Skip to main content

Generation of adakites in a cold subduction zone due to double subducting plates

Abstract

Adakites have been found in various tectonic settings, since the first report for the distinct lavas as a product of slab melting in Adak Island by Kay (J Volcanol Geotherm Res 4:117–132, 1978). In this study, we present geochemical data for an ‘adakite’ and ‘adakitic rock’ suite in central Japan with a cold subduction environment due to the two overlapping subducting plates: the Pacific plate and the Philippine sea plate. Based on the major, trace and isotopic compositions of the rocks, elemental transport from initial slab inventory at the trench to the volcanic rocks as a final product is quantitatively analyzed, considering the thermal structure, slab dehydration, elemental mobility, slab-fluid migration and melting of fluid-added mantle. The analysis demonstrates a large compositional impact of slab-fluid in the arc magma generation in central Japan. The melting conditions have been also estimated inversely by optimizing the predicted magma composition to the observed composition of volcanic rock, with the two parameters: the degree of melting and the proportion of spinel and garnet lherzolites involved in melting. Consequently, a moderately low degree of near-solidus melting of dominantly garnet lherzolite with a high fluid flux from the two overlapping slabs beneath the region has been argued to be responsible for the compositional characteristics, including the adakitic signatures, of the studied rocks. These results imply that the geochemical approach may provide useful constraints on the PT condition of melting in the mantle wedge and the thermal structure in subduction zones, being complementary to the geophysical approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Abratis M, Wörner G (2001) Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology 29:127–130

    Article  Google Scholar 

  • Aignertorres M, Blundy J, Ulmer P, Pettke T (2007) Laser Ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contrib Mineral Petrol 153:647–667

    Article  Google Scholar 

  • Aizawa Y, Tatsumi Y, Yamada H (1999) Element transport by dehydration of subducted sediments: implication for arc and ocean island magmatism. Island Arc 8:38–46

    Article  Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount-Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98:224–256

    Article  Google Scholar 

  • Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827

    Article  Google Scholar 

  • Beattie P (1993) The generation of uranium series disequilibria by partial melting of spinel peridotite” constraints from partitioning studies. Earth Planet Sci Lett 117:379–391

    Article  Google Scholar 

  • Beattie P (1994) Systematics and energetics of trace-element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning. Chem Geol 117:57–71

    Article  Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76:382–403

    Article  Google Scholar 

  • Bindeman I, Davis A (2000) Trace element partitioning between plagioclase and melt: investigation of dopant influence on partition behavior. Geochim Cosmochim Acta 64:2863–2878

    Article  Google Scholar 

  • Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62:1175–1193. doi:10.1016/S0016-7037(98)00047-7

    Article  Google Scholar 

  • Blundy JD, Wood BJ (2003) Mineral-melt partitioning of uranium, thorium and their daughters. Rev Mineral Geochem 52:59–123

    Article  Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995) Experimental-determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt. Earth Planet Sci Lett 135(1–4):1–11. doi:10.1016/0012-821X(95)00139-4

    Article  Google Scholar 

  • Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249–253

    Article  Google Scholar 

  • Bryan WB, Finger LW, Chayes F (1969) Estimating proportions in petrographic mixing equations by least-squares approximation. Science 163:926–927

    Article  Google Scholar 

  • Cagnioncle AM, Parmentier EM, Elkins-Tanton LT (2007) Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. J Geophys Res 112:B09402. doi:10.1029/2007JB004934

    Article  Google Scholar 

  • Chiaradia M, Müntener O, Beate B, Fontignie D (2009) Adakite-like volcanism of ecuador: lower crust magmatic evolution and recycling. Contrib Mineral Petrol 158:563–588. doi:10.1007/s00410-009-0397-2

    Article  Google Scholar 

  • Coordinating Committee for Coastal and Offshore Geoscience Programmes in East and Southeast Asia (CCOP) and Geological Survey of Japan (eds.) (1997) Digital geologic map of east and southeast Asia, 1:2,000,000. Digital Geoscience Map G-2, Geological Survey of Japan

