Skip to main content
Log in

The pre-eruptive magma plumbing system of the 2007–2008 dome-forming eruption of Kelut volcano, East Java, Indonesia

  • Original Article
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Kelut volcano, East Java, is an active volcanic complex hosting a summit crater lake that has been the source of some of Indonesia’s most destructive lahars. In November 2007, an effusive eruption lasting approximately 7 months led to the formation of a 260-m-high and 400-m-wide lava dome that displaced most of the crater lake. The 2007–2008 Kelut dome comprises crystal-rich basaltic andesite with a texturally complex crystal cargo of strongly zoned and in part resorbed plagioclase (An47–94), orthopyroxene (En64–72, Fs24–32, Wo2–4), clinopyroxene (En40–48, Fs14–19, Wo34–46), Ti-magnetite (Usp16–34) and trace amounts of apatite, as well as ubiquitous glomerocrysts of varying magmatic mineral assemblages. In addition, the notable occurrence of magmatic and crustal xenoliths (meta-basalts, amphibole-bearing cumulates, and skarn-type calc-silicates and meta-volcaniclastic rocks) is a distinct feature of the dome. New petrographical, whole rock major and trace element data, mineral chemistry as well as oxygen isotope data for both whole rocks and minerals indicate a complex regime of magma-mixing, decompression-driven resorption, degassing and crystallisation and crustal assimilation within the Kelut plumbing system prior to extrusion of the dome. Detailed investigation of plagioclase textures alongside crystal size distribution analyses provide evidence for magma mixing as a major pre-eruptive process that blends multiple crystal cargoes together. Distinct magma storage zones are postulated, with a deeper zone at lower crustal levels or near the crust-mantle boundary (>15 km depth), a second zone at mid-crustal levels (~10 km depth) and several magma storage zones distributed throughout the uppermost crust (<10 km depth). Plagioclase-melt and amphibole hygrometry indicate magmatic H2O contents ranging from ~8.1 to 8.6 wt.% in the lower crustal system to ~1.5 to 3.3 wt.% in the mid to upper crust. Pyroxene and plagioclase δ18O values range from 5.4 to 6.7 ‰, and 6.5 to 7.6 ‰, respectively. A single whole rock analysis of the 2007–2008 dome lava gave a δ18O value of 7.6 ‰, whereas meta-basaltic and calc-silicate xenoliths are characterised by δ18O values of 6.2 and 10.3 ‰, respectively. Magmatic δ18O values calculated from individual pyroxene and plagioclase analyses range from 5.7 to 7.0 ‰, and 6.2 to 7.4 ‰, respectively. This range in O-isotopic compositions is explained by crystallisation of pyroxenes in the lower to mid-crust, where crustal contamination is either absent or masked by assimilation of material having similar δ18O values to the ascending melts. This population is mixed with isotopically distinct plagioclase and pyroxenes that crystallised from a more contaminated magma in the upper crustal system. Binary bulk mixing models suggest that shallow-level, recycled volcaniclastic sedimentary rocks together with calc-silicates and/or limestones are the most likely contaminants of the 2007–2008 Kelut magma, with the volcaniclastic sediments being dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Article  Google Scholar 

  • Barker AK, Troll VR, Ellam RM, Hansteen TH, Harris C, Stillman CJ, Andersson A (2012) Magmatic evolution of the Cadamosto Seamount, Cape Verde: beyond the spatial extent of EM1. Contrib Mineral Petrol 163:949–965

    Article  Google Scholar 

  • Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62:1175–1193

    Article  Google Scholar 

  • Blundy J, Cashman K (2001) Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986. Contrib Mineral Petrol 140:631–650

    Article  Google Scholar 

  • Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallisation beneath andesite volcanoes. Nature 443:76–84

    Article  Google Scholar 

  • Blundy J, Cashman KV, Rust A, Whitham F (2010) A case for CO2-rich arc magmas. Earth Planet Sci Lett 290:289–301

    Article  Google Scholar 

  • Boorman S, Boudreau A, Kruger FJ (2004) The lower zone-critical zone transition of the Bushveld Complex: a quantitative textural study. J Petrol 45:1209–1235

    Article  Google Scholar 

  • Bourdier J-L, Pratomo I, Thouret J-C, Boudon G, Vincent PM (1997) Observations, stratigraphy and eruptive processes of the 1990 eruption of Kelut volcano, Indonesia. J Volcanol Geotherm Res 79:181–203

    Article  Google Scholar 

  • Brandeis G, Jaupart C (1986) On the interaction between convection and crystallization in cooling magma chambers. Earth Planet Sci Lett, pp 345–361

