Combined U/Pb and (U–Th)/He geochronometry of basalt maars in Western Carpathians: implications for age of intraplate volcanism and origin of zircon metasomatism

Abstract

The age of intraplate volcanism in northern Pannonian Basin of Carpathians is revisited using a combination of zircon U/Pb, zircon (U–Th)/He and apatite (U–Th)/He dating techniques, complemented by electron microprobe (EMP) characterisation of dated minerals. A total of six maar structures and diatremes in the South-Slovakian Volcanic Field (SSVF) were dated and the obtained new ages yielded the following key findings: Two isolated maars in SE part indirectly dated by geomorphologic constraints to Late Pleistocene are actually of Pliocene (2.8 ± 0.2 Ma) and Late Miocene (5.5 ± 0.6 Ma) ages. In contrast, two maars in NW part of the study area are of Late Pliocene age (4.1 ± 0.4 and 5.2–5.4 Ma), younger than the Late Miocene age (~6.5 Ma) inferred previously from K/Ar data on the proximal basaltic lava flows. These maars therefore belong to the second volcanic phase that was previously identified only in SE part of the SSVF. In the light of the new geochronologic data, it seems likely that the Pliocene phreatomagmatic eruptions may have occurred along extension-related, NW- and NE-trending orthogonal faults. EMP analyses and imaging revealed an extensive syn- and post-growth metasomatic replacement by dissolution-reprecipitation in the majority of zircons. Abundant silicate melt inclusions in porous metasomatised parts of the zircons are diagnostic of magmatic rather than hydrothermal metasomatism. Consistent ages of the metasomatised and non-metasomatised zones do not indicate disturbance of the U–Pb system during the metasomatism. Enrichment in U and Th loss in the metasomatised zircons are diagnostic of an increasing oxygen fugacity triggered by degassing of the volatile residual melt during the final stages of alkali basalt fractionation. Rare zircon-to-baddeleyite transformation was probably connected with lowered silica activity in carbonated basaltic magmas in south-eastern part of the study area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Baldwin SL, Ireland TR (1995) A tale of two eras: Pliocene-Pleistocene unroofing of Cenozoic and late Archean zircons from active metamorphic core complexes, Solomon Sea, Papua New Guinea. Geology 23:1023–1026

    Article  Google Scholar 

  2. Balogh K, Mihaliková A, Vass D (1981) Radiometric dating of basalts in Southern and Central Slovakia. Záp Karpaty Sér Geol 7:113–126

    Google Scholar 

  3. Balogh K, Vass D, Ravasz-Baranyai L (1994) K/Ar ages in the case of correlated K and excess Ar concentrations: a case study for the alkaline olivine basalt of Somoska, Slovak-Hungarian frontier. Geol Carpath 45:97–102

    Google Scholar 

  4. Chen Y, Smith PE, Evensen NM, York D, Lajoie KR (1996) The edge of time: dating young volcanic ash layers with the 40Ar-39Ar laser probe. Science 274:1176–1178

    Article  Google Scholar 

  5. Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol 172:5–24

    Article  Google Scholar 

  6. Corfu F, Hanchar JM, Hoskin PWO (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon Min Soc Am Rev Mineral Geochem 53:469–500

  7. Danišík M, Shane P, Schmitt AK, Hogg A, Santos GM, Storm S, Evans NJ, Fifield LK, Lindsay JM (2012a) Re-anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined 238U/230Th disequilibrium and (U–Th)/He zircon ages. Earth Planet Sci Lett 349–350:240–250

    Article  Google Scholar 

  8. Danišík M, Kuhlemann J, Dunkl I, Székely B, Evans NJ, Frisch W (2012b) Survival of ancient landforms in a collisional setting as revealed by combined fission track and (U–Th)/He thermochronometry: a case study from Corsica (France). J Geol 120:155–173

    Article  Google Scholar 

  9. Demény A, Vennemann TW, Ahijado A, Casillas R (2004) Oxygen isotope thermometry in carbonatites, Fuerteventura, Canary Islands, Spain. Mineral Petrol 80:155–172

    Article  Google Scholar 

  10. Dobosi G, Fodor RV, Goldberg SA (1995) Late-Cenozoic alkali basalt magmatism in Northern Hungary and Slovakia: petrology, source compositions and relationship to tectonics. Acta Volcanol 7:199–207

