid-quench and H-2-membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts. Am Mineral 87(11–12):1717–1726Google Scholar
  15. Blank JG, Brooker RA (1994) Experimental studies of carbon dioxide in silicate melts: solubility, speciation, and stable carbon isotope behavior. In: Carroll MR, Holloway JR (eds) Volatiles in magmas, vol 30, Reviews in Mineralogy, pp 157–186Google Scholar
  16. Bohlen SR, Essene EJ (1978) The significance of metamorphic fluorite in the Adirondacks. Geochim Cosmochim Acta 42(11):1669–1678. doi: 10.1016/0016-7037(78)90255-7 CrossRefGoogle Scholar
  17. Brøgger WC (1890) Die Mineralien der Syenitpegmatitgänge der südnorwegischen Augit- und Nephelinsyenite. Zeitschrift für Krystallographie und Mineralogie 16:367–377Google Scholar
  18. Bureau H, Métrich N (2003) An experimental study of bromine behaviour in water-saturated silicic melts. Geochim Cosmochim Acta 67(9):1689–1697. doi: 10.1016/S0016-7037(02)01339-X CrossRefGoogle Scholar
  19. Burnham CW (1979) The importance of volatile constituents. In: Yoder HS (ed) The evolution of the igneous rocks: fiftieth anniversary perspectives. Princeton University Press, Princeton, pp 439–482Google Scholar
  20. Carroll MR (2005) Chlorine solubility in evolved alkaline magmas. Ann Geophys 48(4–5):619–631Google Scholar
  21. Carroll MJ, Holloway JR (eds) (1994) Volatiles in magmas: solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas, vol 30. Reviews in mineralogy. Mineralogical Society of AmericaGoogle Scholar
  22. Chakhmouradian AR, Zaitsev AN (2012) Rare earth mineralization in igneous rocks: sources and processes. Elements 8(5):347–353. doi: 10.2113/gselements.8.5.347 CrossRefGoogle Scholar
  23. Davis KM, Tomozawa M (1996) An infrared spectroscopic study of water-related species in silica glasses. J Non Cryst Solids 201(3):177–198. doi: 10.1016/0022-3093(95)00631-1 CrossRefGoogle Scholar
  24. Dickenson MP, Hess PC (1986) The structural role and homogeneous redox equilibria of iron in peraluminous, metaluminous and peralkaline silicate melts. Contrib Mineral Petrol 92(2):207–217. doi: 10.1007/BF00375294 CrossRefGoogle Scholar
  25. Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36(6):1607–1631Google Scholar
  26. Dolejš D, Baker DR (2004) Thermodynamic analysis of the system Na2O–K2O–CaO–Al2O3–SiO2–H2O–F2O − 1: stability of fluorine-bearing minerals in felsic igneous suites. Contrib Mineral Petrol 146(6):762–778. doi: 10.1007/s00410-003-0533-3 CrossRefGoogle Scholar
  27. Dolejš D, Baker DR (2006) Fluorite solubility in hydrous haplogranitic melts at 100 MPa. Chem Geol 225(1–2):40–60. doi: 10.1016/j.chemgeo.2005.08.007 CrossRefGoogle Scholar
  28. Engell J (1973) A closed system crystal-fractionation model for the agpaitic Ilímaussaq intrusion, South Greenland, with special reference to the lujavrites. Bull Geol Soc Den 22:354–362Google Scholar
  29. Ferguson AK (1978) The crystallization of pyroxenes and amphiboles in some alkaline rocks and the presence of a pyroxene compositional gap. Contrib Mineral Petrol 67(1):11–15. doi: 10.1007/bf00371628 CrossRefGoogle Scholar
  30. Filiberto J, Treiman AH (2009) The effect of chlorine on the liquidus of basalt: first results and implications for basalt genesis on Mars and Earth. Chem Geol 263:60–68. doi: 10.1016/j.chemgeo.2008.08.025
  31. Filiberto J, Wood J, Dasgupta R, Shimizu N, Le L, Treiman AH (2012) Effect of fluorine on near-liquidus phase equilibria of an Fe–Mg rich basalt. Chem Geol 312–313:118–126. doi: 10.1016/j.chemgeo.2012.04.015 CrossRefGoogle Scholar
  32. Foley SF, Taylor WR, Green DH (1986) The effect of fluorine on phase relationships in the system KAlSiO4–Mg2SiO4–SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts. Contrib Mineral Petrol 93(1):46–55. doi: 10.1007/bf00963584 CrossRefGoogle Scholar
