Skip to main content

Advertisement

Log in

Geochronology and geochemistry of Cenozoic basalts from eastern Guangdong, SE China: constraints on the lithosphere evolution beneath the northern margin of the South China Sea

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The 40Ar–39Ar dating reveals three episodes of basaltic volcanism in eastern Guangdong of SE China since the late Eocene (i.e., 35.5, ~20 and 6.6 Ma). The Miocene alkali olivine basalts (~20 and 6.6 Ma) have OIB-like trace element characteristics, which is coupled with low (87Sr/86Sr)i, high εNd(t), and high εHf(t). In contrast, the late Eocene basalts (35.5 Ma) have overall characteristics of “Island Arc” basalts with strong negative Ta–Nb–Ti anomalies in the primitive mantle-normalized multi-element diagram with high (87Sr/86Sr)i, negative εNd(t), and relatively low εHf(t). All basalts have unexpectedly high 207Pb/204Pb and 208Pb/204Pb, delineating a DUPAL signature in the sources. The late Eocene Arc-like basalts may reflect contributions of relict ancient metasomatized mantle lithosphere that melted as the result of extension-induced asthenospheric upwelling and heating, whereas the Miocene OIB-like basalts may represent partial melting of the asthenospheric mantle beneath the thickened lithosphere. We propose that the Cenozoic basaltic volcanism in eastern Guangdong records an overall lithospheric thickening process beneath SE China, that is, a continental rift system from its maximum extension in the late Eocene to its waning in the Miocene. This interpretation is consistent with the evolution of the South China Sea, whose origin is most consistent with the development of a passive continental margin. The seafloor spreading of the South China Sea during ~ 32–16 Ma may not result from the effect of the “Hainan” mantle plume, but rather played a positive role in allowing the mantle plume to express on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bache F, Olivet JL, Gorini C, Aslanian D, Labails C, Rabineau M (2010) Evolution of rifted continental margins: the case of the Gulf of Lions (Western Mediterranean basin). Earth Planet Sci Lett 292:345–356

    Article  Google Scholar 

  • Baker J, Waight T (2002) Pb isotope analysis using Tl and a 207Pb-204Pb spike on a double focusing MC-ICPMS. Geochim Cosmochim Acta 66(15A):A44

    Google Scholar 

  • Basu AR, Wang JW, Huang WK, Xie GH, Tatsumoto M (1991) Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from sub-oceanic type mantle reservoirs. Earth Planet Sci Lett 105:149–169

    Article  Google Scholar 

  • BGMR (Bureau of Geology and Mineral Resources) (1974) Geological map of Guangdong Province. Sheet F-50-III (Shangtou), scale 1: 200,000

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57

    Article  Google Scholar 

  • Briais A, Patriat P, Tapponnier P (1993) Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implication for the Tertiary tectonics of Southeast Asia. J Geophys Res 98(B4):6299–6328

    Article  Google Scholar 

  • Campbell IH (2001) Identification of ancient mantle plumes. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America Special Papers 352:5–22

  • Chauvel C, Lewin E, Carpentier M, Arndt NT, Marini JC (2008) Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nat Geosci 1:64–67

    Article  Google Scholar 

  • Chung SL, Sun S-s TuK, Chen C-H, Lee CY (1994) Late Cenozoic basaltic volcanism around the Taiwan strait, SE China: product of lithosphere-asthenosphere interaction during continental extension. Chem Geol 112:1–20

    Article  Google Scholar 

  • Chung SL, Cheng H, Jahn BM, O’Reilly SY, Zhu BQ (1997) Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening. Lithos 40:203–220

    Article  Google Scholar 

  • Conticelli S, Peccerillo A (1992) Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos 28:221–240

    Article  Google Scholar 

  • Deng JF, Mo XX, Zhao HL, Wu ZX, Luo ZH, Su SG (2004) A new model for the dynamic evolution of Chinese lithosphere: “continental roots-plume tectonics”. Earth-Sci Rev 65:223–275 (in Chinese with English abstract)

    Article  Google Scholar 

  • Donnelly KE, Goldstein SL, Langmuir CH, Spiegelman M (2004) Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet Sci Lett 226:347–366