  • Dalper C, Baker DR (1994) Partition coefficients for rare-earth elements between calcic amphibole and Ti-rich basanitic glass at 1.5 GPa, 1100 degrees C. Mineral Mag 58:207–208

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by partial melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Defant M, Kepenzhinskas P (2001) Evidence suggests slab melting in Arc magmas. EOS 82(6):65–80

    Article  Google Scholar 

  • Dostal J, Dupuy C, Carron JP, Dekerneizon ML, Maury RC (1983) Partition-coefficients of trace-elements—application to volcanic-rocks of St-Vincent, West-Indies. Geochim Cosmochim Acta 47(3):525–533. doi:10.1016/0016-7037(83)90275-2

    Article  Google Scholar 

  • Dunn T (1987) Partitioning of Hf, Lu, Ti, and Mn between olivine, clinopyroxene and basaltic liquid. Contrib Mineral Petrol 96(4):476–484

    Article  Google Scholar 

  • Dunn T, Sen C (1994) Mineral/matrix partition-coefficients for ortho-pyroxene, plagioclase, and olivine in basaltic to andesitic systems—a combined analytical and experimental-study. Geochim Cosmochim Acta 58(2):717–733. doi:10.1016/0016-7037(94)90501-0

    Article  Google Scholar 

  • Eiler JM, Schiano P, Valley JW, Kita NT, Stolper EM (2007) Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle. Geochem Geophys Geosys 8(9), doi:10.1029/2006GC001503

  • Elliott T, Plank T, Zindler A, White W, Bourdor B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102(B7):14991–15019

    Article  Google Scholar 

  • Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic-rocks. Chem Geol 117(1–4):251–284. doi:10.1016/0009-2541(94)90131-7

    Article  Google Scholar 

  • Eyuboglu Y, Chung SL, Santosh M, Dudas FO, Akaryalı E (2011) Transition from shoshonitic to adakitic magmatism in the eastern Pontides, NE Turkey: implications for slab window melting. Gondwana Res 19:413–429

    Article  Google Scholar 

  • Forsythe LM, Nielsen RL, Fisk MR (1994) High-field-strength element partitioning between pyroxene and basaltic to dacitic magmas. Chem Geol 117(1–4):107–125. doi:10.1016/0009-2541(94)90124-4

    Article  Google Scholar 

  • Garrison JM, Davidson JP (2003) Dubious case for slab melting in the Northern volcanic zone of the Andes. Geology 31(6):565–568

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin

  • Green DH (1973) Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19:37–53

    Article  Google Scholar 

  • Green TH (1994) Experimental studies of trace-element partitioning applicable to igneous petrogenesis—Sedona 16 years later. Chem Geol 117(1–4):1–36

    Article  Google Scholar 

  • Green TH, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C. Lithos 53:165–187

    Article  Google Scholar 

  • Green DH, Hibberson WO, Kovács I, Rosenthal A (2010) Water and its influence on the lithosphere–asthenosphere boundary. Nature 463:448–451

    Article  Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Medard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89

    Article  Google Scholar 

  • Guo F, Nakamura E, Fan W, Kobayashi K, Li C, Gao X (2009) Mineralogical and geochemical constraints on magmatic evolution of Paleocene adakitic andesites from the Yanji area, NE China. Lithos 112:321–341

    Article  Google Scholar 

  • Hart SR, Brooks C (1974) Clinopyroxene-matrix partitioning of K, Rb, Cs, Sr and Ba. Geochim Cosmochim Acta 38:1799–1806. doi:10.1016/0016-7037(74)90163-X

    Article  Google Scholar 

  • Hart SR, Dunn T (1993) Experimental Cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8

