Contributions to Mineralogy and Petrology

, Volume 166, Issue 5, pp 1415–1441 | Cite as

Timescales of partial melting in the Himalayan middle crust: insight from the Leo Pargil dome, northwest India

  • Graham W. Lederer
  • John M. Cottle
  • Micah J. Jessup
  • Jackie M. Langille
  • Talat Ahmad
Original Paper

Abstract

The Leo Pargil dome (LPD) in northwest India exposes an interconnected network of pre-, syn-, and post-kinematic leucogranite dikes and sills that pervasively intrude amphibolite-facies metapelites of the mid-crustal Greater Himalayan sequence. Leucogranite bodies range from thin (5-cm-wide) locally derived sills to thick (2-m-wide) crosscutting dikes extending at least 100 m. Three-dimensional exposures elucidate crosscutting relations between different phases of melt injection and crystallization. Combined laser ablation inductively coupled plasma mass spectrometry U–Th/Pb geochronology and trace element analysis on well-characterized monazite grains from nineteen representative leucogranites yields a large, internally consistent data set of approximately 700 U–Th/Pb and 400 trace element analyses. Grain-scale variations in age correlate with trace element distributions and indicate semi-continuous crystallization of monazite from 30 to 18 Ma. The youngest U–Th/Pb ages in a given sample are consistent with the outcrop-scale crosscutting relations, whereas older ages within individual samples record inheritance from partially crystallized melt and source metapelites. U–Th/Pb isotopic and trace element data are incorporated into a model of melting within the LPD that involves (1) steady-state equilibrium batch melting of compositionally homogeneous metapelitic sources; (2) pulses of increased melt mobility lasting 1–2 m.y. resulting in segregation of melt from its source and amalgamation into mixed magmas; and (3) rapid emplacement and final crystallization of leucogranite bodies. Melt systems in the LPD evolved from locally derived, in situ melt in migmatitic source rocks into a vast network of dikes and sills in the overlying non-migmatitic host rocks.

Keywords

Leucogranite Monazite U–Th/Pb geochronology Anatexis Himalaya 

Supplementary material

410_2013_935_MOESM1_ESM.doc (57 kb)
Supplementary material 1 (DOC 57 kb)
410_2013_935_MOESM2_ESM.doc (44 kb)
Supplementary material 2 (DOC 43 kb)
410_2013_935_MOESM3_ESM.xls (268 kb)
Supplementary material 3 (XLS 267 kb)
410_2013_935_MOESM4_ESM.xls (98 kb)
Supplementary material 4 (XLS 98 kb)
410_2013_935_MOESM5_ESM.pdf (8 mb)
Supplementary material 5 (PDF 8197 kb)
410_2013_935_MOESM6_ESM.eps (1.4 mb)
Supplementary material 6 (EPS 1431 kb)

References

  1. Aleinikoff JN, Schenck WS, Plank MO et al (2006) Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U–Pb geochronology of zircon and monazite. Geol Soc Am Bull 118:39–64. doi:10.1130/B25659.1 CrossRefGoogle Scholar
  2. Aoya M, Wallis SR, Terada K et al (2005) North-south extension in the Tibetan crust triggered by granite emplacement. Geology 33:853. doi:10.1130/G21806.1 CrossRefGoogle Scholar
  3. Beaumont C (2004) Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan–Tibetan orogen. J Geophys Res 109:1–29. doi:10.1029/2003JB002809 CrossRefGoogle Scholar
  4. Beaumont C, Jamieson R (2010) Himalayan Tibetan orogeny: Channel flow versus (critical) wedge models, a false dichotomy. In: Leech ML, Klemperer SL, Mooney WD (eds) Proceedings for the 25th Himalaya–Karakoram–Tibet Workshop: U.S. Geological Survey, Open File Report 2010-1099, pp 25–26Google Scholar
  5. Bollinger L, Henry P, Avouac J (2006) Mountain building in the Nepal Himalaya: thermal and kinematic model. Earth Planet Sci Lett 244:58–71. doi:10.1016/j.epsl.2006.01.045 CrossRefGoogle Scholar