  33. French BM (1966) Some geological implications of equilibrium between graphite and a C–H–O gas phase at high temperatures and pressures. Rev Geophys 4(2):223–253. doi: 10.1029/RG004i002p00223 CrossRefGoogle Scholar
  34. French BM, Eugster HP (1965) Experimental control of oxygen fugacities by graphite-gas equilibriums. J Geophys Res 70(6):1529–1539. doi: 10.1029/JZ070i006p01529 CrossRefGoogle Scholar
  35. Frindt S, Trumbull RB, Romer RL (2004) Petrogenesis of the gross Spitzkoppe topaz granite, central western Namibia: a geochemical and Nd–Sr–Pb isotope study. Chem Geol 206(1–2):43–71. doi: 10.1016/j.chemgeo.2004.01.015 CrossRefGoogle Scholar
  36. Gabitov RI, Price JD, Watson EB (2005) Solubility of fluorite in haplogranitic melt of variable alkalis and alumina content at 800 degrees–1000 degrees C and 100 MPa. Geochem Geophy Geosy 6(3):1–10. doi: 10.1029/2004gc000870 Google Scholar
  37. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2):197–212. doi: 10.1007/bf00307281 CrossRefGoogle Scholar
  38. Giehl C, Marks M, Nowak M (2013) Phase relations and liquid lines of descent of an iron-rich peralkaline phonolitic melt: an experimental study. Contrib Mineral Petrol 165(2):283–304. doi: 10.1007/s00410-012-0809-6 CrossRefGoogle Scholar
  39. Gioncada A, Orlandi P, Vezzoli L, Omarini RH, Mazzuoli R, Lopez-Azarevich V, Sureda R, Azarevich M, Acocella V, Ruch J (2014) Topaz magmatic crystallization in rhyolites of the Central Andes (Chivinar volcanic complex, NW Argentina): constraints from texture, mineralogy and rock chemistry. Lithos 184–187:62–73. doi: 10.1016/j.lithos.2013.10.023 CrossRefGoogle Scholar
  40. Graser G, Potter J, Köhler J, Markl G (2008) Isotope, major, minor and trace element geochemistry of late-magmatic fluids in the peralkaline Ilímaussaq intrusion, South Greenland. Lithos 106(3–4):207–221. doi: 10.1016/j.lithos.2008.07.007 CrossRefGoogle Scholar
  41. Hess PC (1991) The role of high field strength cations in silicate melts. In: Perchuk LL, Kushiro I (eds) Physical chemistry of magmas, vol 9. Springer, New York, pp 152–191. doi: 10.1007/978-1-4612-3128-8_5
  42. Holland T, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145(4):492–501. doi: 10.1007/s00410-003-0464-z CrossRefGoogle Scholar
  43. Holloway JR, Pan V, Gudmundsson G (1992) High-pressure fluid-absent melting experiments in the presence of graphite: oxygen fugacity, ferric/ferrous ratio and dissolved CO2. Eur J Mineral 4:105–114Google Scholar
  44. Jakobsson S, Oskarsson N (1994) The system C–O in equilibrium with graphite at high pressure and temperature: an experimental study. Geochim Cosmochim Acta 58(1):9–17. doi: 10.1016/0016-7037(94)90442-1 CrossRefGoogle Scholar
  45. Keppler H (1993) Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks. Contrib Mineral Petrol 114(4):479–488. doi: 10.1007/bf00321752 CrossRefGoogle Scholar
  46. Khomyakov AP (1995) Mineralogy of hyperagpaitic alkaline rocks. Oxford Scientific Publications, Clarendon Press, OxfordGoogle Scholar
  47. Kloess GH (2000) Dichtefluktuationen natürlicher Gläser. Universität Jena, Habil ThesisGoogle Scholar
  48. Kogarko LN (1974) Role of volatiles. In: Sørensen H (ed) The alkaline rocks. Wiley, London, pp 474–487Google Scholar
  49. Kogarko LN, Lazutkina LN, Romanchev BP (1982) The origin of eudialyte mineralization (translated from Russian). Geokhimiya 10:1415–1432Google Scholar
  50. Konnerup-Madsen J, Kreulen R, Rose-Hansen J (1988) Stable isotope characteristics of hydrocarbon gases in the alkaline Ilímaussaq complex, South Greenland. Bull Minéral 102:642–653Google Scholar
  51. Kramm U, Kogarko LN (1997) Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline province, Russia. Lithos 32(3–4):225–242Google Scholar
