Skip to main content
Log in

The role of recycled oceanic crust in magmatism and metallogeny: Os–Sr–Nd isotopes, U–Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe–Ti oxide deposit, central Emeishan large igneous province, SW China

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The picritic dykes occurring within fine-grained gabbro in the marginal zone and in the surrounding Proterozoic wall-rock marbles of the Panzhihua Fe–Ti oxide deposit closely correspond in bulk composition with the nearby Panzhihua intrusion. These dykes offer important constraints on the nature of the mantle source of the Panzhihua ore-bearing intrusion and its possible link to the Emeishan plume. U–Pb zircon dating of the picritic dyke yields a crystallization age of 261.4 ± 4.6 Ma, coeval with the timing of the main Panzhihua gabbroic intrusion and Late Permian Emeishan flood basalts. The Panzhihua picritic dykes contain 37.63–43.41 wt% SiO2, 1.15–1.56 wt% TiO2, 11.43–13.25 wt% TFe2O3, and 20.96–28.87 wt% MgO. Primitive-mantle-normalized patterns of the rocks are comparable to those of ocean island basalt. The rocks define a relatively small range of Os isotopic compositions and a low Os signature of −0.13 to +2.76 for γOs (261 Ma). In combination with their Sr–Nd–Os isotopic compositions, we interpret that these rocks were derived from the Emeishan plume sources as well as the interactions of plume melts with the overlying lithosphere which had been extensively affected by eclogite-derived melts from the deep-subducted oceanic slab. Partial melting induced by an upwelling mantle plume that involved an eclogite or pyroxenite component in the lithospheric mantle could have produced the parental Fe-rich magma. Our study suggests that plume-lithosphere interaction might have played a key role in generating many world-class Fe–Ti oxide deposits clustered in the Panxi area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bennett VC, Norman MD, Garcia MO (2000) Rhenium and platinum group element abundances correlated with mantle source components in Hawaiian picrites: sulphides in the plume. Earth Planet Sci Lett 183:513–526

    Article  Google Scholar 

  • Bizimis M, Griselin M, Lassiter JC, Salters VJM, Sen G (2007) Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium–Hafnium isotopic evidence from peridotite mantle xenoliths. Earth Planet Sci Lett 257:259–273

    Article  Google Scholar 

  • Brandon AD, Norman MD, Walker RJ, Morgan JW (1999) 186Os–187Os systematics of Hawaiian picrites. Earth Planet Sci Lett 174:25–42

    Article  Google Scholar 

  • Brandon AD, Walker RJ, Puchtel IS, Bechker H, Humayun M, Revillon S (2003) 186Os–187Os systematics of Gorgona Island komatiites: implications for early growth of the inner core. Earth Planet Sci Lett 206:411–426

    Article  Google Scholar 

  • Brooks CK, Keays RR, Lambert DD, Frick LD, Nielsen TFD (1999) Re–Os isotope geochemistry of Tertiary picritic and basaltic magmatism of East Greenland: constraints on plume-lithosphere interactions and the genesis of the Platinova reef, Skaergaard intrusion. Lithos 47:107–126

    Article  Google Scholar 

  • Carlson RW (2005) Application of the Pt–Re–Os isotopic systems to mantle geochemistry and geochronology. Lithos 82:249–272

    Article  Google Scholar 

  • Chai G, Naldrett AJ (1992) The Jinchuan ultramafic intrusion: cumulate of a high-Mg basaltic magma. J Petrol 33:277–303

    Article  Google Scholar 

  • Chung SL, Jahn BM (1995) Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian–Triassic boundary. Geology 23:889–892

    Article  Google Scholar 

  • Cohen RS, O’Nions RK (1982) Identification of recycled continental material in the mantle from Sr, Nd and Pb isotope investigations. Earth Planet Sci Lett 61:73–84

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PW, Kinny P (2003) Atlas of zircon textures. Rev Miner Geochem 53:469–500

    Article  Google Scholar 

  • Esser BK, Turekian KK (1993) The osmium isotopic composition of the continental crust. Geochim Cosmochim Acta 57:3093–3104