  6. Brown M (2001) Orogeny, migmatites and leucogranites: a review. J Earth Syst Sci 110:313–336. doi:10.1007/BF02702898 CrossRefGoogle Scholar
  7. Brown M (2004) The mechanism of melt extraction from lower continental crust of orogens. Trans R Soc Edinb Earth Sci. doi:10.1017/S0263593300000900
  8. Brown M, Solar G (1998) Shear-zone systems and melts: feedback relations and self-organization in orogenic belts. J Struct Geol 20:211–227CrossRefGoogle Scholar
  9. Brown M, Solar GS (1999) The mechanism of ascent and emplacement of granite magma during transpression: a syntectonic granite paradigm. Tectonophysics 312:1–33. doi:10.1016/S0040-1951(99)00169-9 CrossRefGoogle Scholar
  10. Brown M, Averkin YA, McLellan EL, Sawyer EW (1995) Melt segregation in migmatites. J Geophys Res 100:15655. doi:10.1029/95JB00517 CrossRefGoogle Scholar
  11. Brown L, Zhao W, Nelson K et al (1996) Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science 274:1688–1690CrossRefGoogle Scholar
  12. Chambers J, Caddick M, Argles T et al (2009) Empirical constraints on extrusion mechanisms from the upper margin of an exhumed high-grade orogenic core, Sutlej valley, NW India. Tectonophysics 477:77–92. doi:10.1016/j.tecto.2008.10.013 CrossRefGoogle Scholar
  13. Chen L, Booker J, Jones A et al (1996) Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying. Science 274:1694–1696CrossRefGoogle Scholar
  14. Cherniak DJ, Pyle JM (2008) Th diffusion in monazite. Chem Geol 256:52–61. doi:10.1016/j.chemgeo.2008.07.024 CrossRefGoogle Scholar
  15. Cherniak DJ, Watson EB, Grove M, Harrison TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Acta 68:829–840. doi:10.1016/j.gca.2003.07.012 CrossRefGoogle Scholar
  16. Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306. doi:10.1016/0012-821X(87)90227-5 CrossRefGoogle Scholar
  17. Cocherie A, Legendre O, Peucat J, Kouamelan A (1998) Geochronology of polygenetic monazites constrained by in situ electron microprobe Th–U-total lead determination: implications for lead behaviour in monazite. Geochim Cosmochim Acta 62:2475–2497CrossRefGoogle Scholar
  18. Collins WJ, Williams IS (1995) SHRIMP ionprobe dating of short-lived Proterozoic tectonic cycles in the northern Arunta Inlier, central Australia. Precambr Res 71:69–89CrossRefGoogle Scholar
  19. Copeland P, Parrish R, Harrison T (1988) Identification of inherited radiogenic Pb in monazite and its implications for U-Pb systematics. Nature 333:760–763CrossRefGoogle Scholar
  20. Copeland P, Mark Harrison T, Le Fort P (1990) Age and cooling history of the Manaslu granite: implications for Himalayan tectonics. J Volcanol Geoth Res 44:33–50. doi:10.1016/0377-0273(90)90010-D CrossRefGoogle Scholar
  21. Corrie SL, Kohn MJ (2008) Trace-element distributions in silicates during prograde metamorphic reactions: implications for monazite formation. J Metamorph Geol 26:451–464. doi:10.1111/j.1525-1314.2008.00769.x CrossRefGoogle Scholar
  22. Cottle JM, Jessup MJ, Newell DL et al (2007) Structural insights into the early stages of exhumation along an orogen-scale detachment: the South Tibetan Detachment System, Dzakaa Chu section, Eastern Himalaya. J Struct Geol 29:1781–1797. doi:10.1016/j.jsg.2007.08.007 CrossRefGoogle Scholar
  23. Cottle J, Searle M, Horstwood M, Waters D (2009a) Timing of midcrustal metamorphism, melting, and deformation in the Mount Everest region of southern Tibet revealed by U–(Th)–Pb geochronology. J Geol 117:643–664. doi:10.1086/605994 CrossRefGoogle Scholar
  24. Cottle JM, Jessup MJ, Newell DL et al (2009b) Geochronology of granulitized eclogite from the Ama Drime Massif: implications for the tectonic evolution of the South Tibetan Himalaya. Tectonics. doi:10.1029/2008TC002256 Google Scholar