  • Brugger CR, Hammer JE (2010) Crystallization kinetics in continuous decompression experiments: implications for interpreting natural magma ascent processes. J Petrol 51:1941–1965

    Article  Google Scholar 

  • Burkhard DJM (2005) Nucleation and growth rates of pyroxene, plagioclase and Fe–Ti oxides in basalt under atmospheric conditions. Eur J Mineral 17:675–685

    Article  Google Scholar 

  • Campbell IH (1996) Fluid dynamic processes in basaltic magma chambers. In: Cawthorn RG (ed) Layered Intrusions, Elsevier Science, p 531

  • Cashman KV (1988) Crystallization of Mount St. Helens 1980–1986 dacite: a quantitative textural approach. Bull Volcanol 50:194–209

    Article  Google Scholar 

  • Cashman KV (1991) Groundmass crystallization of Mount St. Helens dacite, 1980–1986: a tool for interpreting shallow magmatic processes. Contrib Mineral Petrol 109:431–449

    Article  Google Scholar 

  • Cashman KV, Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization, II. Makaopuhi lava lake. Contrib Mineral Petrol 99:292–305

    Article  Google Scholar 

  • Caudron C, Mazot A, Bernard A (2012) Carbon dioxide dynamics in Kelut volcanic lake. J Geophys Res 117:B05102

    Article  Google Scholar 

  • Chadwick JP, Troll VR, Ginibre C, Morgan D, Gertisser R, Waight T, Davidson JP (2007) Carbonate assimilation at Merapi Volcano, Java, Indonesia: insights from crystal isotope stratigraphy. J Petrol 48:1793–1812

    Article  Google Scholar 

  • Chadwick JP, Troll VR, Waight TE, van der Zwan FM, Schwarzkopf LM (2013) Petrology and geochemistry of igneous inclusions in recent Merapi deposits: a window into the sub-volcanic plumbing system. Contrib Mineral Petrol 165:259–282

    Article  Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: application to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Article  Google Scholar 

  • Coombs ML, Eichelberger JC, Rutherford MJ (2002) Experimental and textural constraints on mafic enclave formation in volcanic rocks. J Volcanol Geotherm Res 119:125–144

    Article  Google Scholar 

  • Cooper KM, Reid MR (2003) Re-examination of crystal ages in recent Mt St Helens lavas: implications for magma reservoir processes. Earth Planet Sci Lett 213:149–167

    Article  Google Scholar 

  • Couch S, Sparks RSJ, Carroll MR (2001) Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 411:1037–1039

    Article  Google Scholar 

  • Dahren B, Troll VR, Andersson UB, Chadwick JP, Gardner MF, Jaxybulatov K, Koulakov I (2012) Magma plumbing beneath Anak Krakatau volcano, Indonesia: evidence for multiple magma storage regions. Contrib Mineral Petrol 163:631–651

    Article  Google Scholar 

  • Davidson JP, Tepley FJ (1997) Recharge in volcanic systems: evidence from isotopic profiles of phenocrysts. Science 275:826–829

    Article  Google Scholar 

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790

    Article  Google Scholar 

  • De Bélizal E, Lavigne F, Gaillard JC, Grancher D, Pratomo I, Komorowski JC (2012) The 2007 eruption of Kelut volcano (East Java, Indonesia): phenomenology, crisis management and social response. Geomorphology 136:165–175

    Article  Google Scholar 

  • Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP, McLeod CL, Davidson JP (2010) Magma-carbonate interaction processes and associated CO2 release at Merapi volcano, Indonesia: insights from experimental petrology. J Petrol 51:1027–1051

    Article  Google Scholar 

  • Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic glasses. Am Mineral 80:319–328

    Google Scholar 

  • Drake MJ (1976) Plagioclase-melt equilibria. Geochim Cosmochim Acta 40:457–465

    Article  Google Scholar 

  • Dungan MA, Rhodes JM (1978) Residual glasses and melt inclusions in basalts From DSDP Legs 45 and 46: evidence for magma mixing. Contrib Mineral Petrol 67:417–431

    Article  Google Scholar 

  • Edwards CMH, Menzies MA, Thirlwall MF, Morris JD, Leeman WP, Harmon RS (1994) The transition to potassic alkaline volcanism in island arcs: the Ringgit-Beser Complex, East Java, Indonesia. J Petrol 35:1557–1595

    Article  Google Scholar 

  • Eichelberger JC, Chertkoff DG, Dreher ST, Nye CJ (2000) Magmas in collision: rethinking chemical zonation in silicic magmas. Geology 28:603–606

    Article  Google Scholar 

  • Elliott MT, Cheadle MJ, Jerram DA (1997) On the identification of textural equilibrium in rocks using dihedral angle measurements. Geology 25:355–358

