Skip to main content

Zircon trace element characteristics and ages in granulite xenoliths: a key to understanding the age and origin of the lower crust, Arkhangelsk kimberlite province, Russia

Abstract

Garnet granulite and pyroxenite xenoliths from the Grib kimberlite pipe (Arkhangelsk, NW Russia) represent the lower crust beneath Russian platform in close vicinity to the cratonic region of the north-eastern Baltic (Fennoscandian) Shield. Many of the xenoliths have experienced strong interaction with the kimberlite host, but in others some primary granulite-facies minerals are preserved. Calculated bulk compositions for the granulites suggest that their protoliths were basic to intermediate igneous rocks; pyroxenites were ultrabasic to basic cumulates. A few samples are probably metasedimentary in origin. Zircons are abundant in the xenoliths; they exhibit complex zoning in cathodoluminescence with relic cores and various metamorphic rims. Cores include oscillatory zircon crystallized in magmatic protoliths, and metamorphic and magmatic sector-zoned zircons. Recrystallization of older zircons led to the formation of bright homogeneous rims. In some samples, homogeneous shells are surrounded by darker convoluted overgrowths that were formed by subsolidus growth when a change in mineral association occurred. The source of Zr was a phase consumed during a reaction, which produced garnet. Late-generation zircons in all xenoliths show concordant U–Pb ages of 1.81–1.84 Ga (1,826 ± 11 Ma), interpreted as the age of last granulite-facies metamorphism. This event completely resets most zircon cores. An earlier metamorphic event at 1.96–1.94 Ga is recorded by some rare cores, and a few magmatic oscillatory zircons have retained a Neoarchaean age of 2,719 ± 14 Ma. The assemblage of metaigneous and metasedimentary rocks was probably formed before the event at 1.96 Ga. Inherited magmatic zircons indicate the existence of continental crust by the time of intrusion of magmatic protoliths in the Late Archaean. The U–Pb zircon ages correspond to major events recorded in upper crustal rocks of the region: collisional metamorphism and magmatism 2.7 Ga ago and reworking of Archaean rocks at around 1.95–1.75 Ga. However, formation of the granulitic paragenesis in lower crustal rocks occurred significantly later than the last granulite-facies event seen in the upper crust and correlates instead with retrograde metamorphism and small-volume magmatism in the upper crust.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Artemieva IM (2003) Lithospheric structure, composition, and thermal regime of the East European craton: implications for the subsidence of the Russian platform. Earth Planet Sci Lett 213:431–446

    Article  Google Scholar 

  2. Beard AD, Downes H, Hegner E, Sablukov SM (2000) Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: evidence for transitional kimberlite magma types. Lithos 51:47–73

    Article  Google Scholar 

  3. Benisek A, Finger F (1993) Factors controlling the development of prism faces in granite zircons: a microprobe study. Contrib Miner Petrol 114:441–451

    Article  Google Scholar 

  4. Bibikova E, Skiöld T, Bogdanova S, Gorbatschev R, Slabunov A (2001) Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield. Precambr Res 105:315–330

    Article  Google Scholar 

  5. Bibikova EV, Bogdanova SV, Glebovitsky VA, Claesson S, Skiöld T (2004) Evolution of the Belomorian belt: NORDSIM UPb zircon dating of the Chupa paragneisses, magmatism, and metamorphic stages. Petrology 12:195–210

    Google Scholar 

  6. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for U-Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  7. Dortman NB (1992) Densities of minerals. In: Dortman NB (ed) Petrophysics: the directory. Nedra, Moscow, pp 39–45 (In Russian)

    Google Scholar 

  8. Downes H, Peltonen P, Mänttäri I, Sharkov EV (2002) Proterozoic zircon ages from lower crustal granulite xenoliths, Kola Peninsula: evidence for crustal growth and reworking. J Geol Soc London 159:485–488

    Article  Google Scholar 

  9. Frisch T, Jackson GD, Glebovitsky VA, Yefimov MM, Bogdanova MN, Parrish RR (1995) U-Pb ages of zircon from the Kolvitsa Gabbro-Anorthosite complex, southern Kola Peninsula, Russia. Petrology 3:219–225

    Google Scholar 

  10. Garanin VK, Garanin KV, Vasilieva ER, Verichev EM, Kostrovitsky SI, Kudriavtseva GP, Pisarev PA (2004) Mineralogy of mantle xenoliths from diamondiferous V.Grib kimberlite pipe (Arkhangelsk Province, Russia). Article 1. Peridotites, pyroxenites, eclogites. Geologia I razvedka Izvestiya vuzov 6:26–30 (In Russian)

