Skip to main content
Log in

Petrology and geochemistry of igneous inclusions in recent Merapi deposits: a window into the sub-volcanic plumbing system

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Recent basaltic-andesite lavas from Merapi volcano contain abundant and varied igneous inclusions suggesting a complex sub-volcanic magmatic system for Merapi volcano. In order to better understand the processes occurring beneath Merapi, we have studied this suite of inclusions by petrography, geochemistry and geobarometric calculations. The inclusions may be classified into four main suites: (1) highly crystalline basaltic-andesite inclusions, (2) co-magmatic enclaves, (3) plutonic crystalline inclusions and (4) amphibole megacrysts. Highly crystalline basaltic-andesite inclusions and co-magmatic enclaves typically display liquid–liquid relationships with their host rocks, indicating mixing and mingling of distinct magmas. Co-magmatic enclaves are basaltic in composition and occasionally display chilled margins, whereas highly crystalline basaltic-andesite inclusions usually lack chilling. Plutonic inclusions have variable grain sizes and occasionally possess crystal layering with a spectrum of compositions spanning from gabbro to diorite. Plagioclase, pyroxene and amphibole are the dominant phases present in both the inclusions and the host lavas. Mineral compositions of the inclusions largely overlap with compositions of minerals in recent and historic basaltic-andesites and the enclaves they contain, indicating a cognate or ‘antelithic’ nature for most of the plutonic inclusions. Many of the plutonic inclusions plot together with the host basaltic-andesites along fractional crystallisation trends from parental basalt to andesite compositions. Results for mineral geobarometry on the inclusions suggest a crystallisation history for the plutonic inclusions and the recent and historic Merapi magmas that spans the full depth of the crust, indicating a multi-chamber magma system with high amounts of semi-molten crystalline mush. There, crystallisation, crystal accumulation, magma mixing and mafic recharge take place. Comparison of the barometric results with whole rock Sr, Nd, and Pb isotope data for the inclusions suggests input of crustal material as magma ascends from depth, with a significant late addition of sedimentary material from the uppermost crust. The type of multi-chamber plumbing system envisaged contains large portions of crystal mush and provides ample opportunity to recycle the magmatic crystalline roots as well as interact with the surrounding host lithologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdurachman EK, Bourdier JL, Voight B (2000) Nuées ardentes of November 22 1994 at Merapi Volcano, Indonesia. J Volcanol Geotherm Res 100:345–361

    Article  Google Scholar 

  • Abratis M, Schmincke H-U, Hansteen TH (2002) Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. Int J Earth Sc 91:562–582

    Article  Google Scholar 

  • Andreastuti SD, Alloway BV, Smith IM (2000) A detailed tephrostratigraphic framework at Merapi Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment. J Volcanol Geotherm Res 100:51–67

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Article  Google Scholar 

  • Bacon CR (1986) Magmatic inclusions in silicic and intermediate volcanic rocks. J Geophys Res 91:6091–6112

    Article  Google Scholar 

  • Bahar I (1984) Contribution à la connaissance du volcanisme Indonesien: le Merapi (Centre Java); cadre structural, petrologie, geochemie et implications volcanologiques. Dissertation, Université des Sciences et Techniques du Languedoc

  • Baker J, Peate DW, Waight T, Meyzen C (2004) Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double focusing MC-ICP-MS. Chem Geol 211:275–303

    Article  Google Scholar 

  • Barclay J, Carmichael ISE (2004) A hornblende basalt from Western Mexico: water-saturated phase relation constrains a pressure-temperature window of eruptibility. J Petrol 45(3):485–506

    Article  Google Scholar 

  • Barclay J, Rutherford MJ, Carroll MR (1998) Experimental phase equilibria constraints on pre-eruptive storage conditions of the Soufrière Hills magma. Geophys Res Lett 25:3437–3440

    Article  Google Scholar 

  • Beard JS (1986) Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14:848–851

    Article  Google Scholar 

  • Beard JS, Borgia A (1989) Temporal variation of mineralogy and petrology in cognate gabbroic enclaves at Arenal volcano, Costa Rica. Contrib Mineral Petrol 103:110–122

    Article  Google Scholar 

  • Beauducel F, Cornet FH (1999) Collection and three-dimensional modeling of GPS and tilt data at Merapi Volcano, Java. J Geophys Res 104:725–736

    Article  Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. doi:10.1029/2001GC000252

    Article  Google Scholar 

  • Blundy J, Cashmann K (2001) Ascent-driven crystallization of dacite magmas at Mount St Helens, 1980–1986. Contrib Mineral Petrol 140:631–650

    Article  Google Scholar 

  • Bodinier J-L, Guiraud M, Fabries J, Dostal J, Dupuy C (1987) Petrogenesis of layered pyroxenites from the Lherz, Freychinede and Prades ultramafic bodies (Ariege, French Pyrenees). Geochim Cosmochim Acta 51:279–290