    Article  Google Scholar 

  • Fagereng A, Harris C, La Grange MS, Stevens G (2008) Stable isotope study of the Archaean rocks of the Vredefort impact structure, central Kaapvaal Craton, South Africa. Contrib Mineral Petrol 155:63–78

    Article  Google Scholar 

  • Foden JD (1982) The petrology of the calcalkaline lavas of Rindjani volcano, East Sunda Arc: a model for island arc petrogenesis. J Petrol 24:98–130

    Article  Google Scholar 

  • Gaeta M, Di Rocco T, Freda C (2009) Carbonate assimilation in open magmatic systems: the role of melt-bearing skarns and cumulate-forming processes. J Petrol 50:361–385

    Article  Google Scholar 

  • Gamble JA, Price RC, Smith IEM, McIntosh WC, Dunbar NW (2003) 40Ar/39Ar geochronology of magmatic activity, magma flux and hazards at Ruapehu volcano, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 120:271–287

    Article  Google Scholar 

  • Gardner MF, Troll VR, Gamble JA, Gertisser R, Hart GL, Ellam RM, Harris C, Wolf JA (2013) Shallow level differentiation processes at Krakatau: evidence for late-stage crustal contamination. J Petrol 54:149–182

    Article  Google Scholar 

  • Gerbe M-C, Gourgaud A, Sigmarsson O, Harmon RS, Joron J-L, Provost A (1992) Mineralogical and geochemical evolution of the 1982–1983 Galunggung eruption (Indonesia). Bull Volcanol 54:284–298

    Article  Google Scholar 

  • Gertisser R, Keller J (2003) Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi volcano, central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda arc magma genesis. J Petrol 44:457–489

    Article  Google Scholar 

  • Gertisser R, Charbonnier SJ, Troll VR, Keller J, Preece K, Chadwick JP, Barclay J, Herd RA (2011) Merapi (Java, Indonesia): anatomy of a killer volcano. Geol Today 27:57–62

    Article  Google Scholar 

  • Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC III (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosyst 3:1030–1065

    Article  Google Scholar 

  • Ginibre C, Kronz A, Wörner G (2002a) High-resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning. Contrib Mineral Petrol 142:436–448

    Article  Google Scholar 

  • Ginibre C, Wörner G, Kronz A (2002b) Minor- and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile. Contrib Mineral Petrol 143:300–315

    Article  Google Scholar 

  • Glazner AF (1984) Activities of olivine and plagioclase components in silicate melts and their application to geothermometry. Contrib Mineral Petrol 88:260–268

    Article  Google Scholar 

  • Gregory RT, Criss RE (1986) Isotopic exchange in open and closed systems. In: Valley JW, Taylor Jr. HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Min 16:91–127

  • Guntoro A (1999) The formation of the Makassar Strait and the separation between SE Kalimantan and SW Sulawesi. J Asian Earth Sci 17:79–98

    Article  Google Scholar 

  • Hamilton WB (1979) Tectonics of the Indonesian region. US Geol Surv Prof Pap 1078:345

    Google Scholar 

  • Hammer JE, Cashman KV, Hoblitt RP, Newman S (1999) Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bull Volcanol 60:355–380

    Article  Google Scholar 

  • Handley HK, Macpherson CG, Davidson JP, Berlo K, Lowry D (2007) Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen volcanic complex. J Petrol 48:1155–1183

    Article  Google Scholar 

  • Handley HK, Davidson JP, Macpherson CG, Stimac JA (2008) Untangling differentiation in arc lavas: constraints from unusual minor and trace element variations at Salak Volcano, Indonesia. Chem Geol 255:360–376

    Article  Google Scholar 

  • Handley HK, MacPherson CG, Davidson JP (2010) Geochemical and Sr–O isotopic constraints on magmatic differentiation at Gede Volcanic Complex, West Java, Indonesia. Contrib Mineral Petrol 159:885–908

    Article  Google Scholar 

  • Harmon RS, Gerbe M-C (1992) The 1982–83 eruption at Galunggung volcano, Java (Indonesia): oxygen isotope geochemistry of a chemically zoned magma chamber. J Petrol 33:585–609

    Article  Google Scholar 

  • Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contrib Mineral Petrol 120:95–114

    Article  Google Scholar 

  • Harris C, Vogeli J (2010) Oxygen isotope composition of garnet in the Peninsula Granite, Cape Granite Suite, South Africa: constraints on melting and emplacement mechanisms. South Afr J Geol 113:401–412

    Article  Google Scholar 

  • Harris C, Smith HS, le Roex AP (2000) Oxygen isotope composition of phenocrysts from Tristan da Cunha and Gough Island lavas: variation with fractional crystallization and evidence for assimilation. Contrib Mineral Petrol 138:164–175

