Contributions to Mineralogy and Petrology

, Volume 166, Issue 6, pp 1677–1686 | Cite as

Fe4O5 and its solid solutions in several simple systems

  • A. B. WoodlandEmail author
  • K. Schollenbruch
  • M. Koch
  • T. Boffa Ballaran
  • R. J. Angel
  • D. J. Frost
Original Paper


Experiments at high pressures and temperatures reveal the stability of a Fe4O5-type structured phase in several simple chemical systems. On the one hand, the Fe4O5 end-member is stable in the presence of SiO2-rich phases, including stishovite, but contains ≤0.01 Si cations per formula unit. This indicates that Si is essentially excluded from this phase. On the other hand, the Fe4O5 phase can form solid solutions with Mg and Cr and can coexist with silicate phases at the high PT conditions expected in the transition zone of the mantle (i.e. >~9 GPa). It can coexist with both wadsleyite and Mg-rich ringwoodite and can contain at least 25 mol% Mg2Fe2O5 component. The Fe4O5 phase always contains the least amount of Mg in any given mineral assemblage. Cr-bearing Fe4O5 has been synthesised with up to 46 mol% Fe2Cr2O5 component and can coexist with spinel and/or hematite-eskolatite solid solutions. Substitution of Mg and Cr for Fe2+ and Fe3+, respectively, leads to variations in Fe3+/∑Fe from the ideal value of 0.5 for the Fe4O5 end-member composition, which can influence its redox stability. These cations also have contrasting effects on the unit-cell parameters, which indicate that they substitute into different sites. This initial study suggests that Fe4O5-type structured phases may be stable over a range of PTfO2 conditions and bulk compositions, and can be important in understanding the post-spinel phase relations in a number of chemical systems relevant to the Earth’s transition zone. Thus, the presence of even small amounts of Fe3+ could alter the expected phase relations in peridotitic bulk compositions by stabilising this additional phase.


Fe4O5 Solid solution Transition zone High pressure Fe-oxides Oxidation state 



This work was partially supported by the Deutsche Forschungsgemeinschaft grants Wo 652/4-1, Wo 652/9-1 and Fr 1555/4-1. Recent contributions to this study by RJA were supported by ERC starting Grant 307322 to F. Nestola. Discussions with D. Trots are gratefully acknowledged. The comments of three anonymous reviewers helped to improve the presentation of our results.

Supplementary material

410_2013_948_MOESM1_ESM.doc (46 kb)
Supplementary material 1 (DOC 45 kb)


  1. Akaogi M, Hamada Y, Suzuki T, Kobayashi M, Okada M (1999) High pressure transitions in the system MgAl2O4–CaAl2O4: a new hexagonal aluminous phase with implications for the lower mantle. Phys Earth Planet Interi 115:67–77CrossRefGoogle Scholar
  2. Chen M, Shu J, Mao H-K, Xie X, Hemley RJ (2003) Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proc Nat Acad Sci 100:14651–14654CrossRefGoogle Scholar
  3. Evrard O, Malaman B, Jeannot F, Courtois A, Alebouyeh H, Gerardin R (1980) Mise en évidence de CaFe4O6 et détermination des structures cristallines des ferrites de calcium CaFe2+nO4+n (n = 1, 2, 3): nouvel exemple d’intercroissance. J Solid State Chem 35:112–119CrossRefGoogle Scholar
  4. Grygar T, Bezdicka P, Dedecek J, Petrovsky E, Schneeweiss O (2003) Fe2O3–Cr2O3 system revisited. Ceram–Silikáty 47:32–39Google Scholar
  5. Hutchison M (1997) Constitution of the deep transition zone and lower mantle shown by diamonds and their inclusions, Ph.D. thesis, Univ. EdinburghGoogle Scholar
  6. Koch M, Woodland AB, Angel RJ (2004) Stability of spinelloid phases in the system Fe3O4–Fe2SiO4–Mg2SiO4 at 1,100°C and up to 10.5 GPa. Phys. Earth Planet. Inter 143–144:171–183CrossRefGoogle Scholar
  7. Lavina B, Dera P, Kim E, Meng Y, Downs RT, Weck PF, Sutton SR, Zhao Y (2011) Discovery of the recoverable high-pressure iron oxide Fe4O5. Proc Nat Acad Sci 108:17281–17285CrossRefGoogle Scholar
  8. McCammon CA, Chinn IL, Gurney JJ, McCallum M (1998) Ferric iron content of mineral inclisions in diamonds from George Creek, Colorado determined using Mössbauer spectroscopy. Contrib Miner Petrol 133:30–37CrossRefGoogle Scholar
  9. Robbins M, Wertheim GK, Sherwood RC, Buchanan DNE (1971) Magnetic properties and site distributions in the system FeCr2O4–Fe3O4 (Fe2+Cr2-xFex3+). J Phys Chem Solids 32:717–729CrossRefGoogle Scholar
  10. Schollenbruch K, Woodland AB, Frost DJ (2010) The stability of hercynite at high pressures and temperatures. Phys Chem Miner 37:137–143CrossRefGoogle Scholar
  11. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767Google Scholar
  12. Stachel T, Harris JW, Brey GP (1998) Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib Miner Petrol 132:34–47CrossRefGoogle Scholar
  13. Woodland AB, Angel RJ (2000) Phase relations in the system fayalite-magnetite at high pressures and temperatures. Contrib Miner Petrol 139:734–747CrossRefGoogle Scholar
  14. Woodland AB, Klimm K, Frost DJ, Trots DM, Mezouar M (2012) In situ observation of the breakdown of magnetite (Fe3O4) to Fe4O5 and hematite at high pressures and temperatures. Am Miner 97:1808–1811CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. B. Woodland
    • 1
    Email author
  • K. Schollenbruch
    • 1
    • 5
  • M. Koch
    • 2
  • T. Boffa Ballaran
    • 3
  • R. J. Angel
    • 4
  • D. J. Frost
    • 3
  1. 1.Institut für GeowissenschaftenUniversität FrankfurtFrankfurt am MainGermany
  2. 2.Institut für GeowissenschaftenUniversität HeidelbergHeidelbergGermany
  3. 3.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  4. 4.Department of GeosciencesUniversity of PadovaPaduaItaly
  5. 5.Deutsche Gemmologische Gesellschaft eVIdar-ObersteinGermany

Personalised recommendations