Phase relations and melting of carbonated peridotite between 10 and 20 GPa: a proxy for alkali- and CO2-rich silicate melts in the deep mantle

  • Sujoy GhoshEmail author
  • Konstantin Litasov
  • Eiji Ohtani
Original Paper


We determined the melting phase relations, melt compositions, and melting reactions of carbonated peridotite on two carbonate-bearing peridotite compositions (ACP: alkali-rich peridotite + 5.0 wt % CO2 and PERC: fertile peridotite + 2.5 wt % CO2) at 10–20 GPa and 1,500–2,100 °C and constrain isopleths of the CO2 contents in the silicate melts in the deep mantle. At 10–20 GPa, near-solidus (ACP: 1,400–1,630 °C) carbonatitic melts with < 10 wt % SiO2 and > 40 wt % CO2 gradually change to carbonated silicate melts with > 25 wt % SiO2 and < 25 wt % CO2 between 1,480 and 1,670 °C in the presence of residual majorite garnet, olivine/wadsleyite, and clinoenstatite/clinopyroxene. With increasing degrees of melting, the melt composition changes to an alkali- and CO2-rich silicate melt (Mg# = 83.7–91.6; ~ 26–36 wt % MgO; ~ 24–43 wt % SiO2; ~ 4–13 wt % CaO; ~ 0.6–3.1 wt % Na2O; and ~ 0.5–3.2 wt % K2O; ~ 6.4–38.4 wt % CO2). The temperature of the first appearance of CO2-rich silicate melt at 10–20 GPa is ~ 440–470 °C lower than the solidus of volatile-free peridotite. Garnet + wadsleyite + clinoenstatite + carbonatitic melt controls initial carbonated silicate melting at a pressure < 15 GPa, whereas garnet + wadsleyite/ringwoodite + carbonatitic melt dominates at pressure > 15 GPa. Similar to hydrous peridotite, majorite garnet is a liquidus phase in carbonated peridotites (ACP and PERC) at 10–20 GPa. The liquidus is likely to be at ~ 2,050 °C or higher at pressures of the present study, which gives a melting interval of more than 670 °C in carbonated peridotite systems. Alkali-rich carbonated silicate melts may thus be produced through partial melting of carbonated peridotite to 20 GPa at near mantle adiabat or even at plume temperature. These alkali- and CO2-rich silicate melts can percolate upward and may react with volatile-rich materials accumulate at the top of transition zone near 410-km depth. If these refertilized domains migrate upward and convect out of the zone of metal saturation, CO2 and H2O flux melting can take place and kimberlite parental magmas can be generated. These mechanisms might be important for mantle dynamics and are potentially effective metasomatic processes in the deep mantle.


Carbonated peridotite Metasomatism Partial melting Experimental petrology Kimberlite 



We thank Christian Liebske and Vincenzo Stagno for the discussion. S.G. gratefully acknowledges the Ministry of Education, Culture, Science, Sport, and Technology, Japan, for providing him the Monbukagakusho Fellowship. The experiments were conducted when S.G. was at Tohoku University, while most of the manuscript was written while S.G. was at ETH Zürich. We greatly appreciate thoughtful reviews by Audrey M. Martin and two anonymous reviewers and Arno Rohrbach for comments on an early version of the manuscript. This work was supported by the grants in aid for Scientific Research from Ministry of Education, Culture, Science, Sport, and Technology of Japanese Government (Nos. 18,104,009 and 22000002) to E. O., and conducted as a part of the twenty-first Century-of-Excellence program, “Advanced Science and Technology Center for the Dynamic Earth” and Global Center of Excellence program, “Global Education and Research Center for the Earth and Planetary Dynamics” at Tohoku University. At ETH Zürich, S.G. was supported by a SNF grant (# 200020-130100/1), which is gratefully acknowledged. This work is partially supported by the Ministry of Education and Science of Russian Federation grant to E.O. (No 14.B25.31.0032).