    Google Scholar 

  11. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Article  Google Scholar 

  12. Ehlers TA, Farley KA (2003) Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet Sci Lett 206:1–14

    Article  Google Scholar 

  13. Farley KA (2000) Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J Geophys Res 105:2903–2914

    Article  Google Scholar 

  14. Farley KA (2002) (U–Th)/He dating: techniques, calibrations, and applications. Mineral Soc Am Rev Mineral Geochem 47:819–844

    Article  Google Scholar 

  15. Farley KA, Wolf RA, Silver LT (1996) The effect of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60:4223–4229

    Article  Google Scholar 

  16. Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50

    Article  Google Scholar 

  17. Gradstein FM, Ogg JG, Smith AG (2004) A geologic time scale 2004. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Harlow DE, Lewerentz A, Schersten A (2012) Alteration of zircon in alkaline fluids: nature and experiment. Mineral Mag 75:1813

    Google Scholar 

  19. Hók J, Vojtko R, Slaninka I (2011) Genesis and evolution of elevation structure of the Cerová vrchovina Mts. Acta Geol Slov 3:113–121 (in Slovak)

    Google Scholar 

  20. Hourigan JK, Reiners PW, Brandon MT (2005) U–Th zonation dependent alpha-ejection in (U–Th)/He chronometry. Geochim Cosmochim Acta 69:3349–3365

    Article  Google Scholar 

  21. Hurai V, Simon K, Wiechert U, Hoefs J, Konečný P, Huraiová M, Pironon J, Lipka J (1998) Immiscible separation of metalliferous Fe/Ti-oxide melt from fractionating alkaline basalt: P-T-fO2 conditions and two-liquid elemental partitioning. Contrib Mineral Petrol 133:12–29

    Article  Google Scholar 

  22. Hurai V, Paquette J-L, Huraiová M, Konečný P (2010) U–Th–Pb geochronology of zircon and monazite from syenite and pincinite xenoliths in Pliocene alkali basalts of the intra-Carpathian back-arc basin. J Volcanol Geotherm Res 198:275–287

    Article  Google Scholar 

  23. Hurai V, Paquette J-L, Huraiová M, Sabol M (2012) U–Pb geochronology of zircons from fossiliferous sediments of the Hajnáčka I maar (Slovakia)—type locality of the MN 16a biostratigraphic subzone. Geol Mag 149:989–1000

    Article  Google Scholar 

  24. Hurai V, Huraiová M, Milovský R, Luptáková J, Konečný P (2013) High-pressure aragonite phenocrysts in carbonatite and carbonated syenite xenoliths within an alkali basalt. Am Mineral 98:1074–1077

    Article  Google Scholar 

  25. Huraiová M, Konečný P, Konečný V, Simon K, Hurai V (1996) Mafic and salic igneous xenoliths in late tertiary alkaline basalts: fluid inclusion and mineralogical evidence for a deep crustal magmatic reservoir in the Western Carpathians. Eur J Mineral 8:901–916

    Google Scholar 

  26. Huraiová M, Hurai V, Konečný P (2011) Finding of baddeleyite (ZrO2) in basalt maar near Hajnáčka (southern Slovakia). Mineralia Slov 43:255–262 (in Slovak)

    Google Scholar 

  27. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    Article  Google Scholar 

  28. Kantor J, Wiegerová V (1981) Radiometric ages of some basalts of Slovakia by 40Ar/40K method. Geol Zborn Geol Carpath 17:117–130

    Google Scholar 

  29. Konečný V, Lexa J, Balogh K, Konečný P (1995) Alkali basalt volcanism in Southern Slovakia: volcanic forms and time evolution. Acta Vulcanol 7:167–172

    Google Scholar 

  30. Konečný V, Kováč M, Lexa J, Šefara J (2002) Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGS Stephan Müller Spec Publ Ser 1:165–194

    Google Scholar 

  31. Konečný V, Lexa J, Konečný P, Balogh K, Elečko M, Hurai V, Huraiová M, Pristaš J, Sabol M, Vass D (2004) Guidebook to the Southern Slovakia alkali basalt volcanic field. Štátny Geologický Ústav D, Štúra