    Article  Google Scholar 

  • Elkins LJ, Gaetani GA, Sims KWW (2008) Partitioning of U and Th during garnet pyroxenite partial melting: constraints on the source of alkaline ocean island basalts. Earth Planet Sci Lett 265:270–286

    Article  Google Scholar 

  • Fan WM, Zhang HF, Baker J, Javis KE, Mason PRD, Menzies MA (2000) On and off the North China craton: where is the Archean keel? J Petrol 41:933–950

    Article  Google Scholar 

  • Flower MFJ, Zhang M, Chen CY, Tu K, Xie GH (1992) Magmatism in the South China Basin 2: post-spreading quaternary basalts from Hainan Island, South China. Chem Geol 97:65–87

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, O’Reilly SY, van Achterberg E, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Hart SR (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757

    Article  Google Scholar 

  • Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F (1993) Mantle and slab contributions in arc magmas. Annu Rev Earth Planet Sci 21:175–204

    Article  Google Scholar 

  • Hayes DE, Nissen SS, Buhl P (1995) Through going crustal faults along the margin of Southern China Sea and their role in the crustal extension. J Geophys Res 100(B11):22435–22446

    Article  Google Scholar 

  • He LJ, Wang KL, Xiong LP, Wang JY (2001) Heat flow and thermal history of the South China Sea. Phys Earth Planet Inter 126:211–220

    Article  Google Scholar 

  • Ho KS, Chen JC, Lo CH, Zhao HL (2003) 40Ar-39Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang-Fujian region, SE China: eruption ages, magma evolution and petrogenesis. Chem Geol 197:287–318

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436

    Article  Google Scholar 

  • Huang XL, Xu YG (2010) Thermal state and structure of the lithosphere beneath eastern China: a synthesis on basalt-borne xenoliths. J Earth Sci 21:711–730

    Article  Google Scholar 

  • Huang XL, Xu YG, Lo CH, Wang RC, Lin CY (2007) Exsolution lamellae in a clinopyroxene megacryst aggregate from Cenozoic basalt, Leizhou peninsula, South China: petrography and chemical evolution. Contrib Mineral Petrol 154:691–705

    Article  Google Scholar 

  • Huang XL, Niu YL, Xu YG, Chen LL, Yang QJ (2010) Mineralogical and geochemical constraints on the petrogenesis of post-collisional potassic and ultrapotassic rocks from western Yunnan, SW China. J Petrol 51:1617–1654

    Article  Google Scholar 

  • Keen MJ (1985) The dynamics of rifting: deformation of the lithosphere by active and passive driving forces. Geophy J Royal Astro Soc 80:95–120

    Article  Google Scholar 

  • Kelemen PB, Hanghøj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The crust, treatise on geochemistry, vol 3. Elsevier, Oxford, pp 593–659

    Google Scholar 

  • Klemme S, Gunther D, Hametner K, Prowatke S, Zack T (2006) The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol 234:251–263

    Article  Google Scholar 

  • Koppers AAP (2002) ArArCALC: software for 40Ar/39Ar age calculations. Comp Geosci 28:605–619

    Article  Google Scholar 

  • Le Maitre RW (1989) A classification of igneous rocks and glossary of terms: recommendation of the IOU subcommission on the systematics of igneous rocks. Blackwell, Oxford

    Google Scholar 

  • Lee TY, Lawver LA (1995) Cenozoic plate reconstruction of Southeast Asia. Tectonophys 251:85–138

    Article  Google Scholar 

  • Lei J, Zhao D, Steinberger B, Wu B, Shen F, Li Z (2009) New seismic constraints on the upper mantle structure of the Hainan plume. Phys Earth Planet Inter 173:33–50

    Article  Google Scholar 

  • Li XH, Hu RZ, Rao B (1997) Geochronology and geochemistry of Cretaceous mafic dikes from northern Guangdong, SE China. Geochimica 26:14–31 (in Chinese with English abstract)