  25. Cottle JM, Waters DJ, Riley D et al (2011) Metamorphic history of the South Tibetan Detachment System, Mt. Everest region, revealed by RSCM thermometry and phase equilibria modelling. J Metamorph Geol 29:561–582. doi:10.1111/j.1525-1314.2011.00930.x CrossRefGoogle Scholar
  26. DeCelles PG (2000) Tectonic implications of U–Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 288:497–499. doi:10.1126/science.288.5465.497 CrossRefGoogle Scholar
  27. Deniel C, Vidal P, Fernandez A (1987) Isotopic study of the Manaslu granite (Himalaya, Nepal): inferences on the age and source of Himalayan leucogranites. Contrib Miner Petrol 96:78–92CrossRefGoogle Scholar
  28. Edwards M, Harrison T (1997) When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th–Pb monazite dating of the Khula Kangri granite. Geology 25:543–546. doi:10.1130/0091-7613(1997)025<0543 CrossRefGoogle Scholar
  29. Eggins SM, Kinsley LPJ, Shelley JMG (1998) Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci 127–129:278–286. doi:10.1016/S0169-4332(97)00643-0 CrossRefGoogle Scholar
  30. Eggins SM, Grün R, McCulloch MT et al (2005) In situ U-series dating by laser-ablation multi-collector ICPMS: new prospects for Quaternary geochronology. Quatern Sci Rev 24:2523–2538. doi:10.1016/j.quascirev.2005.07.006 CrossRefGoogle Scholar
  31. England P, Thompson A (1984) Pressure-temperature-time paths of regional metamorphism I. heat transfer during the evolution of regions of thickened continental crust. J Petrol 25:894–928CrossRefGoogle Scholar
  32. Foster G, Parrish RR, Horstwood MSA et al (2004) The generation of prograde P–T–t points and paths; a textural, compositional, and chronological study of metamorphic monazite. Earth Planet Sci Lett 228:125–142. doi:10.1016/j.epsl.2004.09.024 CrossRefGoogle Scholar
  33. Friedrich A, Bowring S, Martin M, Hodges K (1999) Short-lived continental magmatic arc at Connemara, western Irish Caledonides: implications for the age of the Grampian orogeny. Geology 27:27–30. doi:10.1130/0091-7613(1999)027<0027 CrossRefGoogle Scholar
  34. Gansser A (1964) Geology of the Himalayas, vol 289. Interscience Publishers, LondonGoogle Scholar
  35. Girard M, Bussy F (1999) Late Pan-African magmatism in the Himalaya: new geochronological and geochemical data from the Ordovician Tso Morari metagranites (Ladakh, NW India). Schweiz Mineral Petrogr Mitt 79:399–418Google Scholar
  36. Harlov DE, Wirth R, Hetherington CJ (2010) Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib Miner Petrol 162:329–348. doi:10.1007/s00410-010-0599-7 CrossRefGoogle Scholar
  37. Harris N, Massey J (1994) Decompression and anatexis of Himalayan metapelites. Tectonics 13:1537–1546CrossRefGoogle Scholar
  38. Harris N, Vance D, Ayres M (2000) From sediment to granite: timescales of anatexis in the upper crust. Chem Geol 162:155–167. doi:10.1016/S0009-2541(99)00121-7 CrossRefGoogle Scholar
  39. Harrison TM, McKeegan K, LeFort P (1995) Detection of inherited monazite in the Manaslu leucogranite by 208Pb232Th ion microprobe dating: crystallization age and tectonic implications. Earth Planet Sci Lett 133:271–282CrossRefGoogle Scholar
  40. Harrison MT, Grove M, McKeegan KD et al (1999) Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya. J Petrol 40:3–19. doi:10.1093/petroj/40.1.3 CrossRefGoogle Scholar
  41. Hetherington CJ, Harlov DE, Budzyń B (2010) Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Miner Petrol 99:165–184. doi:10.1007/s00710-010-0110-1 CrossRefGoogle Scholar
  42. Hintersberger E, Thiede RC, Strecker MR, Hacker BR (2010) East-west extension in the NW Indian Himalaya. Geol Soc Am Bull 122:1499–1515. doi:10.1130/B26589.1 CrossRefGoogle Scholar
  43. Hodges K (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull 112:324–350. doi:10.1130/0016-7606(2000)112<324 CrossRefGoogle Scholar