    Article  Google Scholar 

  • Harris C, Pronost JJM, Ashwal LD, Cawthorn RG (2005) Oxygen and hydrogen isotope stratigraphy of the Rustenburg Layered Suite, Bushveld Complex: constraints on crustal contamination. J Petrol 46:579–601

    Article  Google Scholar 

  • Hattori K, Sato H (1996) Magma evolution recorded in plagioclase zoning in 1991 Pinatubo eruption products. Am Mineral 81:982–994

    Google Scholar 

  • Higgins MD (1996) Crystal size distributions and other quantitative textural measurements in lavas and tuff from Egmont volcano (Mt. Taranaki), New Zealand. Bull Volcanol 58:194–204

    Article  Google Scholar 

  • Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85:1105–1116

    Google Scholar 

  • Higgins MD (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, Cambridge, p 265

    Book  Google Scholar 

  • Higgins MD, Roberge J (2007) Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: evidence from plagioclase crystal size distribution (CSD) and geochemistry. J Volcanol Geotherm Res 161:247–260

    Article  Google Scholar 

  • Hildner E, Klügel A, Hauff F (2011) Magma storage and ascent during the 1995 eruption of Fogo, Cape Verde Archipelago. Contrib Mineral Petrol 162:751–772

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Hilton DR, Craig H (1989) A helium isotope transect along the Indonesian archipelago. Nature 342:906–908

    Article  Google Scholar 

  • Hoefs J (2005) Stable isotope geochemistry. Springer, Berlin, p 285

    Google Scholar 

  • Holness MB (2005) Spatial constraints on magma chamber replenishment events from textural observations of cumulates: the Rum Layered Intrusion, Scotland. J Petrol 46:1585–1601

    Article  Google Scholar 

  • Homma F (1932) Über das Ergebnis von Messungen an zonaren Plagioklasen aus Andesiten mit Hilfe des Universaldrehtisches. Schweiz Mineral Petrogr Mitt 12:345–351

    Google Scholar 

  • Housh TB, Luhr JF (1991) Plagioclase-melt equilibria in hydrous systems. Am Mineral 76:477–492

    Google Scholar 

  • Humphreys MCS, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch volcano: insights from phenocryst zoning. J Petrol 47:2303–2334

    Article  Google Scholar 

  • Humphreys MCS, Blundy JD, Sparks RSJ (2008) Shallow-level decompression crystallisation and deep magma supply at Shiveluch Volcano. Contrib Mineral Petrol 155:45–61

    Article  Google Scholar 

  • Humphreys MCS, Christopher T, Hards V (2009) Microlite transfer by disaggregation of mafic inclusions following magma mixing at Soufrière Hills volcano, Montserrat. Contrib Mineral Petrol 157:609–624

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1980) The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma. Contrib Mineral Petrol 75:279–289

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1984) Double diffusive convection due to crystallization in magmas. Annu Rev Earth Planet Sci Lett 12:11–37

    Article  Google Scholar 

  • Ito E, White WM, Göpel C (1987) The O, Sr, Nd and Pb isotope geochemistry of MORB. Chem Geol 62:157–176

    Article  Google Scholar 

  • Jeffery A, Gertisser R, Humaida H, O’Driscoll B, Tindle A (2010) Lava dome extrusion into an active crater lake: the 2007–2008 eruption of Kelut volcano, Java, Indonesia. Abstract—cities on Volcanoes 6, Tenerife, Spain, 31 May–4 June 2010

  • Kelley KA, Plank T, Newman S, Stolper EM, Grove TL, Parman S, Hauri EH (2010) Mantle melting as a function of water content beneath the Mariana arc. J Petrol 51:1711–1738

    Article  Google Scholar 

  • Kudo AM, Weill DF (1970) An igneous plagioclase thermometer. Contrib Mineral Petrol 25:52–65

    Article  Google Scholar 

  • Kuo LC, Kirkpatrick RJ (1982) Pre-eruption history of phyric basalts from DSDP legs 45 and 46: evidence from morphology and zoning patterns in plagioclase. Contrib Mineral Petrol 79:13–27

    Article  Google Scholar 

  • Kyser TK, O’Neil JR, Carmichael ISE (1981) Oxygen isotope thermometry of basic lavas and mantle nodules. Contrib Mineral Petrol 77:11–23

    Article  Google Scholar 

  • Landi P, Métrich N, Bertagnini A, Rosi M (2004) Dynamics of magma mixing and degassing recorded in plagioclase at Stromboli (Aeolian Archipelago, Italy). Contrib Mineral Petrol 147:213–227