    Google Scholar 

  32. Ludwig KR (2001) User’s manual for Isoplot/Ex version 2.49, a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, Berkeley

    Google Scholar 

  33. McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, Oxford

    Google Scholar 

  34. McDowell FW, McIntosh WC, Farley KA (2005) A precise 40Ar-39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chem Geol 214:249–263

    Article  Google Scholar 

  35. Meesters AGCA, Dunai TJ (2002) Solving the production–diffusion equation for finite diffusion domains of various shapes part 2, application to cases with alpha ejection and non-homogeneous distribution of the source. Chem Geol 186:345–363

    Article  Google Scholar 

  36. Nemcok M, Pospisil L, Lexa J, Donelick RA (1998) Tertiary subduction and slab break-off model of the Carpathian-Pannonian region. Tectonophysics 295:307–340

    Article  Google Scholar 

  37. Paquette J-L, Mergoil-Daniel J (2009) Origin and U–Pb dating of zircon-bearing nepheline syenite xenoliths preserved in basaltic tephra (Massif Central, France). Contrib Mineral Petrol 158:245–262

    Article  Google Scholar 

  38. Paquette J-L, Tiepolo M (2007) High resolution (5 μm) U–Th–Pb isotopes dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237

    Article  Google Scholar 

  39. Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülőp A, Márton E, Panaiotu C, Cvetković V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57:511–530

    Google Scholar 

  40. Planderová E (1986) Biostratigraphic evaluation of sediments of the Poltár formation. Geol Práce Správy 84:113–118 (in Slovak)

    Google Scholar 

  41. Pupin J-P (2000) Granite genesis related to geodynamics from Hf-Y in zircon. Geol Soc Am Spec Pap 350:245–256

    Google Scholar 

  42. Reiners PW (2005) Zircon (U–Th)/He thermochronometry. Mineral Soc Am Rev Mineral Geochem 58:151–179

    Article  Google Scholar 

  43. Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004) Zircon (U–Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta 68:1857–1887

    Article  Google Scholar 

  44. Schärer U (1984) The effect of initial Th-230 disequilibrium on young U–Pb ages—the Makalu Case, Himalaya. Earth Planet Sci Lett 67:191–204

    Article  Google Scholar 

  45. Schmitt AK, Grove M, Harrison TM, Lovera O, Hulen J, Walters M (2003) The Geysers—Cobb Mountain magma system, California (part 1): U–Pb zircon ages of volcanic rocks, conditions of zircon crystallization and magma residence times. Geochim Cosmochim Acta 67:3423–3442

    Article  Google Scholar 

  46. Schmitt AK, Wetzel F, Cooper KM, Zou H, Wőrner G (2010) Magmatic longevity of Laacher See volcano (Eifel, Germany) indicated by U–Th dating of intrusive carbonatites. J Petrol 51:1053–1085

    Article  Google Scholar 

  47. Schmitt AK, Danišík M, Evans NJ, Siebel W, Kiemele E, Aydin F, Harvey JC (2011) Acigol rhyolite field, Central Anatolia (part 1): high-resolution dating of pre-eruptive zircon residence and rhyolite eruption episodes. Contrib Mineral Petrol 162:1215–1231

    Article  Google Scholar 

  48. Seghedi I, Downes H, Vaselli O, Szakács A, Balogh K, Pécskay Z (2004) Post-collisional tertiary-quaternary mafic alkalic magmatism in the Carpathian-Pannonian region: a review. Tectonophysics 393:43–62

    Article  Google Scholar 

  49. Seifert W, Kämpf H, Wasternack J (2000) Compositional variation in apatite, phlogopite and other accessory minerals of the ultramafic Delitzsch complex, Germany: implication for cooling history of carbonatites. Lithos 53:81–100

    Article  Google Scholar 

  50. Siebel W, Schmitt AK, Danišík M, Chen F, Meier S, Weiß S, Eroğlu S (2009) Prolonged mantle residence of zircon xenocrysts from the western Eger rift. Nat Geosci 2:886–890

    Article  Google Scholar 

  51. Slaninka I, Frankovská J, Kordík J (2008) Selection of sites for deep geological repository of radioactive wastes in Slovakia. Enviromag 5:13 (in Slovak)