  44. Horstwood MSA, Foster GL, Parrish RR et al (2003) Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA-MC-ICP-MS. J Anal At Spectrom 18:837. doi:10.1039/b304365g CrossRefGoogle Scholar
  45. Inger S, Harris N (1993) Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. J Petrol 34:345–368CrossRefGoogle Scholar
  46. Jamieson RA, Unsworth MJ, Harris NBW et al (2011) Crustal melting and the flow of mountains. Elements 7:253–260CrossRefGoogle Scholar
  47. King J, Harris N, Argles T et al (2010) Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geol Soc Am Bull 123:218–239. doi:10.1130/B30085.1 CrossRefGoogle Scholar
  48. Kohn MJ (2008) P–T–t data from central Nepal support critical taper and repudiate large-scale channel flow of the greater Himalayan sequence. Geol Soc Am Bull 120:259–273. doi:10.1130/B26252.1 CrossRefGoogle Scholar
  49. Kohn MJ, Wieland MS, Parkinson CD, Upreti BN (2005) Five generations of monazite in Langtang gneisses: implications for chronology of the Himalayan metamorphic core. J Metamorph Geol 23:399–406. doi:10.1111/j.1525-1314.2005.00584.x CrossRefGoogle Scholar
  50. Kylander-Clark ARC, Hacker BR, Cottle JM (2013) Laser-ablation split-stream ICP petrochronology. Chem Geol 345:99–112. doi:10.1016/j.chemgeo.2013.02.019 CrossRefGoogle Scholar
  51. Langille JM, Jessup MJ, Cottle JM et al (2012) Timing of metamorphism, melting and exhumation of the Leo Pargil dome, northwest India. J Metamorph Geol. doi:10.1111/j.1525-1314.2012.00998.x Google Scholar
  52. Larson KP, Godin L, Price RA (2010) Relationships between displacement and distortion in orogens: linking the Himalayan foreland and hinterland in central Nepal. Geol Soc Am Bull 122:1116–1134. doi:10.1130/B30073.1 CrossRefGoogle Scholar
  53. Lee J, Hacker B, Dinklage W, Wang Y (2000) Evolution of the Kangmar Dome, southern Tibet: structural, petrologic, and thermochronologic constraints. Tectonics 19:872–895CrossRefGoogle Scholar
  54. Lee J, Hacker B, Wang Y (2004) Evolution of North Himalayan gneiss domes: structural and metamorphic studies in Mabja Dome, southern Tibet. J Struct Geol 26:2297–2316. doi:10.1016/j.jsg.2004.02.013 CrossRefGoogle Scholar
  55. Leech ML (2008) Does the Karakoram fault interrupt mid-crustal channel flow in the western Himalaya? Earth Planet Sci Lett 276:314–322. doi:10.1016/j.epsl.2008.10.006 CrossRefGoogle Scholar
  56. Leech ML (2009) Reply to comment by M. P. Searle and R. J. Phillips (2009) and R. R. Parrish (2009) on: “Does the Karakoram fault interrupt mid-crustal channel flow in the western Himalaya?” by Mary L. Leech, Earth and Planetary Science Letters 276 (2008) 314–322. Earth Planet Sci Lett 286:592–595. doi:10.1016/j.epsl.2009.05.039
  57. Ludwig KR (2000) User’s manual for Isoplot/Ex version 2.4: a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication No. 1aGoogle Scholar
  58. Makovsky Y, Klemperer S, Ratschbacher L et al (1996) INDEPTH wide-angle reflection observation of P-wave-to-S-wave conversion from crustal bright spots in Tibet. Science 274:1690–1691CrossRefGoogle Scholar
  59. Marquer D, Chawla HS, Challandes N (2000) Pre-alpine high grade metamorphism in High Himalaya. Eclogae Geol Helv 93:207–220Google Scholar
  60. McDonough W, Sun S (1995) The composition of the Earth. Chem Geol 2541:223–253CrossRefGoogle Scholar
  61. Miller C, Thöni M, Frank W et al (2001) The early Palaeozoic magmatic event in the northwest Himalaya, India: source, tectonic setting and age of emplacement. Geol Mag 138:237–251. doi:10.1017/S0016756801005283 CrossRefGoogle Scholar
  62. Montel J (1986) Experimental determination of the solubility of Ce-monazite in SiO2–Al2O3–K2O–Na2O melts at 800°C, 2 kbar, under H2O-saturated conditions. Geology 14:659–662. doi:10.1130/0091-7613(1986)14<659 CrossRefGoogle Scholar