    Article  Google Scholar 

  • Lange RA, Frey HM, Hector J (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am Mineral 94:494–506

    Article  Google Scholar 

  • Lavigne F, Thouret J-C, Hadmoko DS, Sukatja CB (2007) Lahars in Java: initiations, dynamics, hazard assessment and deposition processes. Forum Geografi 21:17–32

    Google Scholar 

  • Le Maitre RW (ed) (1989) A classification of igneous rocks and glossary of terms. Blackwell Scientific, Oxford, p 193

    Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Can Mineral 35:219–246

    Google Scholar 

  • Lesage P, Surono (1995) Seismic precursors of the February 10, 1990 eruption of Kelut volcano, Java. J Volcanol Geotherm Res 65:135–146

    Article  Google Scholar 

  • Longpré MA, Troll VR, Hansteen TH (2008) Upper mantle magma storage and transport under a Canarian shield-volcano, Teno, Tenerife (Spain). J Geophys Res 113:B08203

    Article  Google Scholar 

  • Loomis TP (1979) An empirical model for plagioclase equilibrium in hydrous melts. Geochim Cosmochim Acta 43:1753–1759

    Article  Google Scholar 

  • Lundgaard KL, Tegner C (2004) Partitioning of ferric and ferrous iron between plagioclase and silicate melt. Contrib Mineral Petrol 147:470–483

    Article  Google Scholar 

  • Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization, I. Theory. Contrib Mineral Petrol 99:277–291

    Article  Google Scholar 

  • Marsh BD (1998) On the interpretations of crystal size distributions in magma systems. J Petrol 39:553–599

    Article  Google Scholar 

  • Martel C, Bourdier JL, Pichavant M, Traineau H (2000) Textures, water content and degassing of silicic andesites from recent plinian and dome-forming eruptions of Mount Pelée volcano (Martinique, Lesser Antilles). J Volcanol Geotherm Res 96:191–206

    Article  Google Scholar 

  • Martin D, Griffiths RW, Campbell IH (1987) Compositional and thermal convection in magma chambers. Contrib Mineral Petrol 96:465–475

    Article  Google Scholar 

  • Martin VM, Holness MB, Pyle DM (2006) Textural analysis of magmatic enclaves from the Kameni Islands, Santorini, Greece. J Volcanol Geotherm Res 154:89–102

    Article  Google Scholar 

  • Mock A, Jerram D (2005) Crystal size distributions (CSDs) in three dimensions: insights from the 3D reconstruction of a highly porphyritic rhyolite. J Petrol 46:1525–1541

    Article  Google Scholar 

  • Mollo S, Del Gaudio P, Ventura G, Iezzi G, Scarlato P (2010) Dependance of clinopyroxene composition on cooling rate in basaltic magmas: implications for thermobarometry. Lithos 118:302–312

    Article  Google Scholar 

  • Mollo S, Putirka K, Iezzi G, Del Gaudio P, Scarlato P (2011) Plagioclase-melt (dis)equilibrium due to cooling dynamics: implications for thermometry, barometry and hygrometry. Lithos 125:221–235

    Article  Google Scholar 

  • Morgan DJ, Jerram DA (2006) On estimating crystal shape for crystal size distribution analysis. J Volcanol Geotherm Res 154:1–7

    Article  Google Scholar 

  • Morgan DJ, Jerram DA, Chertkoff DG, Davidson JP, Pearson DG, Kronz A, Nowell GM (2007) Combining CSD and isotopic microanalysis: magma supply and mixing processes at Stromboli Volcano, Aeolian Islands, Italy. Earth Planet Sci Lett 260:419–431

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550

    Article  Google Scholar 

  • Nakagawa M, Wada K, Wood CP (2002) Mixed magmas, mush chambers and eruption triggers: evidence from zoned clinopyroxene phenocrysts in andesitic scoria from the 1995 eruptions of Ruapehu volcano, New Zealand. J Petrol 43:2279–2303

    Article  Google Scholar 

  • Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Mineral 77:1242–1249

    Google Scholar 

  • Newcomb KR, McCann WR (1987) Seismic history and seismotectonics of the Sunda arc. J Geophys Res 92:421–439

    Article  Google Scholar 

  • Nimis P (1995) A clinopyroxene geobarometer for basaltic systems based on crystal-structure modelling. Contrib Mineral Petrol 121:115–125

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  Google Scholar 

  • O’Driscoll B, Donaldson CH, Troll VR, Jerram DA, Emeleus CH (2007) An origin for harrisitic and granular olivine in the Rum Layered Suite, NW Scotland: a crystal size distribution study. J Petrol 48:253–270