    Google Scholar 

  52. Soman A, Tomaschek F, Berndt J, Geisler T, Scherer E (2006) Hydrothermal re-equilibration of zircon from an alkali pegmatite of Malawi. Beihefte Eur J Mineral 18:132

    Google Scholar 

  53. Spandler C, Hermann J, Rubatto D (2004) Exsolution of thortveitite, yttrialite, and xenotime during low-temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon. Am Mineral 89:1795–1806

    Google Scholar 

  54. Spell TL, Smith EI, Sanford A, Zanetti KA (2001) Systematics of xenocrystic contamination: preservation of discrete feldspar populations at McCullough Pass Caldera revealed by 40Ar/39Ar dating. Earth Planet Sci Lett 190:153–165

    Article  Google Scholar 

  55. Stoppa F, Liu Y (1995) Chemical composition and petrogenetic implications of apatites from some ultra-alkaline Italian rocks. Eur J Mineral 7:391–402

    Google Scholar 

  56. Tera F, Wasserburg G (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304

    Article  Google Scholar 

  57. Tiepolo M (2003) In situ Pb geochronology of zircon with laser ablation-inductively coupled plasma-sector field mass spectrometry. Chem Geol 141:1–19

    Google Scholar 

  58. Vass D, Elečko M (1992) Explanations to geological map of Lučenec Basin and Cerova Highlands, scale 1:50 000. GÚDŠ Publishers, Bratislava (in Slovak)

    Google Scholar 

  59. Vass D, Kraus I (1985) Two basalts of different age in southern Slovakia and their relation to the Poltár formation. Mineralia Slov 17:435–440 (in Slovak)

    Google Scholar 

  60. Vass D, Konečný V, Elečko M, Kozač J, Molnár A, Zakovič M (1998) Diatomite deposit of basalt maar near Jelšovec and possibilities of its usage. Mineral Slov 30:333–356 (in Slovak)

    Google Scholar 

  61. Vass D, Konečný V, Túnyi I, Dolinský P, Balogh K, Hudáčková N, Kováčová-Slamková M, Beláček B (2000) Origin of Pliocene vertebrate bone accumulation at Hajnáčka, Southern Slovakia. Geol Carpath 51:69–82

    Google Scholar 

  62. Vass D, Elečko M, Konečný V (2007) Geology of Lučenská kotlina depression and Cerová vrchovina upland. GÚDŠ Publishers, Bratislava

    Google Scholar 

  63. Vermeesch P (2009) Radialplotter: a Java application for fission track, luminescence and other radial plots. Radiat Meas 44:409–410

    Article  Google Scholar 

  64. Vermeesch P (2010) Helioplot, and the treatment of overdispersed (U–Th–Sm)/He data. Chem Geol 271:108–111

    Article  Google Scholar 

  65. Walter RC, Manega PC, Hay RL (1991) Laser-fusion Ar40/Ar39 dating of bed I, Olduvai-Gorge, Tanzania. Nature 354:145–149

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided by VEGA grant 2/0069/13. We thank N. Evans (Curtin University) for English language improvement and sharing U–Th spike and standard solutions. MD thanks I. Dunkl (Göttingen University) for sharing PepiFLEX software for ICP-MS data reduction, P. Jarman (Waikato University) for constructing Helium extraction line, T. Fellows (LiveWires Ltd.) for Helium line automation, S. Cameron (Waikato University) for assistance with ICP-MS, and P. J. J. Kamp (Waikato University) for providing access to the (U–Th)/He laboratory. The manuscript greatly benefited from thorough review of an anonymous reviewer and editorial comments of J. Hoefs.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vratislav Hurai.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

Supplementary material 2 (XLS 137 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hurai, V., Danišík, M., Huraiová, M. et al. Combined U/Pb and (U–Th)/He geochronometry of basalt maars in Western Carpathians: implications for age of intraplate volcanism and origin of zircon metasomatism. Contrib Mineral Petrol 166, 1235–1251 (2013). https://doi.org/10.1007/s00410-013-0922-1

Download citation

Keywords

  • Zircon
  • Apatite
  • (U–Th)/He geochronology
  • U/Pb geochronology
  • Maar
  • Alkali basalt
  • Pannonian Basin
  • Slovakia