  1. Akaogi M, Akimoto S (1979) High-pressure phase equilibria in a garnet lherzolite, with special reference to Mg2+ -Fe2+ partitioning among constituent minerals. Phys Earth Planet Inter 19(1):31–51CrossRefGoogle Scholar
  2. Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper-mantle. Contrib Mineral Petrol 114:331–348CrossRefGoogle Scholar
  3. Brey G, Ryabchikov I (1994) Carbon-dioxide in strongly silica undersaturated melts and origin of kimberlite magmas. Neues Jahrbuch Fur Mineralogie-Monatshefte 10:449–463Google Scholar
  4. Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49:797–821CrossRefGoogle Scholar
  5. Brey GP, Bulatov VK, Girnis AV (2009) Influence of water and fluorine on melting of carbonated peridotite at 6 and 10 GPa. Lithos 112:249–259CrossRefGoogle Scholar
  6. Brey GP, Bulatov VK, Girnis AV (2011) Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chem Geol 281:333–342CrossRefGoogle Scholar
  7. Canil D, Bellis AJ (2007) Ferric iron in CaTiO3 perovskite as an oxygen barometer for kimberlite magmas II: applications. J Petrol 48(2):231–252CrossRefGoogle Scholar
  8. Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP (2004) Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah Basin and Dharwar Craton, southern India. J Petrol 45:907–948CrossRefGoogle Scholar
  9. Corgne A, Armstrong LS, Keshav S, Fei YW, McDonough WF, Minarik WG, Moreno K (2012) Trace element partitioning between majoritic garnet and silicate melt at 10–17 GPa: implications for deep mantle processes. Lithos 148:128–141CrossRefGoogle Scholar
  10. Crough ST, Morgan WJ, Hargraves RB (1980) Kimberlites: their relation to mantle hotspots. Earth Planet Sci Lett 50(1):260–274CrossRefGoogle Scholar
  11. Dalton JA, Presnall DC (1998a) The continuum of primary carbonatitic–kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO–MgO–Al2O3–SiO2–CO2 at 6 GPa. J Petrol 39(11–12):1953–1964Google Scholar
  12. Dalton JA, Presnall DC (1998b) Carbonatititic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Mineral Petrol 131:123–135CrossRefGoogle Scholar
  13. Dasgupta R, Hirschmann MM (2006) Deep melting in the Earth’s upper mantle caused by CO2. Nature 440:659–662CrossRefGoogle Scholar
  14. Dasgupta R, Hirschmann MM (2007a) Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Mineral 92:370–379CrossRefGoogle Scholar
  15. Dasgupta R, Hirschmann MM (2007b) A modified iterative sandwich method for determination of near-solidus partial melt compositions. II. Application to determination of near-solidus melt compositions of carbonated peridotite. Contrib Mineral Petrol 154:647–661CrossRefGoogle Scholar
  16. Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13CrossRefGoogle Scholar
  17. Dasgupta R, Hirschmann MM, Smith ND (2007a) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48:2093–2124CrossRefGoogle Scholar
  18. Dasgupta R, Hirschmann MM, Smith ND (2007b) Water follows carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges. Geology 35:135–138CrossRefGoogle Scholar
  19. Dasgupta R, Mallik A, Tsuno K, Withers AC, Hirth G, Hirschmann MM (2013) Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493:211–215CrossRefGoogle Scholar
  20. Dawson JB (1971) Advances in kimberlite geology. Earth Sci Rev 7:187–214CrossRefGoogle Scholar
  21. Denbigh KG (1981) The principles of chemical equilibrium: with applications in chemistry and chemical engineering. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. Edgar AD, Charbonneau HE (1993) Melting experiments on a SiO2-poor, CaO-rich aphanitic kimberlite from 5–10 GPa and their bearing on sources of kimberlite magmas. Am Mineral 78(1–2):132–142Google Scholar