    Article  Google Scholar 

  • Pearce TH, Kolisnik AM (1990) Observations of plagioclase zoning using interference imaging. Earth Sci Rev 29:9–26

    Google Scholar 

  • Platz T, Cronin SJ, Cashman KV, Stewart RB, Smith IEM (2007) Transition from effusive to explosive phases in andesite eruptions—a case study from the AD1655 eruption of Mt. Taranaki, New Zealand. J Volcanol Geotherm Res 161:15–34

    Article  Google Scholar 

  • Preece K, Barclay J, Gertisser R, Herd RA (2013a) Textural and micro-petrological variations in the eruptive products of the 2006 dome-forming eruption of Merapi volcano, Indonesia: implications for sub-surface processes. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2013.02.006

  • Preece K, Gertisser R, Berlo K, Barclay J, Herd R (2013b) Volatile and light lithophile trace element geochemistry of the 2010 eruption of Merapi volcano revealed by melt inclusions. Abstract—International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly, Kagoshima, Japan, 20–24 July 2013

  • Price RC, Gamble JA, Smith IEM, Stewart RB, Eggins S, Wright IC (2005) An integrated model for the temporal evolution of andesites and rhyolites and crustal development in New Zealand’s North Island. J Volcanol Geotherm Res 140:1–24

    Article  Google Scholar 

  • Putirka KD (2005) Igneous thermometers and barometers based on plagioclase + liquid equilibria: tests of some existing models and new calibrations. Am Mineral 90:336–346

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Sanke River Plain, Idaho. Am Mineral 88:1542–1554

    Google Scholar 

  • Reubi O, Blundy J (2008) Assimilation of plutonic roots, formation of high-K ‘exotic’ melt inclusions and genesis of andesitic magmas at Volcán De Colima, Mexico. J Petrol 49:2221–2243

    Article  Google Scholar 

  • Reubi O, Nicholls IA, Kamenetsky VS (2002) Early mixing and mingling in the evolution of basaltic magmas: evidence from phenocryst assemblages, Slamet volcano, Java, Indonesia. J Volcanol Geotherm Res 119:255–274

    Article  Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and applications to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66

    Article  Google Scholar 

  • Roggensack K, Hervig RL, McKnight SB, Williams SN (1997) Explosive basaltic volcanism from Cerro Negro volcano: influence of volatiles on eruptive style. Science 277:1639–1642

    Article  Google Scholar 

  • Ruprecht P, Wörner G (2007) Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. J Volcanol Geotherm Res 165:142–162

    Article  Google Scholar 

  • Savov IP, Luhr JF, Navarro-Ochoa C (2008) Petrology and geochemistry of lava and ash erupted from Volcán Colima, Mexico, during 1998–2005. J Volcanol Geotherm Res 174:241–256

    Article  Google Scholar 

  • Schwarz S, Klügel A, Wohlgemuth-Ueberwasser C (2004) Melt extraction pathways and stagnation depths beneath the Madeira and Desertas rift zones (NE Atlantic) inferred from barometric studies. Contrib Mineral Petrol 147:228–240

    Article  Google Scholar 

  • Shcherbakov VD, Plechov PY, Izbekov PE, Shipman JS (2010) Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka. Contrib Mineral Petrol 162:83–99

    Article  Google Scholar 

  • Shore M, Fowler AD (1996) Oscillatory zoning in minerals: a common phenomenon. Can Mineral 34:1111–1126

    Google Scholar 

  • Siebert L, Simkin T, Kimberly P (2011) Volcanoes of the world, 3rd edn. University of California Press, Los Angeles, p 551

    Google Scholar 

  • Silver EA, Reed D, McCaffrey R (1983) Back arc thrusting in the eastern Sunda arc, Indonesia: a consequence of arc-continent collision. J Geophys Res 88:7429–7448

    Article  Google Scholar 

  • Singer BS, Dungan MA, Layne GD (1995) Textures and Sr, Ba, Mg, Fe, K and Ti compositional profiles in volcanic plagioclase: clues to the dynamics of calc-alkaline magma chambers. Am Mineral 80:776–798

    Google Scholar 

  • Sisson TW, Layne GD (1993) H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117:619–635

    Article  Google Scholar 

  • Smyth H, Hall R, Hamilton J, Kinny P (2005) In: East Java: Cenozoic basins, volcanoes and ancient basement. Proceedings, Indonesian Petroleum Association, thirtieth annual convention and exhibition, pp 251–266

  • Smyth HR, Hamilton PJ, Hall R, Kinny PD (2007) The deep crust beneath island arcs: inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia. Earth Planet Sci Lett 258:269–282

    Article  Google Scholar 

  • Snyder D, Tait S (1995) Replenishment of magma chambers: comparison of fluid-mechanic experiments with field relations. Contrib Mineral Petrol 122:230–240