  52. Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108(1–2):82–92. doi: 10.1007/BF00307328 CrossRefGoogle Scholar
  53. Krumrei TV, Pernicka E, Kaliwoda M, Markl G (2007) Volatiles in a peralkaline system: abiogenic hydrocarbons and F–Cl–Br systematics in the naujaite of the Ilímaussaq intrusion, South Greenland. Lithos 95:298–314. doi: 10.1016/j.lithos.2006.08.003 CrossRefGoogle Scholar
  54. Larsen LM, Steenfelt A (1974) Alkali loss and retention in an iron-rich peralkaline phonolite dyke from the Gardar province, south Greenland. Lithos 7:81–90. doi: 10.1016/0024-4937(74)90021-8 CrossRefGoogle Scholar
  55. Lieberman J, Petrakakis K (1991) TWEEQU thermobarometry: analysis of uncertainties and applications to granulites from western Alaska and Austria. Can Mineral 29(4):857–887Google Scholar
  56. Lukkari S, Holtz F (2007) Phase relations of a F-enriched peraluminous granite: an experimental study of the Kymi topaz granite stock, southern Finland. Contrib Mineral Petrol 153(3):273–288. doi: 10.1007/s00410-006-0146-8 CrossRefGoogle Scholar
  57. Luth RW (1988) Effects of F on phase equilibria and liquid structure in the system NaAlSiO4–CaMgSi2O6–SiO2. Am Mineral 73(3–4):306–312Google Scholar
  58. Mandeville CW, Webster JD, Rutherford MJ, Taylor BE, Timbal A, Faure K (2002) Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses. Am Mineral 87(7):813–821Google Scholar
  59. Marks M, Markl G (2001) Fractionation and assimilation processes in the alkaline augite syenite unit of the Ilimaussaq intrusion, South Greenland, as deduced from phase equilibria. J Petrol 42(10):1947–1969. doi: 10.1093/petrology/42.10.1947 CrossRefGoogle Scholar
  60. Marks M, Markl G (2003) Ilímaussaq ‘en miniature’: closed-system fractionation in an agpaitic dyke rock from the Gardar Province, South Greenland (contribution to the mineralogy of Ilímaussaq no. 117). Mineral Mag 67(5):893–919. doi: 10.1180/0026461036750150 CrossRefGoogle Scholar
  61. Marks MAW, Hettmann K, Schilling J, Frost BR, Markl G (2011) The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. J Petrol 52(3):439–455. doi: 10.1093/petrology/egq086 CrossRefGoogle Scholar
  62. Marsh JS (1975) Aenigmatite stability in silica-undersaturated rocks. Contrib Mineral Petrol 50:135–144CrossRefGoogle Scholar
  63. Marshall AS, Hinton RW, Macdonald R (1998) Phenocrystic fluorite in peralkaline rhyolites, Olkaria, Kenya Rift Valley. Mineral Mag 62(4):477–486CrossRefGoogle Scholar
  64. Metrich N, Rutherford MJ (1992) Experimental study of chlorine behavior in hydrous silicic melts. Geochim Cosmochim Acta 56:607–616. doi: 10.1016/0016-7037(92)90085-W CrossRefGoogle Scholar
  65. Mitchell RH, Dawson JB (2012) Carbonate–silicate immiscibility and extremely peralkaline silicate glasses from Nasira cone and recent eruptions at Oldoinyo Lengai Volcano, Tanzania. Lithos 152:40–46. doi: 10.1016/j.lithos.2012.01.006 CrossRefGoogle Scholar
  66. Nakamoto K (1978) Infrared and Raman spectra of inorganic and coordination compounds, 3rd edn. John Wiley & Sons Inc., New YorkGoogle Scholar
  67. Njonfang E, Nono A (2003) Clinopyroxene from some felsic alkaline rocks of the Cameroon Line, central Africa: petrological implications. Eur J Mineral 15(3):527–542. doi: 10.1127/0935-1221/2003/0015-0527 CrossRefGoogle Scholar
  68. Nowak M, Porbatzki D, Spickenbom K, Diedrich O (2003) Carbon dioxide speciation in silicate melts: a restart. Earth Planet Sci Lett 207(1–4):131–139CrossRefGoogle Scholar
  69. Pandya N, Muenow DW, Sharma SK (1992) The effect of bulk composition on the speciation of water in submarine volcanic glasses. Geochim Cosmochim Acta 56(5):1875–1883. doi: 10.1016/0016-7037(92)90317-C CrossRefGoogle Scholar