    Google Scholar 

  • Li XH, Qi CS, Liu Y, Liang XR, Tu XL, Xie LW, Yang YH (2005) Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: new constraints from Hf isotopes and Fe/Mn ratios. Chin Sci Bull 50:2481–2486

    Article  Google Scholar 

  • Liu CQ, Masuda A, Xie GH (1994) Major- and trace-element composition of Cenozoic basalts in eastern China: petrogenesis and mantle source. Chem Geol 114:19–42

    Article  Google Scholar 

  • McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa. Phys Earth Planet Inter 139:129–147

    Article  Google Scholar 

  • McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40:25–32

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1983) Mantle reservoirs and ocean island basalts. Nature 301:229–231

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1995) The source regions of ocean island basalts. J Petrol 36:133–159

    Article  Google Scholar 

  • Münker C, Pfänder JA, Weyer S, Büchl A, Kleine T, Mezger K (2003) Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics. Science 301:84–87

    Article  Google Scholar 

  • Nguyen H, Flower MFJ, Carlson RW (1996) Major, trace element, and isotopic compositions of Vietnamese basalts: interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochim Cosmochim Acta 60:4329–4351

    Article  Google Scholar 

  • Niu YL (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting melt extraction and post-melting processes beneath ocean ridges. J Petrol 45:2423–2458

    Article  Google Scholar 

  • Niu YL (2008) The origin of Alkaline lavas. Science 320:883–884

    Article  Google Scholar 

  • Niu YL (2009) Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts. Chin Sci Bull 54:4148–4160

    Article  Google Scholar 

  • Niu YL, Batiza R (1997) Trace element evidence from seamounts for recycled oceanic crust in the eastern equatorial Pacific mantle. Earth Planet Sci Lett 148:471–484

    Article  Google Scholar 

  • Niu YL, O’Hara MJ (2003) origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations. J Geophys Res 108(B4):2209, doi:10.1029/2002JB002048

  • Niu YL, O’Hara MJ (2008) Global correlations of ocean ridge basalt chemistry with axial depth: a new perspective. J Petrol 49:633–664

    Article  Google Scholar 

  • Niu YL, O’Hara MJ (2009) MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: new perspectives on crust-mantle differentiation and chemical structure of oceanic upper mantle. Lithos 112:1–17

    Article  Google Scholar 

  • Niu YL, Regelous M, Wendt JI, Batiza R, O’Hara MJ (2002) Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component. Earth Planet Sci Lett 199:327–345

    Article  Google Scholar 

  • Palme H, O’Neill HStC (2003) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) The mantle and core, treatise on geochemistry, vol 2. Elsevier, Oxford, pp 1–38

    Google Scholar 

  • Peccerillo A (1985) Roman Comagmatic Province (Central Italy): evidence for subduction related magma genesis. Geology 13:103–106

    Article  Google Scholar 

  • Pfänder JA, Münker C, Stracke A, Mezger K (2007) Nb/Ta and Zr/Hf in ocean island basalts–implications for crust–mantle differentiation and the fate of Niobium. Earth Planet Sci Lett 254:158–172

    Article  Google Scholar 

  • Qi Q, Taylor LA, Zhou XM (1994) Geochemistry and petrogensis of three series of Cenozoic basalts from southeastern China. Inter Geol Rev 36:435–451

    Article  Google Scholar 

  • Ren JY, Tamaki K, Li ST, Zhang J (2002) Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophys 344:175–205

    Article  Google Scholar 

  • Ru K, Pigott JD (1986) Episodic rifting and subsidence in the South China Sea. Assoc Petrol Geol Bull 70:1136–1155

    Google Scholar 

  • Ruppel C (1995) Extensional processes in continental lithosphere. J Geophys Res 100(B12):24187–24215

    Article  Google Scholar 

  • Schmeling H (2010) Dynamic models of continental rifting with melt generation. Tectonophys 480:33–47

    Article  Google Scholar 

  • Sengör AMC, Burke K (1978) Relative timing of rifting and volcanism on earth and its tectonic implications. Geophys Res Lett 5:419–421