  23. Eggler DH (1978) The effect of CO2 upon partial melting of peridotite in the system Na2O–CaO–Al2O3–MgO–SiO2–CO2 to 35 kbar, with an analysis of melting in a peridotite-H2O–CO2 system. Am J Sci 278:305–343CrossRefGoogle Scholar
  24. Eggler DH, Wendlandt RF (1979) Experimental studies on the relationship between kimberlite magmas and partial melting of peridotite. Spec Publ 15:330–338Google Scholar
  25. Foley S (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic magmas. Lithos 28:435–453CrossRefGoogle Scholar
  26. Foley SF (2011) A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time. J Petrol 52:1363–1391CrossRefGoogle Scholar
  27. Foley SF, Yaxley GM, Rosenthal A, Buhre S, Kiseeva ES, Rapp RP, Jacob DE (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112S:274–283CrossRefGoogle Scholar
  28. Forsyth DW, Scheirer DS, Webb SC, Dorman LM, Orcutt JA, Harding AJ, Blackman DK, Morgan JP, Detrick RS, Shen Y, Wolfe CJ, Canales JP, Toomey DR, Sheehan AF, Solomon SC, Wilcock WSD, Team MS (1998) Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment. Science 280:1215–1218CrossRefGoogle Scholar
  29. Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420CrossRefGoogle Scholar
  30. Frost DJ, Liebske C, Langenhorst F, McCammon CA, Tronnes RG, Rubie DC (2004) Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428:409–412CrossRefGoogle Scholar
  31. Gaillard F, Malki M, Iacono-Marziano G, Pichavant M, Scaillet B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 322(5906):1363–1365CrossRefGoogle Scholar
  32. Gasparik T (2003) Phase diagrams for geoscientists: an atlas of the Earth’s interior. Springer, New YorkGoogle Scholar
  33. Ghosh S, Ohtani E, Litasov K, Suzuki A, Sakamaki T (2007) Stability of carbonated magmas at the base of the Earth’s upper mantle. Geophys Res Lett 34:L22312. doi: 10.1029/2007GL031349 CrossRefGoogle Scholar
  34. Ghosh S, Ohtani E, Litasov KD, Terasaki H (2009) Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth’s deep mantle. Chem Geol 262:17–28CrossRefGoogle Scholar
  35. Girnis A, Bulatov V, Brey G (2005) Transition from kimberlite to carbonatite melt under mantle parameters: an experimental study. Petrology 13(1):1–15Google Scholar
  36. Gudfinnsson GH, Presnall DC (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Petrol 46:1645–1659CrossRefGoogle Scholar
  37. Haggerty SE (1999) A diamond trilogy: superplumes, supercontinents and supernovae. Science 285:851–860CrossRefGoogle Scholar
  38. Hammouda T (2003) High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci Lett 214:357–368CrossRefGoogle Scholar
  39. Hammouda T, Laporte D (2000) Ultrafast mantle impregnation by carbonatite melts. Geology 28(3):283–285CrossRefGoogle Scholar
  40. Harris M, le Roex A, Class C (2004) Geochemistry of the Uintjiesberg kimberlite, South Africa: petrogenesis of an off-craton, group I, kimberlite. Lithos 74(3–4):149–165CrossRefGoogle Scholar
  41. Hauri EH, Gaetani GA, Green TH (2006) Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Lett 248(3–4):715–734CrossRefGoogle Scholar
  42. Hayman PC, Kopylova MG, Kaminsky FV (2005) Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib Mineral Petrol 149:430–445CrossRefGoogle Scholar
  43. Herzberg C, Zhang J (1996) Melting experiments on anhydrous peridotite KLB-1: compositions of magmas in the upper mantle and transition zone. J Geophys Res 101:8271–8295CrossRefGoogle Scholar