  63. Montel J-M (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146. doi:10.1016/0009-2541(93)90250-M CrossRefGoogle Scholar
  64. Murphy MA, Yin A, Kapp P et al (2002) Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: implications for the eastward extent of the Karakoram fault system. Geol Soc Am Bull 114:428–447. doi:10.1130/0016-7606(2002)114<0428:SEOTGM>2.0.CO;2 CrossRefGoogle Scholar
  65. Nabelek PI, Liu M (2007) Petrologic and thermal constraints on the origin of leucogranites in collisional orogens. Trans R Soc Edinb Earth Sci 95:73–85. doi:10.1017/S0263593300000936 Google Scholar
  66. Nabelek PI, Whittington AG, Hofmeister AM (2010) Strain heating as a mechanism for partial melting and ultrahigh temperature metamorphism in convergent orogens: implications of temperature-dependent thermal diffusivity and rheology. J Geophys Res 115:1–17. doi:10.1029/2010JB007727 CrossRefGoogle Scholar
  67. Nelson KD, Zhao W, Brown LD, Kuo J, Che J, Liu X, Klemperer SL et al (1996) Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science 274(5293):1684–1688CrossRefGoogle Scholar
  68. Parrish R (1990) U-Pb dating of monazite and its application to geological problems. Can J Earth Sci 27:1431–1450CrossRefGoogle Scholar
  69. Parrish RR (2009) Comment on: “Does the Karakoram fault interrupt mid-crustal channel flow in the western Himalaya?” by Mary L. Leech, Earth and Planetary Science Letters 276 (2008) 314–322. Earth Planet Sci Lett 286:586–588. doi:10.1016/j.epsl.2009.05.038
  70. Parrish R, Hodges K (1996) Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Geol Soc Am Bull 108:904–911. doi:10.1130/0016-7606(1996)108<0904 CrossRefGoogle Scholar
  71. Paterson M (2001) A granular flow theory for the deformation of partially molten rock. Tectonophysics 335:51–61CrossRefGoogle Scholar
  72. Paton C, Woodhead JD, Hellstrom JC et al (2010) Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst. doi:10.1029/2009GC002618 Google Scholar
  73. Pognante U, Castelli D, Benna P et al (1990) The crystalline units of the High Himalayas in the Lahul–Zanskar region (northwest India): metamorphic–tectonic history and geochronology of the collided and imbricated Indian plate. Geol Mag 127:101–116. doi:10.1017/S0016756800013807 CrossRefGoogle Scholar
  74. Prince C, Harris N, Vance D (2001) Fluid-enhanced melting during prograde metamorphism. J Geol Soc 158:233–241. doi:10.1144/jgs.158.2.233 CrossRefGoogle Scholar
  75. Pyle J, Spear F (2003) Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire. Am Miner 88:338–351Google Scholar
  76. Quigley MC, Liangjun Y, Gregory C et al (2008) U-Pb SHRIMP zircon geochronology and T–t–d history of the Kampa Dome, southern Tibet. Tectonophysics 446:97–113. doi:10.1016/j.tecto.2007.11.004 CrossRefGoogle Scholar
  77. Rapp RP, Watson EB (1986) Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib Miner Petrol 94:304–316. doi:10.1007/BF00371439 CrossRefGoogle Scholar
  78. Reichardt H, Weinberg RF, Andersson UB, Fanning CM (2010) Hybridization of granitic magmas in the source: the origin of the Karakoram Batholith, Ladakh, NW India. Lithos 116:249–272. doi:10.1016/j.lithos.2009.11.013 CrossRefGoogle Scholar
  79. Robinson DM, DeCelles PG, Copeland P (2006) Tectonic evolution of the Himalayan thrust belt in western Nepal: implications for channel flow models. Geol Soc Am Bull 118:865–885. doi:10.1130/B25911.1 CrossRefGoogle Scholar
  80. Rosenberg CL, Handy MR (2005) Experimental deformation of partially melted granite revisited: implications for the continental crust. J Metamorph Geol 23:19–28. doi:10.1111/j.1525-1314.2005.00555.x CrossRefGoogle Scholar
  81. Royden L (1993) The steady-state thermal structure of eroding orogenic belts and accretionary prisms. J Geophys Res 98:4487–4507CrossRefGoogle Scholar