    Article  Google Scholar 

  • Haschke M, Ben-Avraham Z (2005) Adakites from collision-modified lithosphere. Geophys Res Lett 32:L15302. doi:10.1029/2005GL023468

    Article  Google Scholar 

  • Hasegawa A, Nakajima J, Kita S, Okada T, Matsuzawa T, Kirby S (2007) Anomalous deepening of a belt of intraslab earthquakes in the Pacific slab crust under Kanto, central Japan: possible anomalous thermal shielding, dehydration reactions, and seismicity caused by shallower cold slab material. Geophys Res Lett 34:L09305. doi:10.1029/2007GL029616

    Article  Google Scholar 

  • Hasegawa A, Nakajima J, Uchida N, Okada T, Zhao D, Matsuzawa T, Umino N (2009) Plate subduction, and generation of earthquakes and magmas in Japan as inferred from seismic observations: an overview. Gondwana Res 16:370–400

    Article  Google Scholar 

  • Hauff F, Hoernle K, Schmidt A (2003) Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochem Geophys Geosys 4(8):8913. doi:10.1029/2002GC000421

    Article  Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117:149–166. doi:10.1016/0009-2541(94)90126-0

    Article  Google Scholar 

  • Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F (1993) Mantle and slab contributions sin arc magmas. Annu Rev Earth Planet Sci 21:175–204

    Article  Google Scholar 

  • Hebert LB, Antoshechkina P, Asimow P, Gurnis M (2009) Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics. Earth Planet Sci Lett 278:243–256

    Article  Google Scholar 

  • Hickey-Vargas R (1991) Isotope characteristics of submarine lavas from the Philippine Sea—implications for the origin of arc and basin magmas of the Philippine tectonic plate. Earth Planet Sci Lett 107(2):290–304

    Article  Google Scholar 

  • Hirose K (1997) Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology 25:42–44

    Article  Google Scholar 

  • Hirose F, Nakajima J, Hasegawa A (2008) Three-dimensional seismic velocity structure and configuration of the Philippine Sea slab in southwestern Japan estimated by double-difference tomography. J Geophys Res 113:B09315. doi:10.1029/2007JB005274

    Article  Google Scholar 

  • Iizumi S (1996) Sr and Nd isotopic analyses, using a thermal ionization mass spectrometer MAT262. Geosci Rep Shimane Univ 15:153–159

    Google Scholar 

  • Imai N, Terashima S, Itoh S, Ando A (1995) 1994 compilation of analytical data for minor and trace elements in 17 GSJ geochemical reference samples, igneous rock series. Geostand Newsl 19(2):135–213

    Article  Google Scholar 

  • Iwamori H (1998) Transportation of H2O and melting in subduction zones. Earth Planet Sci Lett 160:65–80

    Article  Google Scholar 

  • Iwamori H (2000) Deep subduction of H2O and deflection of volcanic chain towards backarc near triple junction due to lower temperature. Earth Planet Sci Lett 181(1–2):41–46

    Article  Google Scholar 

  • Iwamori H (2007) Transportation of H2O beneath the Japan arcs and its implications for global water circulation. Chem Geol 239:182–198

    Article  Google Scholar 

  • Iwamori H, Nakamura H (2012) East-west mantle geochemical hemispheres constrained from independent component analysis of basalt isotopic compositions. Geochem J 46:e39–e46

    Google Scholar 

  • Iwamori H, McKenzie D, Takahashi E (1995) Melt generation by isentropic mantle upwelling. Earth Planet Sci Lett 134:253–266

    Article  Google Scholar 

  • Iwasaki E (1980) Petrological study of Kyogatake Volcano in Hokuriku distict. Master Thesis, Kanazawa University

  • Jenner GA, Foley SF, Jackson SE, Green TH, Fryer BJ, Longerich HP (1993) Determination of partition coefficients for trace elements in high pressure-temperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). Geochim Cosmochim Acta 57(23–24):5099–5103