  44. Herzberg C, Raterron P, Zhang J (2000) New experimental observations on the anhydrous solidus for peridotite KLB-1. Geochem Geophys Geosyst 1(11). doi: 10.1029/2000GC000089
  45. Hirose K (1997) Partial melt compositions of carbonated peridotite at 3 GPa and the role of CO2 in alkali-basalt magma generation. Geophys Res Lett 24:2837–2840CrossRefGoogle Scholar
  46. Hirschmann MM (2000) Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem Geophys Geosyst 1:1042CrossRefGoogle Scholar
  47. Irifune T (1987) An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys Earth Planet Inter 45(4):324–336CrossRefGoogle Scholar
  48. Ito E, Takahashi E (1987) Melting of peridotite at upper most lower-mantle conditions. Nature 328:514–517CrossRefGoogle Scholar
  49. Kaminsky FV, Sablukov SM, Belousova EA, Andreazza P, Tremblay M, Griffin WL (2010) Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. Lithos 114:16–29CrossRefGoogle Scholar
  50. Karato SI (2003) Mapping water content in the upper mantle. Inside the subduction factory, Washington, DC, pp 135–152Google Scholar
  51. Karato S (2011) Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci Lett 301:413–423CrossRefGoogle Scholar
  52. Kato T, Ringwood AE, Irifune T (1988) Experimental determination of element partitioning between silicate perovskites, garnets and liquids: constraints on early differentiation of the mantle. Earth Planet Sci Lett 89(1):123–145CrossRefGoogle Scholar
  53. Kawamoto T (2004) Hydrous phase stability and partial melt chemistry in H(2)O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys Earth Planet Inter 143:387–395CrossRefGoogle Scholar
  54. Kawamoto T, Leinenweber K, Hervig RL, Holloway JR (1995) Stability of hydrous minerals in H2O‐saturated KLB‐1 peridotite up to 15 GPa. In: AIP conference proceedings, vol 341, p 229Google Scholar
  55. Kelbert A, Schultz A, Egbert G (2009) Global electromagnetic induction constraints on transition-zone water content variations. Nature 460(7258):1003–1006CrossRefGoogle Scholar
  56. Kiseeva ES, Yaxley GM, Hermann J, Litasov KD, Rosenthal A, Kamenetsky VS (2012) An experimental study of carbonated eclogite at 3.5–5.5 GPa: implications for silicate and carbonate metasomatism in the cratonic mantle. J Petrol 53:727–759CrossRefGoogle Scholar
  57. Kiseeva ES, Litasov KD, Yaxley GM, Ohtani E, Kamenetsky VS (2013) Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle. J Petrol 54(8):1555–1583. doi: 10.1093/petrology/egt023 CrossRefGoogle Scholar
  58. le Roex AP, Bell DR, Davis P (2003) Petrogenesis of group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286CrossRefGoogle Scholar
  59. Li X, Kind R, Priestley K, Sobolev SV, Tilmann F, Yuan X, Weber M (2000) Mapping the Hawaiian plume conduit with converted seismic waves. Nature 405(6789):938–941CrossRefGoogle Scholar
  60. Litasov K, Ohtani E (2002) Phase relations and melt compositions in CMAS–pyrolite–H2O system up to 25 GPa. Phys Earth Planet Inter 134:105–127CrossRefGoogle Scholar
  61. Litasov KD, Ohtani E (2009) Solidus of carbonated peridotite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to the lower mantle depths. Phys Earth Planet Inter 177:46–58CrossRefGoogle Scholar
  62. Litasov KD, Ohtani E, Taniguchi H (2001) Melting relations of hydrous pyrolite in CaO–MgO–Al2O3–SiO2–H2O system at the transition zone pressures. Geophys Res Lett 28:1303–1306CrossRefGoogle Scholar