    Article  Google Scholar 

  • Sparks RSJ, Sigurdsson H, Wilson L (1977) Magma mixing: a mechanism of triggering acid explosive eruptions. Nature 267:315–318

    Article  Google Scholar 

  • Stewart ML, Fowler AD (2001) The nature and occurrence of discrete zoning in plagioclase from recently erupted andesitic volcanic rocks, Montserrat. J Volcanol Geotherm Res 106:243–253

    Article  Google Scholar 

  • Stroncik NA, Klügel A, Hansteen TH (2009) The magmatic plumbing system beneath El Hierro (Canary Islands): constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks. Contrib Mineral Petrol 157:593–607

    Article  Google Scholar 

  • Sugawara T (2001) Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and petrological applications. Contrib Mineral Petrol 141:659–686

    Article  Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of ocean basins: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, Geol Soc Lond Spec Publ 42:313–346

  • Sunagawa I (1992) In situ investigation of nucleation, growth and dissolution of silicate crystals at high temperatures. Annu Rev Earth Planet Sci 20:113–142

    Article  Google Scholar 

  • Taylor HP, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. In: Valley JW, Taylor Jr. HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Min 16:227–271

  • Tepley FJ, Davidson JP, Tilling RI, Arth JG (2000) Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichón volcano, Mexico. J Petrol 41:1397–1411

    Article  Google Scholar 

  • Thouret J-C, Abdurachman KE, Bourdier J-L, Bronto S (1998) Origin, characteristics and behaviour of lahars following the 1990 eruption of Kelud volcano, eastern Java (Indonesia). B Volcanol 59:460–480

    Article  Google Scholar 

  • Troll VR, Schmincke H-U (2002) Magma mixing and crustal recycling recorded in ternary feldspar from compositionally zoned peralkaline ignimbrite ‘A’, Gran Canaria, Canary Islands. J Petrol 43:243–270

    Article  Google Scholar 

  • Troll VR, Donaldson CH, Emeleus CH (2004) Pre-eruptive magma mixing in ash-flow deposits of the Tertiary Rum Igneous Centre, Scotland. Contrib Mineral Petrol 147:722–739

    Article  Google Scholar 

  • Troll VR, Hilton DR, Jolis EM, Chadwick JP, Blythe LS, Deegan FM, Schwarzkopf LM, Zimmer M (2012) Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia. Geophys Res Lett 39:L11302

    Article  Google Scholar 

  • Troll VR, Deegan FM, Jolis EM, Harris C, Chadwick JP, Gertisser R, Schwarzkopf LM, Borisova A, Bindeman IN, Sumarti S, Preece K (2013) Magmatic differentiation processes at Merapi volcano: inclusion petrology and oxygen isotopes. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2012.11.001

  • Tsuchiyama A (1985) Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite and origin of dusty plagioclase in andesites. Contrib Mineral Petrol 89:1–16

    Article  Google Scholar 

  • Turner JS, Campbell IH (1986) Convection and mixing in magma chambers. Earth Sci Rev 23:255–352

    Article  Google Scholar 

  • Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. Rev Mineral Geochem 16:445–489

    Google Scholar 

  • van Bemmelen RW (1949) The geology of Indonesia, vol 1A. Government Printing Office, The Hague, p 732

    Google Scholar 

  • van Bergen MJ, Bernard A, Sumarti S, Sriwana T, Sitorus K (2000) Crater lakes of Java: Dieng, Kelud, Ijen. Excursion Guidebook—International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) General Assembly, Bali 2000, p 42

  • Vance J (1962) Zoning in igneous plagioclase; normal and oscillatory zoning. Am J Sci 260:746–760

    Article  Google Scholar 

  • Vennemann TW, Smith HS (1990) The rate and temperature of reaction of CLF3 with silicate minerals, and their relevance to oxygen isotope analysis. Chem Geol 86:83–88

    Google Scholar 

  • Vinet N, Higgins MD (2011) What can crystal size distributions and olivine compositions tell us about magma solidification processes inside Kilauea Iki lava lake, Hawaii? J Volcanol Geotherm Res 208:136–162

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240

    Article  Google Scholar 

  • Widiyantoro S, van der Hilst R (1996) Structure and evolution of lithospheric slab beneath the Sunda arc, Indonesia. Science 271:1566–1570

    Article  Google Scholar 

  • Wiesmaier S, Deegan FM, Troll VR, Carracedo JC, Chadwick JP, Chew DM (2011) Magma mixing in the 1100 AD Montaña Reventada composite lava flow, Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing systems. Contrib Mineral Petrol 162:651–669