    Article  Google Scholar 

  • Söderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  • Spohn T, Schubert G (1982) Convective thinning of the lithosphere: a mechanism for the initiation of continental rifting. J Geophys Res 87:4669–4681

    Article  Google Scholar 

  • Stracke A, Bizimis M, Salters VJM (2003) Recycling oceanic crust: quantitative constraints. Geochem Geophys Geosyst 4:8003. doi:10.1029/2001GC000223

    Article  Google Scholar 

  • Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst 6:Q05007. doi:10.1029/2004GC000824

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publication 42:313–345

  • Sun Z, Zhong ZH, Keep M, Zhou D, Cai DS, Li XS, Wu SM, Jiang JQ (2009) 3D analogue modeling of the South China Sea: a discussion on breakup pattern. J Asian Earth Sci 34:544–556

    Article  Google Scholar 

  • Tannaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168:279–281

    Article  Google Scholar 

  • Tatsumi Y (1986) Formation of the volcanic front in subduction zones. Geophys Res Lett 13:717–720

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford

    Google Scholar 

  • Tiepolo M, Bottazzi P, Foley SF, Oberti R, Vannucci R, Zanetti A (2001) Fractionation of Nb and Ta from Zr and Hf at mantle depths: the role of titanian pargasite and kaersutite. J Petrol 42:221–232

    Article  Google Scholar 

  • Tu K, Flower MFJ, Carlson RW, Zhang M, Xie G (1991) Sr, Nd and Pb isotopic compositions of Hainan Basalts (South China): implications for subcontinental lithosphere Dupal source. Geology 19:567–569

    Article  Google Scholar 

  • Tu K, Flower MFJ, Carlson RW, Xie GH, Chen CY, Zhang M (1992) Magmatism in the South China Basin: 1. Isotopic and trace element evidence for an endogenous Dupal mantle component. Chem Geol 97:47–63

    Article  Google Scholar 

  • Wang XC, Li XH, Li ZX, Liu Y, Yang YH (2010) The Willouran basic province of South Australia: its relation to the Guibei large igneous province in South China and the breakup of Rodinia. Lithos 119:569–584

    Article  Google Scholar 

  • Wang XC, Li ZX, Li XH, Li J, Liu Y, Long WG, Zhou JB, Wang F (2012) Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones? J Petrol 53:177–233

    Article  Google Scholar 

  • Wei GJ, Liang XR, Li XH, Liu Y (2002) Precise measurement of Sr isotopic compositions of liquid and solid base using (LA) MC-ICP-MS. Geochimica 31:295–305 (in Chinese with English abstract)

    Google Scholar 

  • Westrenen WV, Blundy J, Wood B (1999) Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am Mineral 84:838–847

    Google Scholar 

  • Weyer S, Münker C, Mezger K (2003) Nb/Ta, Zr/Hf and REE in the depleted mantle: implications for the differentiation history of the crust-mantle system. Earth Planet Sci Lett 205:309–324

    Article  Google Scholar 

  • White WM (2010) Oceanic island basalts and mantle plumes: the geochemical perspective. Annu Rev Earth Planet Sci 38:133–160

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Unwin Hyman, London

    Book  Google Scholar 

  • Windley BF (1995) The evolving continents, 3rd edn. Wiley, Chichester

    Google Scholar 

  • Xiao L, Wang FZ, Wang H, Pirajno F (2004) The formation of Songliao basin and Bohaiwan basin, northern China: mantle plume tectonic control. Earth Sci J China Univ Geosci 29:283–292 (in Chinese with English abstract)

    Google Scholar 

  • Xiong XL, Adam J, Green TH (2005) Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chem Geol 218:339–359

    Article  Google Scholar 

  • Xu YG (2001) Thermo-tectonic destruction of the Archaean lithsopheric keel beneath the Sino-Korean craton in China: evidence, timing and mechanism. Phys Chem Earth (A) 26:747–757

    Article  Google Scholar 

  • Xu XS, O’Reilly SY, Zhou XM, Griffin WL (1996) A xenolith-derived geotherm and the crust-mantle boundary at Qilin, southeastern China. Lithos 38:41–62