    Article  Google Scholar 

  • Ganino C, Arndt NT, Zhou MF, Gaillard F, Chauvel C (2008) Interaction of magma with sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic intrusion, SW China. Miner Deposita 43:677–694

    Article  Google Scholar 

  • Gibson SA (2002) Major element heterogeneity in Archean to Recent mantle plume starting-heads. Earth Planet Sci Lett 195:59–74

    Article  Google Scholar 

  • Gibson SA, Thompson RN, Dickin AP (2000) Ferropicrites: geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth Planet Sci Lett 174:355–374

    Article  Google Scholar 

  • Hanski EJ, Smolkin VF (1989) Pechenga ferropicrites and other early Proterozoic picrites in the eastern part of the Baltic Shield. Precambrian Res 45:63–82

    Article  Google Scholar 

  • Hanski E, Walker RJ, Huhma H, Polyakov GV, Balykin PA, Hoa TT, Phuong NT (2004) Origin of Permian–Triassic komatiites, northwestern Vietnam. Contrib Miner Petrol 147:453–469

    Article  Google Scholar 

  • Hawkesworth CJ, Turner SP, McDermott F, Peate DW, van Calsteren P (1997) U-Th isotopes in arc magmas: implications for element transfer from subducted crust. Science 276:551–555

    Article  Google Scholar 

  • He B, Xu YG, Chung SL, Xiao L, Wang YM (2003) Sedimentary evidence for a rapid, kilometer scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth Planet Sci Lett 213:391–405

    Article  Google Scholar 

  • Horan MF, Walker RJ, Fedorenko VA, Czamanske GK (1995) Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalt sources. Geochim Cosmochim Acta 59:5159–5168

    Google Scholar 

  • Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648

    Article  Google Scholar 

  • Hou T, Zhang ZC, Ye XR, Encarnacion JP, Liu J, Zhao Z (2011a) Noble gas isotopic systematics of Fe–Ti–V oxide ore-related mafic-ultramafic layered intrusions in the Panxi area, China: the role of recycled oceanic crust in their petrogenesis. Geochim Cosmochim Acta 75:6727–6741

    Article  Google Scholar 

  • Hou T, Zhang ZC, Kusky T, Du Y, Liu J, Zhao Z (2011b) A reappraisal of the petrogenetic linkage between basalts and mafic-ultramafic intrusions in the Emeishan Large Igneous Province, SW China. Ore Geol Rev 41:133–143

    Article  Google Scholar 

  • Hou T, Zhang ZC, Pirajno F (2012a) A new metallogenic model of the Panzhihua giant V-Ti-iron oxide deposit (Emeishan Large Igneous Province) based on high-Mg olivine-bearing wehrlite and new field evidence. Int Geol Rev 54:1721–1745

    Article  Google Scholar 

  • Hou T, Zhang ZC, Encarnacion J, Santosh M (2012b) Petrogenesis and metallogenesis of the Taihe gabbroic intrusion associated with Fe–Ti oxide ores in the Panxi district, Emeishan Large Igneous Province, southwest China. Ore Geol Rev 49:109–127

    Google Scholar 

  • Ichiyama Y, Ishiwatari A, Hirahara Y, Shuto K (2006) Geochemical and isotopic constraints on the genesis of the Permian ferropicritic rocks from the Mino-Tamba belt, SW Japan. Lithos 89:47–65

    Article  Google Scholar 

  • Ionov DA, Shirey SB, Weis D, Brügmann G (2006) Os-Hf-Sr-Nd isotope and PGE systematics of spinel peridotite xenoliths from Tok, SE Siberian craton: effects of pervasive metasomatism in shallow refractory mantle. Earth Planet Sci Lett 241:47–64

    Article  Google Scholar 

  • Kalsbeek F, Taylor PN (1986) Age and origin of early Proterozoic dolerite dykes in south-west Greenland. Contrib Miner Petrol 89:307–316

    Article  Google Scholar 

  • Lugmair GW, Harti K (1978) Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357