    Article  Google Scholar 

  • Kamiya S, Kobayashi Y (2000) Seismological evidence for the existence of serpentinized wedge mantle. Geophys Res Lett 27(6):819–822

    Article  Google Scholar 

  • Kato Y, Fujinaga K, Suzuki K (2005) Major and trace element geochemistry and Os isotopic composition of metalliferous umbers from the Late Cretaceous Japanese accretionary complex. Geochem Geophys Geosys 6:Q07004. doi:10.1029/2005GC000920

    Article  Google Scholar 

  • Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H (2011) Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geosci 4:535–539

    Article  Google Scholar 

  • Kawakatsu H, Yoshioka S (2011) Metastable olivine wedge and deep dry cold slab beneath southwest Japan. Earth Planet Sci Lett 303:1–10

    Article  Google Scholar 

  • Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific ocean crust. J Volcanol Geotherm Res 4:117–132

    Article  Google Scholar 

  • Kelemen PB, Dunn JT (1992) Depletion of Nb relative to other highly incompatible elements by melt/rock reaction in the upper mantle. EOS Trans Am Geophys Un 73:656–657

    Google Scholar 

  • Kelley KA, Plank T, Ludden J, Staudigel H (2003) Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem Geophys Geosys 4(6):8910. doi:10.1029/2002GC000435

    Article  Google Scholar 

  • Keppler H (1996) Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380:237–240

    Article  Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727. doi:10.1038/nature03971

    Article  Google Scholar 

  • Kimura JI, Nakano N (2004) Precise lead isotope analysis using multiple collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS): analytical technique and evaluation of mass fractionation during Pb separation. Geosci Rep Shimane Univ 23:9–15

    Google Scholar 

  • Kimura J-I, Hacker BR, van Keken PE, Kawabata H, Yoshida T, Stern RJ (2009) Arc Basalt Simulator version 2, a simulation for slab dehydration and fluid-fluxed mantle melting for arc basalts: modeling scheme and application. Geochem Geophys Geosys 10:Q09004. doi:10.1029/2008GC002217

    Article  Google Scholar 

  • Kinzler RJ, Grove TL (1992) Primary magmas of midocean ridge basalts.2. Applications. J Geophys Res 97(B5):6907–6926

    Google Scholar 

  • Kogiso T, Tatsumi Y, Nakano S (1997) Trace element transport during dehydration processes in the subducted oceanic crust.1. Experiments and implications for the origin of Ocean Island Basalts. Earth Planet Sci Lett 148(1–2):193–205

    Article  Google Scholar 

  • Kushiro I (1994) Analysis of major and minor elements in silicate rocks with X-ray fluorescence, in evolution of the crust in Island arcs. Grant Rep Minist Educ Japan: 1–22

  • Larsen LM (1979) Distribution of REE and other trace-elements between phenocrysts and peralkaline undersaturated magmas, exemplified by rocks from the Gardar igneous province, South Greenland. Lithos 12(4):303–315. doi:10.1016/0024-4937(79)90022-7

    Article  Google Scholar 

  • Lemarchand F, Benoit V, Calais G (1987) Trace element distribution coefficients in alkaline series. Geochim Cosmochim Acta 51:1071–1081. doi:10.1016/0016-7037(87)90201-8

    Article  Google Scholar 

  • Li YH (1991) Distribution patterns of the elements in the ocean—a synthesis. Geochim Cosmochim Acta 55(11):3223–3240

    Article  Google Scholar 

  • Luhr JF, Carmichael ISE (1980) The Colima volcanic complex, Mexico. I: post-caldera andesites from volcan colima. Contrib Mineral Petrol 71:343–372

    Article  Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593

    Article  Google Scholar 

  • Matsui Y, Onuma N, Nagasawa H, Higuchi H, Banno S (1977) Crystal structure control in trace element partition between crystal and magma. Tectonophys 100:315–324