    Article  Google Scholar 

  • Wilke M, Behrens H (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. Contrib Mineral Petrol 137:102–114

    Article  Google Scholar 

  • Wirakusumah AD (1991) Some studies of the volcanology, petrology and structure of Mt. Kelut, East Java, Indonesia. PhD Thesis, Victoria University, Wellington, p 460

  • Worster MG, Huppert HE, Sparks RSJ (1990) Convection and crystallization in magma cooled from above. Earth Planet Sci Lett 101:78–89

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Research Institute for the Environment, Physical Sciences and Applied Mathematics (EPSAM), Keele University, for use of facilities and financial support. We acknowledge our colleagues from the Merapi Volcano Observatory (BPPTK) in Yogyakarta for their support over many years. We thank L. Schwarzkopf, L. Blythe and F. Deegan for assistance during fieldwork, Sony for sample collection at Kelut and M. Mahjum for logistical support. F. Rawoot is thanked for her help with the O-isotope analyses. A. Kronz (University of Göttingen, Germany) kindly provided access to the electron microprobe facility at Göttingen and analytical support. We are grateful for the insightful, detailed and constructive reviews by E. Hildner and H. Handley. In-kind contributions from The Open University and financial support from the Swedish Research Council (VR), the Royal Swedish Academy of Sciences (KVA) and the Centre for Natural Disaster Sciences (CNDS) at Uppsala University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Jeffery.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2013_875_MOESM1_ESM.pdf

Supplementary material 1 (PDF 2382 kb): Representative hand specimen photographs of a The 2007–2008 dome lava b Fine-grained, meta-basaltic (Group 1) xenolith surrounded by 2007–2008 dome lava c Cumulate (Group 2) xenolith d-e Examples of meta-volcaniclastic xenoliths embedded within the 2007–2008 dome lava f Calc-silicate xenolith (highlighted) found entrained within the 2007–2008 lava dome. See text for detail

410_2013_875_MOESM2_ESM.xls

Supplementary material 2 (XLS 401 kb): Mineral chemical data for the 2007–2008 dome lava, meta-basaltic xenoliths (Group 1) and cumulate xenoliths (Group 2)

410_2013_875_MOESM3_ESM.pdf

Supplementary material 3 (PDF 1821 kb): Selected plagioclase traverses showing An content (mol. %) and FeO* and MgO content (wt.%). a Traverse through a Type 1 plagioclase crystal, showing large fluctuations in An and zones of FeO* and MgO enrichment that correlate with An depletion b Traverse through a Type 2 plagioclase crystal showing characteristic low-level An fluctuations with minor FeO* and MgO peaks that correlate with An depletions c Example of a traverse through a Type 2 plagioclase crystal showing relatively steady An content with a notable depletion that correlates broadly with FeO* and MgO. Crystal boundaries marked in white. Step size is 10 μm. Abbreviations used: An = anorthite

410_2013_875_MOESM4_ESM.pdf

Supplementary material 4 (PDF 1370 kb): Harker-type variation diagrams for selected major elements vs. SiO2, displaying whole rock, plagioclase-hosted melt inclusions and groundmass glass analyses from the 2007–2008 lava dome, alongside whole rock analyses from the 1990 eruption (Bourdier et al. 1997; van Bergen et al. 2000). Also shown, whole rock analyses from pre-1990 eruptions (van Bergen et al. 2000). All data recalculated to 100 % (i.e. volatile free). All Fe is reported as Fe2O *3

410_2013_875_MOESM5_ESM.pdf

Supplementary material 5 (PDF 1362 kb): a REE diagram of the 2007–2008 dome lava. All data are normalised relative to chondrite values (Sun and McDonough 1989) b Multi-element trace element variation diagram of the 2007–2008 dome lava. All data are normalised to N-type MORB values (Sun and McDonough 1989) c Chondrite-normalised REE diagram of the 1990 pyroclastics d N-MORB-normalised multi-element trace element variation diagram of the 1990 pyroclastics

410_2013_875_MOESM6_ESM.pdf

Supplementary material 6 (PDF 1358 kb): Slope intercepts vs. characteristic length diagram. Slopes associated with large size fractions and small size fractions for plagioclase, orthopyroxene, clinopyroxene and Ti-magnetite are plotted. Small size fractions are shown by open symbols. Large size fractions are denoted by filled symbols

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeffery, A.J., Gertisser, R., Troll, V.R. et al. The pre-eruptive magma plumbing system of the 2007–2008 dome-forming eruption of Kelut volcano, East Java, Indonesia. Contrib Mineral Petrol 166, 275–308 (2013). https://doi.org/10.1007/s00410-013-0875-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0875-4

Keywords

Navigation