    Google Scholar 

  11. Glebovitskii VA, Baltybaev SK, Levchenkov OA, Kuzmina EV (2009) Thermodynamic regime of Svecofennian (1.9 Ga) metamorphism of the Umba nappe of the Lapland collisional orogen. Petrology 17:331–351

    Article  Google Scholar 

  12. Glebovitsky V, Marker M, Alexejev N, Bridgwater D, Sedova I, Salnikova E, Berezhnaya N (2001) Age, evolution and regional setting of the Palaeoproterozoic Umba igneous suite in the Kolvitsa-Umba zone, Kola Peninsula: constraints from new geological, geochemical and U-Pb zircon data. Precambr Res 105:247–267

    Article  Google Scholar 

  13. Griffin WL, Powell WJ, Pearson NJ, O’Reilly SY (2008) GLITTER: data reduction software for laser ablation ICP-MS. In: Sylvester P (ed) Laser Ablation–ICP–MS in the earth sciences. Mineralogical association of Canada short course series 40, appendix 2. Vancouver, British Columbia, pp 204–207

    Google Scholar 

  14. Hanchar JM, van Westrenen W (2007) Rare earth element behavior in zircon-melt systems. Elements 3:37–42

    Article  Google Scholar 

  15. Harley SL, Kelly NM (2007) The impact of zircon–garnet REE distribution data on the interpretation of zircon U-Pb ages in complex high-grade terrains: an example from the Rauer Islands, East Antarctica. Chem Geol 241:62–87

    Article  Google Scholar 

  16. Hinton RW, Upton BGJ (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim Cosmochim Acta 55:3287–3302

    Article  Google Scholar 

  17. Horstwood M, Kosler J, Jackson S, Pearson N, Sylvester P (2009) Investigating age resolution in laser ablation geochronology. Eos Trans Am Geophys Union 90:47

    Google Scholar 

  18. Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallisation of protolith igneous zircon. J Metamorph Geol 18:423–439

    Article  Google Scholar 

  19. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, 53. Mineralogical Society of America, Washington, pp 27–62

    Google Scholar 

  20. Kaminsky FV, Belousova EA (2009) Manganoan ilmenite as kimberlite/diamond indicator mineral. Russ Geol Geophys 50:1212–1220

    Article  Google Scholar 

  21. Kempton PD, Downes H, Sharkov EV, Vetrin VR, Ionov DA, Carswell DA, Beard A (1995) Petrology and geochemistry of xenoliths from the lower crust of the Northern Baltic shield: evidence for partial melting and metasomatism in the lower crust beneath an Archean terrane. Lithos 36:157–184

    Article  Google Scholar 

  22. Kempton PD, Downes H, Neymark LA, Wartho JA, Zartman RE, Sharkov EV (2001) Garnet granulite xenoliths from the Northern Baltic Shield: - the underplated lower crust of a Palaeoproterozoic large igneous province? J Petrol 42:731–763

    Article  Google Scholar 

  23. Koreshkova MYu, Downes H, Nikitina LP, Vladykin NV, Larionov AN, Sergeev SA (2009) Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia. Precambr Res 168:197–212

    Article  Google Scholar 

  24. Koreshkova MYu, Downes H, Levsky LK, Vladykin NV (2011) Petrology and geochemistry of granulite xenoliths from Udachnaya and Komsomolskaya kimberlite pipes, Siberia. J Petrol 52:1857–1885

    Article  Google Scholar 

  25. Krenn E, Harlov DE, Finger F, Wunder B (2012) LREE-redistribution among fluorapatite, monazite, and allanite at high pressures and temperatures. Am Mineral 97:1881–1890

    Article  Google Scholar 

  26. Kretz R (1983) Symbols for rock forming minerals. Am Mineral 68:277–279

    Google Scholar 

  27. Ludwig KR (1999) User’s Manual for Isoplot/Ex, Version 2. 10. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, No 1a. Berkeley CA, USA

  28. Ludwig KR (2003) Isoplot 3.0. Berkeley Geochronology Center Special Publication No. 4. Berkeley CA, USA

  29. Makhotkin IL, Gibson SA, Thompson RN, Zhuravlev DZ, Zherdev PU (2000) Late Devonian diamondiferous kimberlite and alkaline picrite (Proto-kimberlite?) magmatism in the Arkhangelsk region, NW Russia. J Petrol 41:201–227