    Google Scholar 

  • McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning between mantle wedge peridotite and hydrous MgO-rich melt. Am Mineral 88:1825–1831

    Google Scholar 

  • McKay GA, Weill DF (1977) KREEP petrogenesis revisited. In: Proceedings of the 8th lunar and planetary science conference, Pergamon Press, Newyork, pp 2339–2355

  • McKenzie D (1984) The generation and compaction of partially molten rock. J Petrol 25:713–765

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare-earth element concentrations. J Petrol 32(5):1021–1091

    Article  Google Scholar 

  • Moriguti T, Shibata T, Nakamura E (2004) Lithium, boron and lead isotope and trace element systematics of quaternary basaltic volcanic rocks in Northeastern Japan: mineralogical controls on slab-derived fluid composition. Chem Geol 212:81–100

    Article  Google Scholar 

  • Nagasawa H (1966) Trace element partition coefficient in ionic crystals. Science 152:767–769

    Article  Google Scholar 

  • Nagasawa H, Schnetzler CC (1971) Partitioning of rare Earth, alkali, and alkaline Earth elements between phenocrysts and acidic igneous magmas. Geochim Cosmochim Acta 35:953–968. doi:10.1016/0016-7037(71)90008-1

    Article  Google Scholar 

  • Nakamura H, Iwamori H (2009) Contribution of slab-fluid in arc magmas beneath the Japan arcs. Gondwana Res 16(3–4):431–445

    Article  Google Scholar 

  • Nakamura Y, Kushiro I (1970) Compositional relations of coexisting orthopyroxene, pigeonite and augite in a tholeiitic andesite from hakone volcano. Contrib Mineral Petrol 26:265–275

    Article  Google Scholar 

  • Nakamura H, Iwamori H, Kimura J-I (2008) Geochemical evidence for enhanced fluid flux due to overlapping subducting plates. Nature Geosci 1:380–384

    Article  Google Scholar 

  • Nash WP, Crecraft HR (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322. doi:10.1016/0016-7037(85)90231-5

    Article  Google Scholar 

  • Navon O, Stolper E (1987) Geochemical consequences of melt percolation—the upper mantle as a chromatographic column. J Geology 95(3):285–307

    Article  Google Scholar 

  • Nicholls IA, Harris KL (1980) Experimental rare earth element partition coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids. Geochim Cosmochim Acta 44:287–308. doi:10.1016/0016-7037(80)90138-6

    Article  Google Scholar 

  • Nielsen RL (1992) BIGD: a FORTRAN program to calculate trace-element partition coefficients for natural mafic and intermediate composition magmas. Comput Geosci 18:773–788. doi:10.1016/0098-3004(92)90024-L

    Article  Google Scholar 

  • Nielsen RL, Gallahan WE, Newberger F (1992) Experimentally determined mineral-melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite. Contrib Mineral Petrol 110:488–499

    Article  Google Scholar 

  • Okamoto K (1979) Geochemical study on magmatic differentiation of asama volcano, central Japan. J Geol Soc Japan 85(8):525–535

    Article  Google Scholar 

  • Ono S (1998) Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: implications for water transport in subduction zones. J Geophys Res 103(B8):18253–18267

    Article  Google Scholar 

  • Ozawa K, Shimizu N (1995) Open-system melting in the upper mantle: constraints from the Hayachine-Miyamori ophiolite, northeastern Japan. J Geophys Res 100:B11. doi:10.1029/95JB01967

    Article  Google Scholar 

  • Parman SW, Grove TL (2004) Harzburgite melting with and without H2O: experimental data and predictive modeling. J Geophys Res 109:B02201. doi:10.1029/2003JB002566

    Article  Google Scholar 

  • Philpotts JA, Schnetzler CC (1970) Phenocryst-matrix partition coefficients for K, Rb, Sr, and Ba, with applications to anorthosite and basalts genesis. Geochim Cosmochim Acta 24:307–322