    Article  Google Scholar 

  • Luguet A, Horan MF, Shirey SB, Lorand JP, Carlson RW (2004) Partitioning of highly siderophile elements (HSE) in very refractory peridotites. Geochim Cosmochim Acta 68:A549

    Google Scholar 

  • Ma Y, Ji XT, Li JC, Huang M, Kan ZZ (2003) Mineral resources of the Panzhihua region. Chengdu: Sichuan Science and Technology Press, pp 275 (in Chinese)

  • Mahoney JJ, Frei R, Tejada MLG, Mo XX, Leat PT, Nagler TF (1998) Tracing the Indian Ocean mantle domain through time: isotopic results from old west Indian, east Tethyan, and South Pacific seafloor. J Petrol 39:1285–1306

    Article  Google Scholar 

  • Menzies MA, Long A, Ingeram G, Talnfl M, Janfcky D (1993) MORB periodotite-sea water interaction: experimental constrains on the behavior of trace elements, 87Sr/86Sr and 143Nd/144Nd ratios. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geol Soc Spec Publ 76:309–322

  • Pang KN, Li CS, Zhou MF, Ripley EM (2009) Mineral compositional constraints on petrogenesis and oxide ore genesis of the late Permian Panzhihua layered gabbroic intrusion, SW China. Lithos 110:199–214

    Google Scholar 

  • Pang KN, Zhou MF, Lindsley D, Zhao DG, Malpas J (2008) Origin of Fe–Ti oxide ores in mafic intrusion: evidence from the Panzhihua intrusion, SW China. J Petrol 49:295–313

    Article  Google Scholar 

  • Pang KN, Zhou MF, Qi L, Shellnutt G, Wang CY, Zhao D (2010) Flood basalt-related Fe–Ti oxide deposits in the Emeishan large igneous province, SW China. Lithos 119:123–136

    Article  Google Scholar 

  • Pearson DG, Nowell GM (2003) Re–Os and Lu–Hf isotope constraints on the origin and age of pyroxenites from the Beni Bousera peridotite massif: implications for mixed peridotite–pyroxenite mantle sources. J Petrol 45:439–455

    Article  Google Scholar 

  • Pearson DG, Carlson RW, Shirey SB, Boyd FR, Nixon PH (1995) The stabilisation of Archaean lithospheric mantle: a Re–Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet Sci Lett 134:341–357

    Article  Google Scholar 

  • Peucker-Ehrenbrink B, Hanghoj K, Atwood T, Kelemen PB (2012) Rhenium-osmium isotope systematics and platinum group element concentrations in oceanic crust. Geology 40:199–202

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  • Putirka KD (2005) Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes. Geochem Geophys Geosyst 6:Q05L08. doi:10.1029/2005GC000915

  • Reisberg L, Rouxel O, Ludden J, Staudigel H, Zimmermann C (2008) Re-Os results from ODP Site 801: evidence for extensive Re uptake during alteration of oceanic crust. Chem Geol 248:256–271

    Article  Google Scholar 

  • Riley TR, Curtis ML, Leat PT, Watkeys MK, Duncan RA, Millar IL, Owens WH (2006) Overlap of Karoo and Ferrar magma types in KwaZulu-Natal, South Africa. J Petrol 47:541–566

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 29:275–289

    Article  Google Scholar 

  • Saunders AD, Storey M, Kent R, Norry MJ (1992) Consequences of plum–lithosphere interactions. In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the causes of continental break-up. Geol Soc Spec Publ 68:41–60

  • Schaefer BF, Parkinson IJ, Hawkesworth CJ (2000a) Deep mantle plume osmium isotope signature from West Greenland Tertiary picrites. Earth Planet Sci Lett 175:105–118

    Article  Google Scholar 

  • Schaefer BF, Turner SP, Rogers NW, Hawkesworth CJ, Williams HM, Pearson DG, Nowell GM (2000b) Re-Os isotope characteristics of postorogenic lavas: implications for the nature of young lithospheric mantle and its contribution to basaltic magmas. Geology 28:563–566