  70. Parsons I (2012) Full stop for mother earth. Elements 8:396–398Google Scholar
  71. Pfaff K, Wenzel T, Schilling J, Marks MAW, Markl G (2010) A fast and easy-to-use approach to cation site assignment for eudialyte-group minerals. Neues Jahrbuch der Mineralogie Abhandlungen 187(1):69–81CrossRefGoogle Scholar
  72. Piotrowski JM, Edgar AD (1970) Melting relations of undersaturated alkaline rocks from South Greenland. Meddelelser om Grønland 181:62Google Scholar
  73. Price JD, Hogan JP, Gilbert MC (1996) Rapakivi texture in the Mount Scott Granite, Wichita Mountains, Oklahoma. Eur J Mineral 8(2):435–451Google Scholar
  74. Price JD, Hogan JP, Gilbert MC, London D, Morgan GB (1999) Experimental study of titanite–fluorite equilibria in the A-type Mount Scott Granite: implications for assessing F contents of felsic magma. Geology 27(10):951–954. doi: 10.1130/0091-7613(1999)027<0951:esotfe>;2 CrossRefGoogle Scholar
  75. Robie RA, Hemingway BS, Fisher JR (1979) Thermodynamic properties of minerals and related at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. US Geol Surv Bull 1452:456Google Scholar
  76. Robles ER, Fontan F, Monchoux P, Sørensen H, de Parseval P (2001) Hiortdahlite II from the lllmaussaq alkaline complex, South Greenland, the Tamazeght complex, Morocco, and the Iles de Los, Guinea. Geol Greenl Surv Bull 190:131–137Google Scholar
  77. Rooney T, Hart W, Hall C, Ayalew D, Ghiorso M, Hidalgo P, Yirgu G (2012) Peralkaline magma evolution and the tephra record in the Ethiopian Rift. Contrib Mineral Petrol 164(3):407–426. doi: 10.1007/s00410-012-0744-6 CrossRefGoogle Scholar
  78. Scaillet B, Macdonald R (2001) Phase relations of peralkaline silicic magmas and petrogenetic implications. J Petrol 42(4):825–845. doi: 10.1093/petrology/42.4.825 CrossRefGoogle Scholar
  79. Scaillet B, Macdonald R (2003) Experimental constraints on the relationships between peralkaline rhyolites of the Kenya Rift Valley. J Petrol 44(10):1867–1894. doi: 10.1093/petrology/egg062 CrossRefGoogle Scholar
  80. Scaillet B, Macdonald R (2004) Fluorite stability in silicic magmas. Contrib Mineral Petrol 147(3):319–329. doi: 10.1007/s00410-004-0559-1 CrossRefGoogle Scholar
  81. Scaillet B, Macdonald R (2006) Experimental and Thermodynamic constraints on the sulphur yield of peralkaline and metaluminous silicic flood eruptions. J Petrol 47(7):1413–1437. doi: 10.1093/petrology/egl016 CrossRefGoogle Scholar
  82. Schmidt BC, Behrens H (2008) Water solubility in phonolite melts: influence of melt composition and temperature. Chem Geol 256(3–4):259–268. doi: 10.1016/j.chemgeo.2008.06.043 CrossRefGoogle Scholar
  83. Sharp ZD, Helffrich GR, Bohlen SR, Essene EJ (1989) The stability of sodalite in the system NaAlSiO4–NaCl. Geochim Cosmochim Acta 53(8):1943–1954. doi: 10.1016/0016-7037(89)90315-3 CrossRefGoogle Scholar
  84. Shishkina TA, Botcharnikov RE, Holtz F, Almeev RR, Portnyagin MV (2010) Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa. Chem Geol 277(1–2):115–125. doi: 10.1016/j.chemgeo.2010.07.014 CrossRefGoogle Scholar
  85. Signorelli S, Carroll MR (2000) Solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts. Geochim Cosmochim Acta 64(16):2851–2862. doi: 10.1016/s0016-7037(00)00386-0 CrossRefGoogle Scholar
  86. Signorelli S, Carroll M (2002) Experimental study of Cl solubility in hydrous alkaline melts: constraints on the theoretical maximum amount of Cl in trachytic and phonolitic melts. Contrib Mineral Petrol 143(2):209–218. doi: 10.1007/s00410-001-0320-y CrossRefGoogle Scholar
  87. Silver L, Stolper E (1989) Water in albitic glasses. J Petrol 30(3):667–709. doi: 10.1093/petrology/30.3.667 CrossRefGoogle Scholar