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145(3–4):325–394

    Article  Google Scholar 

  • Plank T, Kelley KA, Murray RW, Stern LQ (2007) Chemical composition of sediments subducting at the Izu-Bonin trench. Geochem Geophys Geosys 8:Q04I16. doi:10.1029/2006GC001444

    Article  Google Scholar 

  • Ringwood AE (1990) Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem Geol 82:187–207

    Article  Google Scholar 

  • Rodriguez C, Selles D, Dungan M, Langmuir C, Leeman W (2007) Adakitic Dacites Formed by Intra crustal Crystal Fractionation of Water-rich Parent Magmas at Nevado de Longavi Volcano (36.2S; Andean Southern Volcanic Zone, Central Chile). J Petrol 48:2033–2061

    Article  Google Scholar 

  • Rooney TO, Franceschi P, Hall CM (2011) Water-saturated magmas in the Panama Canal region: a precursor to adakite-like magma generation? Contrib Mineral Petrol 161:373–388

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Shimizu N, Maury RC, Jochum KP, Hofmann AW (1995) Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377:595–600

    Article  Google Scholar 

  • Schmidt M, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Article  Google Scholar 

  • Seno T, Yamasaki T (2003) Low-frequency tremors, intraslab and interplate earthquakes in Southwest Japan—from a viewpoint of slab dehydration. Geophys Res Lett 30(22):2171. doi:10.1029/2003GL018349

    Article  Google Scholar 

  • Seno T, Zhao D, Kobayashi Y, Nakamura M (2001) Dehydration in serpentinized slab mantle: seismic evidence from southwest Japan. Earth Planets Space 53:861–871

    Google Scholar 

  • Shimoda G, Tatsumi Y, Nohda S, Ishizala K, Jahn BM (1998) Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducting sediments. Earth Planet Sci Lett 160(3–4):479–492

    Article  Google Scholar 

  • Sisson TW (1994) Hornblende-melt trace-element partitioning measured by ion microprobe. Chem Geol 117(1–4):331–344. doi:10.1016/0009-2541(94)90135-X

    Article  Google Scholar 

  • Skulski T, Minarik W, Watson EB (1994) High-pressure experimental trace-element partitioning between clinopyroxene and basaltic melts. Chem Geol 117(1–4):127–147. doi:10.1016/0009-2541(94)90125-2

    Article  Google Scholar 

  • Smith IEM, Taylor SR, Johnson RW (1979) REE-fractionated trachytes and dacites from Papua New Guinea and their relationship to andesite petrogenesis. Contrib Mineral Petrol 69:227–233

    Article  Google Scholar 

  • Stalder R, Foley SF, Brey GP, Horn I (1998) Mineral-aqueous fluid partitioning of trace elements at 900–1200°C and 3.0–5.7 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochim Cosmochim Acta 62(10):1781–1801

    Google Scholar 

  • Sun SS (1980) Lead isotopic study of young volcanic-rocks from mid-ocean ridges, ocean island and island arcs. Phil Trans Roy Soc Lond A297:409–445

    Google Scholar 

  • Tanaka Y (2000) Petrological study of Kyogatake Volcano. Master Thesis, Kanazawa University

  • Tanase A, Oikawa T, Ninomiya A, Hayashi S, Umeda K (2007) Temporal-spatial variations of Plio-Pleistocene volcanic activity in the Ryohaku Volcanoes, central Japan: evidences from K-Ar ages. Kazan 52:39–61 (in Japanese with English abstract)

    Google Scholar 

  • Tatsumi Y, Eggins S (1995) Subduction Zone Magmatism. Blackwell Cambridge 211

  • Tatsumi Y, Kogiso T (1997) Trace element transport during dehydration processes in the subducted oceanic crust.2. Origin of chemical and physical characteristics in arc magmatism. Earth Planet Sci Lett 148(1–2):207–221