    Article  Google Scholar 

  • Shellnutt JG, Jahn BM (2011) Origin of Late Permian Emeishan basaltic rocks from the Panxi region (SW China): implications for the Ti-classification and spatial-compositional distribution of the Emeishan flood basalts. J Volcanol Geotherm Res 199:85–95

    Article  Google Scholar 

  • Shellnutt JG, Denyszyn SW, Mundil R (2012) Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Res 22:118–126

    Article  Google Scholar 

  • Shirey SB, Walker RJ (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Ann Rev Earth Planet Sci Lett 26:423–500

    Article  Google Scholar 

  • Sichuan Bureau of Geology and Mineral Resources (SBGMR) (1991) Regional Geology of Sichuan Province. Geological Publishing House, Beijing 680 pp (in Chinese)

  • Smoliar MI, Walker RJ, Morgan JW (1996) Re–Os ages of Group IIA, IIIA, IVA and IVB iron meteorites. Science 271:1099–1102

    Article  Google Scholar 

  • Song XY, Zhou MF, Cao ZM, Robinson PT (2004) Late Permian rifting of the South China Craton caused by the Emeishan mantle plume? J Geol Soc 161:773–781

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geochronology and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Stone WE, Crocket JH, Dickin AP, Fleet ME (1995) Origin of Archean ferropicrites: geochemical constraints from the Boston Creek Flow, Abitibi greenstone belt, Ontario, Canada. Chem Geol 121:51–71

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Spec Publ 42:313–345

  • Sun WD, Arculus RJ, Bennett VC, Eggins SM, Binns RA (2003) Evidence for rhenium enrichment in the mantle wedge from submarine arc–like volcanic glasses (Papua New Guinea). Geology 31:845–848

    Article  Google Scholar 

  • Tao Y, Li C, Hu R, Qi L, Qu W, Du A (2010) Re–Os isotopic constraints on the genesis of the Limahe Ni–Cu deposit in the Emeishan large igneous province, SW China. Lithos 119:137–146

    Article  Google Scholar 

  • Tuff J, Takahashi E, Gibson SA (2005) Experimental constraints on the role of garnet pyroxenites in the genesis of high-Fe mantle plume derived melts. J Petrol 46:2023–2058

    Article  Google Scholar 

  • Walker RJ, Carlson RW, Shirey SB, Boyd FR (1989) Os, Sr, Nd and Pb systematics of southern African peridotite xenoliths: implications for the geochemical evolution of subcontinental mantle. Geochim Cosmochim Acta 53:1583–1596

    Article  Google Scholar 

  • Walker RJ, Morgan JW, Horan MF, Czamanske GK, Krogstad EJ, Likhachev AP, Kunilov VA (1994) Re–Os isotopic evidence for an enriched-mantle plume source for the Norils-type ore-bearing intrusions, Siberia. Geochim Cosmochim Acta 58:4179–4198

    Article  Google Scholar 

  • Wang Y, Fan W, Zhang G, Zhang Y (2012) Phanerozoic tectonics of the South China Block: key observations and controversies. Gondwana Res. http://dx.doi.org/10.1016/j.gr.2012.02.019

  • Weaver BL, Wood DA, Tarney J, Joron JL (1986) Role of subducted sediments in the genesis of ocean island basalt: geochemical evidence from South Atlantic ocean islands. Geology 14:275–278

    Article  Google Scholar 

  • Widom E, Hoernle KA, Shirey SB, Schmincke HU (1999) Os isotope systematics in the Canary Islands and Madeira: lithospheric contamination and mantle plume signatures. J Petrol 40:279–296

    Article  Google Scholar 

  • Wooden JL, Czamanske GK, Fedorenko VA, Arndt NT, Chauvel C, Bouse RM, King BSW, Knight RJ, Siems DF (1993) Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim Cosmochim Acta 57:3677–3704

    Article  Google Scholar 

  • Wu J, Zhang Z (2012) Spatial distribution of seismic layer, crustal thickness, and Vp/Vs ratio in the Permian Emeishan Mantle Plume region. Gondwana Res 22:127–139