    Article  Google Scholar 

  30. Malkovets V, Taylor L, Griffin W, O’Reilly S, Pearson N, Pokhilenko N, Verichev E, Litasov K (2003) Cratonic conditions beneath Arkhangelsk, Russia: garnet peridotites from the Grib kimberlite. Ext. Abs. 8th. Kimberlite Conference, Victoria: 220. Springer, Berlin. CD-ROM

  31. Markwick AJW, Downes H (2000) Lower crustal granulite xenoliths from the Arkhangelsk kimberlite pipes: petrological, geochemical and geophysical results. Lithos 51:135–151

    Article  Google Scholar 

  32. Mints M, Suleimanov A, Zamozhniaya N, Stupak V (2009) A three-dimensional model of the Early Precambrian crust under the southeastern Fennoscandian Shield: Karelia craton and Belomorian tectonic province. Tectonophysics 472:323–339

    Article  Google Scholar 

  33. Mintz MV, Glaznev VN, Konilov AN, Kunina NM, Nikitichev AP, Raevsky AB, Sedikh YuN, Stupak VM, Fonarev VI (1996) The early precambrian of the Northeastern Baltic Shield: palaeogeodynamics, crustal structure and evolution. Scientific World, Moscow

    Google Scholar 

  34. Nehring F, Foley SF, Hölttä P (2010) Trace element partitioning in the granulite facies. Contrib Miner Petrol 159:493–519

    Article  Google Scholar 

  35. Newton RC, Perkins D III (1982) Thermodynamic calibration of geobarometers based on the assemblage garnet—plagioclase—orthopyroxene (clinopyroxene)—quartz. Am Miner 67:203–222

    Google Scholar 

  36. Nikitina LP, Levskii LK, Lokhov KI, Belyatskii BV, Zhuravlev VA, Lepekhina EV, Antonov AV (1999) Proterozoic alkaline ultramafic magmatism in the eastern part of the Baltic Shield. Petrology 7:246–266

    Google Scholar 

  37. Parsadanyan KS, Kononova VA, Bogatikov OA (1996) Sources of heterogeneous magmatism of the Arkhangelsk diamondiferous province. Petrology 4:460–479

    Google Scholar 

  38. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21:115–144

    Article  Google Scholar 

  39. Petrov OV, Lokhov KI, Shevchenko SS, Sergeev SA, Bogomolov ES, Antonov AV, Lepekhina EN, Sablukov SM (2006) Isotope researches at Vsegei: prospects for prediction of exploration and diamond fields. Reg Geol Metallog 27:158–167 (In Russian)

    Google Scholar 

  40. Poller U, Huth J, Hoppe P, Williams IS (2001) REE, U, Th, and Hf distribution in zircon from western Carpathian Variscan granitoids: a combined cathodoluminescence and ion microprobe study. Am J Sci 301:858–876

    Article  Google Scholar 

  41. Pyle JM, Spear FS (2000) An empirical garnet (YAG)—xenotime thermometer. Contrib Miner Petrol 138:51–58

    Article  Google Scholar 

  42. Pyle JM, Spear FS, Rudnick RL, McDonough WF (2001) Monazite-xenotime-garnet equilibrium in metapelites and a New monazite-garnet thermometer. J Petrol 42:2083–2107

    Article  Google Scholar 

  43. Ravna EJK (2000) The garnet–clinopyroxene Fe2+-Mg geothermometer: an updated calibration. J Metamorph Geol 18:211–219

    Article  Google Scholar 

  44. Roberts MP, Finger F (1997) Do U-Pb zircon ages from granulites reflect peak metamorphic conditions? Geology 25:319–322

    Article  Google Scholar 

  45. Rubatto D, Hermann J (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol 241:38–61

    Article  Google Scholar 

  46. Samsonov AV, Nosova AA, Tretyachenko VV, Larchenko VA, Larionova YuO (2009) Collisional sutures in the early Precambrian Crust as a factor responsible for localization of diamondiferous kimberlites in the northern East European Platform. Dokl Earth Sci 424:226–230

    Article  Google Scholar 

  47. Sano Y, Terada K, Fukuoka T (2002) High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem Geol 184:217–230

    Article  Google Scholar 

  48. Schmitz MD, Bowring SA (2003) Constraints on the thermal evolution of continental lithosphere from U-Pb accessory mineral thermochronometry of lower crustal xenoliths, southern Africa. Contrib Miner Petrol 144:592–618