  82. Rubin A (1995) Getting granite dikes out of the source region. J Geophys Res 100:5911–5929CrossRefGoogle Scholar
  83. Sawyer E (1994) Melt segregation in the continental crust. Geology 22:1019–1022. doi:10.1130/0091-7613(1994)022<1019 CrossRefGoogle Scholar
  84. Sawyer EW (2001) Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks. J Metamorph Geol 19:291–309. doi:10.1046/j.0263-4929.2000.00312.x CrossRefGoogle Scholar
  85. Scaillet B, France-Lanord C, Le Fort P (1990) Badrinath-Gangotri plutons (Garhwal, India) petrological and geochemical evidence for fractionation processes in a high Himalayan leucogranite. J Volcanol Geoth Res 44:163–188CrossRefGoogle Scholar
  86. Scaillet B, Holtz F, Pichavant M, Schmidt M (1996) Viscosity of Himalayan leucogranites: implications for mechanisms of granitic magma ascent. J Geophys Res 101:27691–27699CrossRefGoogle Scholar
  87. Schärer U (1984) The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204CrossRefGoogle Scholar
  88. Schärer U, Allègre CJ (1983) The Palung granite (Himalaya); high-resolution U–Pb systematics in zircon and monazite. Earth Planet Sci Lett 63:423–432CrossRefGoogle Scholar
  89. Schärer U, Xu R, Allègre C (1986) U-(Th)-Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth Planet Sci Lett 77:35–48CrossRefGoogle Scholar
  90. Schulmann K, Lexa O, Štípská P et al (2008) Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? J Metamorph Geol 26:273–297. doi:10.1111/j.1525-1314.2007.00755.x CrossRefGoogle Scholar
  91. Searle MP, Phillips RJ (2009) Comment on: “Does the Karakoram fault interrupt mid-crustal channel flow in the western Himalaya?” by Mary L. Leech, Earth and Planetary Science Letters 276 (2008) 314–322. Earth Planet Sci Lett 286:589–591. doi:10.1016/j.epsl.2009.05.036
  92. Searle M, Noble S, Hurford A, Rex D (1999) Age of crustal melting, emplacement and exhumation history of the Shivling Leucogranite, Garhwal Himalaya. Geol Mag 136:513–525CrossRefGoogle Scholar
  93. Searle MP, Cottle JM, Streule MJ, Waters DJ (2010) Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms. Earth Environ Sci Trans R Soc Edinb 100:219–233. doi:10.1017/S175569100901617X CrossRefGoogle Scholar
  94. Seydoux-Guillaume A-M, Paquette J-L, Wiedenbeck M et al (2002) Experimental resetting of the U–Th–Pb systems in monazite. Chem Geol 191:165–181. doi:10.1016/S0009-2541(02)00155-9 CrossRefGoogle Scholar
  95. Simpson R, Parrish R, Searle M, Waters D (2000) Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya. Geology 28:403–406. doi:10.1130/0091-7613(2000)28<403 CrossRefGoogle Scholar
  96. Steiger R, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  97. Stepanov AS, Hermann J, Rubatto D, Rapp RP (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem Geol 300–301:200–220. doi:10.1016/j.chemgeo.2012.01.007 CrossRefGoogle Scholar
  98. Teyssier C, Whitney D (2002) Gneiss domes and orogeny. Geology 30:1139–1142. doi:10.1130/0091-7613(2002)030<1139 CrossRefGoogle Scholar
  99. Thiede RC, Arrowsmith JR, Bookhagen B et al (2006) Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India. Geol Soc Am Bull 118:635–650. doi:10.1130/B25872.1 CrossRefGoogle Scholar
  100. Thompson A, Connolly J (1995) Melting of the continental crust: some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. J Geophys Res 100:15565–15579CrossRefGoogle Scholar
  101. Thöni M, Miller C, Hager C et al (2012) New geochronological constraints on the thermal and exhumation history of the Lesser and Higher Himalayan Crystalline Units in the Kullu–Kinnaur area of Himachal Pradesh (India). J Asian Earth Sci 52:98–116. doi:10.1016/j.jseaes.2012.02.015 CrossRefGoogle Scholar
  102. Unsworth MJ, Jones AG, Wei W et al (2005) Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature 438:78–81. doi:10.1038/nature04154 CrossRefGoogle Scholar