    Article  Google Scholar 

  • Xu YG, Chung SL, Jahn BM, Wu GY (2001) Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos 58:145–168

    Article  Google Scholar 

  • Yan DP, Zhou MF, Song HL, Wang XW, Malpas J (2003) Origin and tectonic significance of a Mesozoic multilayer over-thrust system within the Yangtze Block (South China). Tectonophysics 361:239–254

    Article  Google Scholar 

  • Yaxley GM (2000) Experimental study of the phase and melting relations of homogeneous basalt-peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib Miner Petrol 139:326–338

    Article  Google Scholar 

  • Yaxley GM, Green DH (1998) Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz Miner Petrogr Mitt 78:243–255

    Google Scholar 

  • Zhang YX, Lou Y, Yang X (1988) The Panxi Rift. Geological Press, Beijing (in Chinese)

    Google Scholar 

  • Zhang ZC, Mahoney JJ, Mao JW, Wang FS (2006) Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. J Petrol 47:1997–2019

    Article  Google Scholar 

  • Zhang ZC, Zhi X, Chen L, Saunders AD, Reichow MK (2008) Re–Os isotopic compositions of picrites from the Emeishan flood basalt province, China. Earth Planet Sci Lett 276:30–39

    Article  Google Scholar 

  • Zhang ZC, Mao JW, Saunders AD, Ai Y, Li Y, Zhao L (2009) Petrogenetic modeling of three mafic–ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos 113:369–392

    Article  Google Scholar 

  • Zhao JH, Zhou MF, Yan DP, Yang YH, Sun M (2008) Zircon Lu–Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China. Precambrian Res 163:189–209

    Article  Google Scholar 

  • Zhang SB, Zheng, YF (2012) Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Res. http://dx.doi.org/10.1016/j.gr.2012.09.005

  • Zhong H, Qi L, Hu R, Zhou M, Gou T, Zhu W, Liu B, Chu Z (2011) Rhenium-Osmium isotope and platinum-group elements in the Xinjie layered intrusion, SW China: implications for source mantle composition, mantle evolution, PGE fractionation and mineralization. Geochim Cosmochim Acta 75:1621–1641

    Article  Google Scholar 

  • Zhou JX (1999) Geochemistry and petrogenesis of igneous rocks containing amphibole and mica: a case study of plate collision involving Scotland and Himalayas. Science Press, New York, pp 41–72

    Google Scholar 

  • Zhou MF, Yan DP, Kennedy AK, Li Y, Ding J (2002) SHRIMP U-Pb zircon geochronological and geochemical evidence for neoproterozoic arc-magmatism along the western margin of the Yangtze block, South China. Earth Planet Sci Lett 196:51–67

    Article  Google Scholar 

  • Zhou MF, Robinson PT, Lesher CM, Keays RR, Zhang CJ, Malpas J (2005) Geochemistry, petrogenesis, and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe–Ti–V-oxide deposits, Sichuan Province, SW China. J Petrol 46:2253–2280

    Article  Google Scholar 

  • Zhou MF, Arndt NT, Malpas J, Wang CY, Kennedy AK (2008) Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China. Lithos 103:352–368

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Yongsheng Liu and Wei Yang for assistance with the work. We thank the two anonymous reviewers and Editor Timothy L. Grove for their thoughtful and constructive comments. Parts of this work were supported by 973 program (2012CB416806), the National Natural Science Foundation of China (Nos. 40925006 and 40821061), the “Fundamental Research Funds for the Central Universities,” the 111 Project (B07011), and PCSIRT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaochong Zhang.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, T., Zhang, Z., Encarnacion, J. et al. The role of recycled oceanic crust in magmatism and metallogeny: Os–Sr–Nd isotopes, U–Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe–Ti oxide deposit, central Emeishan large igneous province, SW China. Contrib Mineral Petrol 165, 805–822 (2013). https://doi.org/10.1007/s00410-012-0836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0836-3

Keywords

Navigation