  63. Litasov KD, Fei Y, Ohtani E, Kuribayashi T, Funakoshi K (2008) Thermal equation of state of magnesite to 32 GPa and 2073 K. Phys Earth Planet Inter 168:191–203CrossRefGoogle Scholar
  64. Litasov KD, Safonov OG, Ohtani E (2010) Origin of Cl-bearing silica-rich melt inclusions in diamonds: experimental evidence for an eclogite connection. Geology 38(12):1131–1134CrossRefGoogle Scholar
  65. Litasov KD, Shatskiy A, Ohtani E (2013) Earth’s mantle melting in the presence of C–O–H–bearing fluid. In: Karato S (ed) Physics and chemistry of the deep earth. Wiley-Blackwell, New YorkGoogle Scholar
  66. Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett 313–314:56–66CrossRefGoogle Scholar
  67. Matsukage KN, Jing ZC, Karato S (2005) Density of hydrous silicate melt at the conditions of Earth’s deep upper mantle. Nature 438(7067):488–491CrossRefGoogle Scholar
  68. Mitchell RH (1995) Kimberlites, orangeites, and related rocks. Plenum Press, New YorkGoogle Scholar
  69. Moore K, Wood B (1998) The transition from carbonate to silicate melts in the CaO–MgO–SiO2–CO2 system. J Petrol 39(11–12):1943–1951Google Scholar
  70. Morishima H, Kato T, Suto M, Ohtani E, Urakawa S, Utsumi W, Shimomura O, Kikegawa T (1994) The phase boundary between α and β Mg2SiO4 determined by in situ X-ray observation. Science 265:1202–1203CrossRefGoogle Scholar
  71. Naif S, Key K, Constable S, Evans R (2013) Melt-rich channel observed at the lithosphere-asthenosphere boundary. Nature 495(7441):356–359CrossRefGoogle Scholar
  72. O’Neill HS (1987) Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Mineral 72(1–2):67–75Google Scholar
  73. Presnall C, Gudfinnsson GH (2005) Carbonate-rich melts in the oceanic low-velocity zone and deep mantle. Spec Pap Geol Soc Am 388:207Google Scholar
  74. Ringwood AE (1975) Composition and petrology of the Earth’s mantle. McGraw-Hill, New YorkGoogle Scholar
  75. Ringwood AE, Kesson SE, Hibberson W, Ware N (1992) Origin of kimberlites and related magmas. Earth Planet Sci Lett 113:521–538CrossRefGoogle Scholar
  76. Rohrbach A, Schmidt MW (2011) Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature 472:209–212CrossRefGoogle Scholar
  77. Rohrbach A, Ballhaus C, Golla-Schindler U, Ulmer P, Kamenetsky VS, Kuzmin DV (2007) Metal saturation in the upper mantle. Nature 449:456–458CrossRefGoogle Scholar
  78. Rohrbach A, Ballhaus C, Ulmer P, Schindler UG, Schönbohm D (2011) Experimental evidence for a reduced metal-saturated upper mantle. J Petrol 52:717–731CrossRefGoogle Scholar
  79. Romanowicz B, Gung Y (2002) Superplumes from the core-mantle boundary to the lithosphere: implications for heat flux. Science 296(5567):513–516CrossRefGoogle Scholar
  80. Sakamaki T, Suzuki A, Ohtani E (2006) Stability of hydrous melt at the base of the Earth’s upper mantle. Nature 439(7073):192–194CrossRefGoogle Scholar
  81. Sanchez-Valle C, Ghosh S, Rosa AD (2011) Sound velocities of ferromagnesian carbonates and the seismic detection of carbonates in eclogites and the mantle. Geophys Res Lett 38:L24315. doi: 10.1029/2011GL049981 CrossRefGoogle Scholar
  82. Schmerr N (2012) The Gutenberg discontinuity: melt at the lithosphere-asthenosphere boundary. Science 335(6075):1480–1483CrossRefGoogle Scholar
  83. Shatskiy A, Litasov KD, Borzdov YM, Katsura T, Yamazaki D, Ohtani E (2013) Silicate diffusion in alkali-carbonatite and hydrous melts at 16.5 and 24 GPa: implication for the melt transport by dissolution-precipitation in the transition zone and uppermost lower mantle. Phys Earth Planet Inter 225:1–11Google Scholar