    Article  Google Scholar 

  • Xu XS, O’Reilly SY, Griffin WL, Zhou XM (2000) Genesis of young lithospheric mantle in the southeastern China: a LAM-ICPMS trace element study. J Petrol 41:111–148

    Article  Google Scholar 

  • Xu YG, Sun M, Yan W, Liu Y, Huang XL, Chen XM (2002) Xenolith evidence for polybaric melting and stratification of the upper mantle beneath South China. J Asian Earth Sci 20:937–954

    Article  Google Scholar 

  • Xu XS, O’Reilly SY, Griffin WL, Zhou XM (2003) Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China. Chem Geol 198:163–188

    Article  Google Scholar 

  • Xu YG, Huang XL, Ma JL, Wang YB, Iizuka Y, Xu JF, Wang Q, Wu XY (2004) Crustal-mantle interaction during the thermo-tectonic reactivation of the North China Craton: SHRIMP zircon U-Pb age, petrology and geochemistry of Mesozoic plutons in western Shandong. Contrib Mineral Petrol 147:750–767

    Article  Google Scholar 

  • Xu XS, Griffin WL, O’Reilly SY, Pearson NJ, Geng HY, Zheng JP (2008) Re-Os isotopes of sulfides in mantle xenoliths from eastern China: progressive modification of lithsopheric mantle. Lithos 102:43–64

    Article  Google Scholar 

  • Zhang M, Tu K, Xie GH, Flower MFJ (1996) Subduction-modified subcontinental mantle in South China: trace element and isotope evidence in basalts from Hainan Island. Chinese J Geochem 15:1–19

    Article  Google Scholar 

  • Zhao ZD, Mo XX, Dilek Y, Niu YL, DePaolo DJ, Robinson P, Zhu DC, Sun CG, Dong GC, Zhou S, Luo ZH, Hou ZQ (2009) Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos 113:190–212

    Article  Google Scholar 

  • Zhou D, Ru K, Chen HZ (1995) Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region. Tectonophys 251:161–177

    Article  Google Scholar 

  • Zhou XM, Sun T, Shen WZ, Shu LS, Niu YL (2006) Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes 29:26–33

    Google Scholar 

  • Zhou H, Xiao L, Dong Y, Wang C, Wang F, Ni P (2009) Geochemical and geochronological study of the Sanshui basin bimodal volcanic rock suite, China: implications for basin dynamics in southeastern China. J Asian Earth Sci 34:178–189

    Article  Google Scholar 

  • Zhu BQ, Wang H (1989) Nd-Sr-Pb isotopic and chemical evidence for the volcanism with MORB-OIB source characteristics in the Leiqiong area, China. Geochimica 3:193–201 (in Chinese with English abstract)

    Google Scholar 

  • Zhu BQ, Wang HF, Chen YW, Chang XY, Hu YG, Xie J (2004) Geochronological and geochemical constraint of the Cenozoic extension of Cathaysian lithosphere and tectonic evolution of the border sea basins in East Asia. J Asian Earth Sci 24:163–175

    Article  Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

  • Zou HB, Zindler A, Xu XS, Qi Q (2000) Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chem Geol 171:33–47

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the constructive comments of C. Beier and X. C. Wang, which considerably improved the manuscript. We thank X. R. Liang, Y. Liu, and X. L. Tu for analytical assistance. This research was supported by the Knowledge Innovation Projects of the Chinese Academy of Sciences (KZCX1-YW-15-2, KZCX2-YW-QN106), the National Science Foundation of China (NSFC Projects 40773015, 91014003, 41130314, 41121002) and the CAS/SAFEA International Partnership Program for Creative Research Teams (KZCX2-YW-Q04-06). This is contribution No. IS-1561 from GIG-CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Long Huang.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, XL., Niu, Y., Xu, YG. et al. Geochronology and geochemistry of Cenozoic basalts from eastern Guangdong, SE China: constraints on the lithosphere evolution beneath the northern margin of the South China Sea. Contrib Mineral Petrol 165, 437–455 (2013). https://doi.org/10.1007/s00410-012-0816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0816-7

Keywords

Navigation