    Article  Google Scholar 

  • Tatsumi Y, Sakuyama M, Fukuyama H, Kushiro I (1983) Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones. J Geophys Res 88(B7):5815–5825

    Article  Google Scholar 

  • Tatsumi Y, Hamilton DL, Nesbitt RW (1986) Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas—evidence from high-pressure experiments and natural rocks. J Volcanol Geotherm Res 29(1–4):293–309

    Article  Google Scholar 

  • Till CV, Grove TL, Withers AC (2012) The beginnings of hydrous mantle wedge melting. Contrib Mineral Petrol 163:669–688. doi:10.1007/s00410-011-0692-6

    Article  Google Scholar 

  • Tonegawa T, Hirahara K, Shibutani T, Iwamori H, Kanamori H, Shiomi K (2008) Water flow to the mantle transition zone inferred from a receiver function image of the Pacific slab. Earth Planet Sci Lett 274:346–354

    Article  Google Scholar 

  • Ujike O, Mashimo R (2009) Preliminary report on the significance of magmatic enclaves in adakites genesis at Hakusan volcano, central Japan. J Mineral Petrol Sci 104:82–85

    Article  Google Scholar 

  • Ujike O, Tanaka R, Watanabe K (1999) Petrology of adakitic rocks from quaternary Bishamon-dake volcano, central Japan. J Min Petr Econ Geol 94:315–328

    Article  Google Scholar 

  • van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosys 3(10):1056

    Google Scholar 

  • van Westrenen W, Draper DS (2007) Quantifying garnet-melt trace element partitioning using lattice-strain theory: new crystal-chemical and thermodynamic constraints. Contrib Mineral Petrol 154:717–730

    Article  Google Scholar 

  • Villemant B (1988) Trace-element evolution in the phlegrean fields (Central-Italy)—fractional crystallization and selective enrichment. Contrib Mineral Petrol 98(2):169–183

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of Komatiite and depleted lithosphere. J Petrol 39(1):29–60

    Article  Google Scholar 

  • Wang Q, Wyman DA, Xu JF, Zhao ZH, Jian P, Xiong XL, Bao ZW, Li CF, Bai ZH (2006) Petrogenesis of cretaceous adakitic and shoshonitic igneous rocks in the Luzon area, Anhui Province (eastern China): implications for geodynamics and Cu–Au mineralization. Lithos 89:424–446

    Article  Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231(1–2):53–72

    Article  Google Scholar 

  • Yogodzinski GM, Lees JM, Churikova TG, Dorendorf F, Woerner G, Volynets ON (2001) Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 409:500–504

    Article  Google Scholar 

  • Yoshida H, Takahashi N (1997) Chemical behavior of major and trace elements in the Horoman mantle diapir, Hidaka belt, Hokkaido, Japan. J Min Petr Econ Geol 92:391–409

    Article  Google Scholar 

  • Zhang C, Ma C, Holtz F (2010) Origin of high-Mg adakitic magmatic enclaves from the Meichuan pluton, southern Dabie orogen (central China): implications for delamination of the lower continental crust and melt-mantle interaction. Lithos 119:467–484

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank J.-I. Kimura and Y. Kato for their assistance in analyses of isotopic and trace element compositions, Y. Tamura, E. Iwasaki and Y. Tanaka for their advices in our field work, K. Ozawa, H. Nagahara, H. Yoshida, N. Geshi, R. Shimura, K. Tani, I. Ogitsu for their help, and J. Blundy, C.G. Macpherson and anonymous reviewer for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitomi Nakamura.

Additional information

Communicated by J. Blundy.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nakamura, H., Iwamori, H. Generation of adakites in a cold subduction zone due to double subducting plates. Contrib Mineral Petrol 165, 1107–1134 (2013). https://doi.org/10.1007/s00410-013-0850-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0850-0

Keywords

  • Subduction zone
  • Magma
  • Adakite
  • Fluid
  • Mantle melting