  84. Shcheka SS, Wiedenbeck M, Frost DJ, Keppler H (2006) Carbon solubility in mantle minerals. Earth Planet Sci Lett 245(3–4):730–742CrossRefGoogle Scholar
  85. Shen Y, Solomon SC, Bjarnason IT, Wolfe CJ (1998) Seismic evidence for a lower-mantle origin of the Iceland plume. Nature 395(6697):62–65CrossRefGoogle Scholar
  86. Shimizu H, Utada H, Baba K, Koyama T, Obayashi M, Fukao Y (2010) Three-dimensional imaging of electrical conductivity in the mantle transition zone beneath the North Pacific Ocean by a semi-global induction study. Phys Earth Planet Inter 183:252–269CrossRefGoogle Scholar
  87. Stagno V, Frost DJ (2010) Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet Sci Lett 300:72–84CrossRefGoogle Scholar
  88. Stagno V, Ojwang DO, McCammon CA, Frost DJ (2013) The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493:84–88CrossRefGoogle Scholar
  89. Stixrude L, Lithgow-Bertelloni C (2007) Influence of phase transformations on lateral heterogeneity and dynamics in Earth’s mantle. Earth Planet Sci Lett 263:45–55CrossRefGoogle Scholar
  90. Suzuki T, Akaogi M, Nakamura E (2000a) Partitioning of major elements between garnet-structured minerals and silicate melt at pressure of 3–15 GPa. Phys Earth Planet Inter 120(1–2):79–92CrossRefGoogle Scholar
  91. Suzuki A, Ohtani E, Morishima H, Kubo T, Kanbe Y, Kondo T, Okada T, Terasaki H, Kato T, Kikegawa T (2000b) In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophys Res Lett 27:803–806CrossRefGoogle Scholar
  92. Tainton K, McKenzie D (1994) The generation of kimberlites, lamproites, and their source rocks. J Petrol 35:787–817CrossRefGoogle Scholar
  93. Tauzin B, Debayle E, Wittingger G (2010) Seismic evidence for a global low-velocity layer within the Earth’s upper mantle. Nat Geosci 3:718–721CrossRefGoogle Scholar
  94. Torsvik TH, Burke K, Steinberger B, Webb SJ, Ashwal LD (2010) Diamonds sampled by plumes from the core-mantle boundary. Nature 466(7304):352-U100. doi: 10.1038/nature09216 CrossRefGoogle Scholar
  95. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60CrossRefGoogle Scholar
  96. Walter MJ, Bulanova GP, Armstrong LS, Keshav S, Blundy JD, Gudfinnsson G, Lord OT, Lennie AR, Clark SM, Smith CB, Gobbo L (2008) Primary carbonatite melt from deeply subducted oceanic crust. Nature 454:622–626CrossRefGoogle Scholar
  97. Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, Gaillou E, Wang J, Steele A, Shirey SB (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334:54–57CrossRefGoogle Scholar
  98. Woodland AB, Koch M (2003) Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet Sci Lett 214:295–310CrossRefGoogle Scholar
  99. Wyllie PJ (1980) The origin of kimberlite. J Geophys Res 85:6902–6910CrossRefGoogle Scholar
  100. Wyllie PJ, Huang WL (1975) Influence of mantle CO2 in the generation of carbonatites and kimberlites. Nature 257:297–299CrossRefGoogle Scholar
  101. Zhang J, Herzberg C (1994) Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. J Geophy Res 99:17729–17742CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sujoy Ghosh
    • 1
    • 2
    Email author
  • Konstantin Litasov
    • 3
    • 4
  • Eiji Ohtani
    • 1
  1. 1.Department of Earth and Planetary Materials ScienceTohoku UniversitySendaiJapan
  2. 2.Institute of Geochemistry and PetrologyETH ZürichZürichSwitzerland
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.V.S. Sobolev Institute of Geology and Mineralogy SB RASNovosibirskRussia

Personalised recommendations