  88. Sood MK, Edgar AD (1970) Melting relations of undersaturated alkaline rocks from the Ilímaussaq intrusion and Grønnedal-Ika Complex South Greenland, under water vapour and controlled partial oxygen pressure. Meddelelser om Grønland 181(12):41Google Scholar
  89. Sørensen H (1992) Agpaitic nepheline syenites: a potential source of rare elements. Appl Geochem 7(5):417–427CrossRefGoogle Scholar
  90. Sørensen H (1997) The agpaitic rocks—an overview. Mineral Mag 61(4):485–498. doi: 10.1180/minmag.1997.061.407.02 CrossRefGoogle Scholar
  91. Sørensen H (2001) The Ilímaussaq alkaline complex, South Greenland: status of mineralogical research with new results. Geol Greenl Surv Bull 190:1–167Google Scholar
  92. Spickenbom K, Sierralta M, Nowak M (2010) Carbon dioxide and Argon diffusion in silicate melts: insights into the CO2 speciation in magmas. Geochim Cosmochim Acta 74(22):6541–6564CrossRefGoogle Scholar
  93. Stolper E (1982) Water in silicate glasses: an infrared spectroscopic study. Contrib Mineral Petrol 81(1):1–17. doi: 10.1007/bf00371154 CrossRefGoogle Scholar
  94. Stormer JC, Carmichael ISE (1971) The free energy of sodalite and the behavior of chloride, fluoride and sulfate in silicate magmas. Am Mineral 56:292–306Google Scholar
  95. Tamic N, Behrens H, Holtz F (2001) The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2–H2O fluid phase. Chem Geol 174(1–3):333–347. doi: 10.1016/S0009-2541(00)00324-7 CrossRefGoogle Scholar
  96. Villiger S, Ulmer P, Müntener O, Thompson AB (2004) The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization—an experimental study at 1.0 GPa. J Petrol 45(12):2369–2388. doi: 10.1093/petrology/egh042 CrossRefGoogle Scholar
  97. Watson EB (1979) Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contrib Mineal Petrol 70(4):407–419. doi: 10.1007/bf00371047 CrossRefGoogle Scholar
  98. Webster JD (1990) Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt. Contrib Mineral Petrol 104(4):424–438. doi: 10.1007/bf01575620 CrossRefGoogle Scholar
  99. Webster JD, Duffield WA (1994) Extreme halogen abundances in tin-rich magma of the Taylor Creek Rhyolite, New Mexico. Econ Geol 89(4):840–850. doi: 10.2113/gsecongeo.89.4.840 CrossRefGoogle Scholar
  100. Webster JD, Holloway JR (1990) Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas. Geol Soc Am Spec Pap 246:21–34. doi: 10.1130/SPE246-p21 CrossRefGoogle Scholar
  101. Webster JD, Holloway JR, Hervig RL (1987) Phase equilibria of a Be, U and F-enriched vitrophyre from Spor Mountain, Utah. Geochim Cosmochim Acta 51(3):389–402. doi: 10.1016/0016-7037(87)90057-3 CrossRefGoogle Scholar
  102. Xiong X-L, Rao B, Chen F-R, Zhu J-C, Zhao Z-H (2002) Crystallization and melting experiments of a fluorine-rich leucogranite from the Xianghualing Pluton, South China, at 150 MPa and H2O-saturated conditions. J Asian Earth Sci 21:175–188CrossRefGoogle Scholar
  103. Yamashita S, Kitamura T, Kusakabe M (1997) Infrared spectroscopy of hydrous glasses of arc magma compositions. Geochem J 31(3):169–174CrossRefGoogle Scholar
  104. Zakharov V, Maiorov D, Alishkin A, Matveev V (2011) Causes of insufficient recovery of zirconium during acidic processing of lovozero eudialyte concentrate. Russ J Non Ferr Met 52(5):423–428. doi: 10.3103/s1067821211050129 CrossRefGoogle Scholar
  105. Zhang C, Holtz F, Ma C, Wolff PE, Li X (2012) Tracing the evolution and distribution of F and Cl in plutonic systems from volatile-bearing minerals: a case study from the Liujiawa pluton (Dabie orogen, China). Contrib Mineral Petrol 164(5):859–879. doi: 10.1007/s00410-012-0778-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Christopher Giehl
    • 1
    Email author
  • Michael A. W. Marks
    • 1
  • Marcus Nowak
    • 1
  1. 1.Eberhard Karls Universität TübingenTübingenGermany

Personalised recommendations