  103. Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312–313:190–194. doi:10.1016/j.chemgeo.2012.04.021 CrossRefGoogle Scholar
  104. Viskupic K, Hodges KV (2001) Monazite–xenotime thermochronometry: methodology and an example from the Nepalese Himalaya. Contrib Miner Petrol 141:233–247. doi:10.1007/s004100100239 CrossRefGoogle Scholar
  105. Viskupic K, Hodges KV, Bowring SA (2005) Timescales of melt generation and the thermal evolution of the Himalayan metamorphic core, Everest region, eastern Nepal. Contrib Miner Petrol 149:1–21. doi:10.1007/s00410-004-0628-5 CrossRefGoogle Scholar
  106. Watt G, Harley S (1993) Accessory phase controls on the geochemistry of crustal melts and restites produced during water-undersaturated partial melting. Contrib Miner Petrol 114:550–566CrossRefGoogle Scholar
  107. Weinberg R (1996) Ascent mechanism of felsic magmas: news and views. Trans R Soc Edinb Earth Sci 87:95–103. doi:10.1017/S0263593300006519 CrossRefGoogle Scholar
  108. Weinberg RF (1999) Mesoscale pervasive felsic magma migration: alternatives to dyking. Lithos 46:393–410. doi:10.1016/S0024-4937(98)00075-9 CrossRefGoogle Scholar
  109. Weinberg RF, Mark G (2008) Magma migration, folding, and disaggregation of migmatites in the Karakoram Shear Zone, Ladakh, NW India. Geol Soc Am Bull 120:994–1009. doi:10.1130/B26227.1 CrossRefGoogle Scholar
  110. White N, Parrish R, Bickle M et al (2001) Metamorphism and exhumation of the NW Himalaya constrained by U–Th–Pb analyses of detrital monazite grains from early foreland basin sediments. J Geol Soc 158:625–635CrossRefGoogle Scholar
  111. Whitney D, Evans B (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187. doi:10.2138/am.2010.3371 CrossRefGoogle Scholar
  112. Williams M, Jercinovic M, Terry M (1999) Age mapping and dating of monazite on the electron microprobe: deconvoluting multistage tectonic histories. Geology 27:1023–1026. doi:10.1130/0091-7613(1999)027<1023 CrossRefGoogle Scholar
  113. Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci 35:137–175. doi:10.1146/annurev.earth.35.031306.140228 CrossRefGoogle Scholar
  114. Williams ML, Jercinovic MJ, Harlov DE et al (2011) Resetting monazite ages during fluid-related alteration. Chem Geol 283:218–225. doi:10.1016/j.chemgeo.2011.01.019 CrossRefGoogle Scholar
  115. Wolf M, London D (1995) Incongruent dissolution of REE-and Sr-rich apatite in peraluminous granitic liquids: differential apatite, monazite, and xenotime solubilities during anatexis. Am Miner 80:765–775Google Scholar
  116. Zeitler P, Koons P, Bishop M et al (2001) Crustal reworking at Nanga Parbat, Pakistan: metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics 20:712–728. doi:200110.1029/2000TC001243 CrossRefGoogle Scholar
  117. Zeng L, Asimow PD, Saleeby JB (2005) Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source. Geochim Cosmochim Acta 69:3671–3682. doi:10.1016/j.gca.2005.02.035 CrossRefGoogle Scholar
  118. Zhang H, Harris N, Parrish R et al (2004) Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett 228:195–212. doi:10.1016/j.epsl.2004.09.031 CrossRefGoogle Scholar
  119. Zhu XK, O’Nions RK (1999) Monazite chemical composition: some implications for monazite geochronology. Contrib Miner Petrol 137:351–363. doi:10.1007/s004100050555 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Graham W. Lederer
    • 1
  • John M. Cottle
    • 1
  • Micah J. Jessup
    • 2
  • Jackie M. Langille
    • 3
  • Talat Ahmad
    • 4
  1. 1.Department of Earth ScienceUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleUSA
  3. 3.Department of Environmental StudiesUniversity of North CarolinaAshevilleUSA
  4. 4.University of KashmirHazratbal, SrinagarIndia

Personalised recommendations