    Article  Google Scholar 

  49. Slabunov AI, Volodichev OI, Balagansky VV, Bibikova EV, Stepanov VS, Stepanova AV (2005) The Belomorian mobile belt: overview of geological texture and evolution. International meeting “Belomorian mobile belt and its analogues: geology, geochronology, geodynamics and metallogeny”: Field trip guide book. Petrozavodsk

  50. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  51. S-s Sun, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, Special Publications 42. Geological Society, London, pp 313–345

    Google Scholar 

  52. Tomkins HS, Powell R, Ellis DJ (2007) The pressure dependence of the zirconium-in-rutile thermometer. J Metamorph Geol 25:703–713

    Article  Google Scholar 

  53. Van Orman JA, Grove TL, Shimizu N, Layne GD (2002) Rare earth element diffusion in a natural pyrope single crystal at 2·8 GPa. Contrib Miner Petrol 142:416–424

    Article  Google Scholar 

  54. Verichev EM, Garanin VK, Kudryavtseva GP (2003) Geology, composition, conditions of formation and technique of exploration of the Vladimir Grib pipe, a new diamond deposit, Arkhangelsk Kimberlite Province. Geol Ore Depos 45:337–362

    Google Scholar 

  55. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Miner Petrol 151:413–433

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr Andy Carter, Dr Martin Rittner and Dr Andy Beard (Birkbeck) for technical help with microprobe and laser probe analyses, and Dr Yuri Polekhovski, Dr Sergey Petrov and Ms E.V. Schukina for providing samples and help with sample preparation. We thank the Resource centre for microscopy and microanalysis in St Petersburg University for the help with sample preparation. We gratefully acknowledge Royal Society funding of a Joint International Project to MK and HD, and Russian federal budget funding, Scientific Research Work № 3.37.81.2011. Thanks for Fritz Finger (Salzburg) and two anonymous reviewers for detailed and helpful comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Koreshkova.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Descriptions of samples (ESM_1.rtf) (RTF 122 kb)

410_2014_973_MOESM2_ESM.xlsx

Summary of major element data in minerals from xenoliths from Arkhangelsk Kimberlite Province (Grib pipe). (ESM_2.xslx) (XLSX 71 kb)

410_2014_973_MOESM3_ESM.xlsx

Major element data in minerals from xenoliths from Arkhangelsk Kimberlite Province (Grib pipe). (ESM_3.xslx) (XLSX 316 kb)

410_2014_973_MOESM4_ESM.tif

Ternary (Alm-Grs-Prp) diagram for garnets in xenoliths from Arkhangelsk Kimberlite Province (Grib pipe). (ESM_4.tif) (TIFF 10153 kb)

410_2014_973_MOESM5_ESM.rtf

Summary of trace element data (ppm) in minerals in xenoliths from Arkhangelsk Kimberlite Province (Grib pipe) (ESM_5.rtf) (RTF 765 kb)

410_2014_973_MOESM6_ESM.xlsx

Trace element data (ppm) in minerals in xenoliths from Arkhangelsk Kimberlite Province (Grib pipe) (ESM_6.xslx) (XLSX 45 kb)

P–T determinations for xenoliths from Arkhangelsk Kimberlite Province (Grib pipe) (ESM_7.xslx) (XLSX 12 kb)

410_2014_973_MOESM8_ESM.xlsx

Trace element data (ppm) in zircons in xenoliths from Arkhangelsk Kimberlite Province (Grib pipe) (ESM_8.xslx) (XLSX 19 kb)

410_2014_973_MOESM9_ESM.tif

REE patterns for whole rock compositions of xenoliths from Arkhangelsk Kimberlite Province (Grib pipe). Coefficients from Hinton and Upton (1991) were used for calculation of REE contents in melt in equilibrium with magmatic zircons from sample 60/473. (ESM_9.tif) (TIFF 5784 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koreshkova, M.Y., Downes, H., Glebovitsky, V.A. et al. Zircon trace element characteristics and ages in granulite xenoliths: a key to understanding the age and origin of the lower crust, Arkhangelsk kimberlite province, Russia. Contrib Mineral Petrol 167, 973 (2014). https://doi.org/10.1007/s00410-014-0973-y

Download citation

Keywords

  • Lower crust
  • Xenoliths
  • Zircon geochronology
  • Zircon trace element composition
  • Garnet granulites
  • Garnet pyroxenites