    Article  Google Scholar 

  • Bowen NL (1928) The evolution of the igneous rocks. Princeton University Press, Princeton, pp 1–132

    Google Scholar 

  • Burt RM, Brown SJA, Cole JW, Shelley D, Waight TE (1998) Glass-bearing plutonic fragments from ignimbrites of the Okataina caldera complex, Taupo Volcanic Zone, New Zealand: remnants of a partiallt molten intrusion associated with preceding eruptions. J Volcanol Geotherm Res 84:209–237

    Article  Google Scholar 

  • Campbell IH (1978) Some problems with cumulus theory. Lithos 11:311–323

    Article  Google Scholar 

  • Camus G, Gourgaud A, Mossand-Berthommier PC, Vincent PM (2000) Merapi (Central Java, Indonesia): an outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events. J Volcanol Geotherm Res 100:139–163

    Article  Google Scholar 

  • Chadwick JP (2008) Magma crust interaction in volcanic systems: case studies from Merapi Volcano, Indonesia, Taupo Volcanic Zone, New Zealand, and Slieve Gullion, N.Ireland. PhD thesis, Trinity College Dublin, Ireland

  • Chadwick JP, Troll VR, Ginibre C, Morgan D, Gertisser R, Waight TE, Davidson JP (2007) Carbonate assimilation at Merapi volcano, Java Indonesia: insights from crystal isotope stratigraphy. J Petrol 48(9):1793–1812

    Article  Google Scholar 

  • Coombs ML, Eichelberger JC, Rutherford MJ (2002) Experimental and textural constraints on mafic enclave formation in volcanic rocks. J Volcanol Geotherm Res 119:125–144

    Article  Google Scholar 

  • Costa F, Dungan M, Singer B (2002) Hornblende- and phlogopite-bearing gabbroic xenoliths from Volca′n San Pedro (368S), Chilean Andes: evidence for melt and fluid migration and reactions in subduction-related plutons. J Petrol 43:219–241

    Article  Google Scholar 

  • Curray JR, Shor GG, Raitt RW, Henry M (1977) Seismic refraction and reflection studies of crustal structure of the Eastern Sunda and Western Banda arcs. J Geophys Res 82:2479–2489

    Article  Google Scholar 

  • Dahren B, Troll VR, Andersson UB, Chadwick JP, Gardner MF, Jaxybulatov K, Koulakov I (2012) Magma plumbing beneath Anak Krakatau volcano, Indonesia: evidence for multiple magma storage regions. Contrib Mineral Petrol 163:631–651

    Article  Google Scholar 

  • Dal Negro A, Carbonin S, Molin GM, Cundari A, Piccirillo EM (1982) Intracrystalline cation distribution in natural clinopyroxene of tholeiitic, transitional and alkaline basaltic rocks. In: Saxena SK (ed) Advances in physical geochemistry, vol 2. Springer, New York, pp 117–150

    Chapter  Google Scholar 

  • Dal Negro A, Carbonin S, Domeneghetti C, Molin GM, Cundari A, Piccirillo EM (1984) Crystal chemistry and evolution of the clinopyroxenes in a suite of high-pressure ultramafic rocks from the Newer Volcanics of Victoria, Australia. Contrib Mineral Petrol 86:221–229

    Article  Google Scholar 

  • Dal Negro A, Molin GM, Salviulo G, Secco L, Cundari A, Piccirillo EM (1989) Crystal chemistry of pyroxene and its petrogenetic significance: a new approach. In: Boriani A, Bonafede M, Piccardo GB, Vai GB (eds) The lithosphere in Italy: advances of earth science research. Acc Naz Lincei, Atti Convegni Lincei 80:271–295

  • Davidson JP, Tepley FJ (1997) Recharge in volcanic systems: evidence from isotope profiles of phenocrysts. Science 275:826–829

    Article  Google Scholar 

  • Davidson JP, Turner S, Handley H, McPherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35(9):787–790

    Article  Google Scholar 

  • Davies JH, Stevenson DJ (1992) A physical model of source region of subduction zone volcanics. J Geophys Res 97:2027–2037

    Google Scholar 

  • de Genevraye P, Samuel L (1972) Geology of the Kendeng Zone (Central & East Java). Proceedings, first annual convention, Indonesian Petroleum Association, pp 17–30

  • Debaille V, Doucelance R, Weis D, Schiano P (2006) Multistage mixing in subduction zones: application to Merapi volcano, (Java Island, Sunda arc). Geochim Cosmochim Acta 70:723–741

    Article  Google Scholar 

  • Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP, McLeod CL, Davidson JP (2010) Magma–carbonate interaction processes and associated CO2 Release at Merapi Volcano, Indonesia: insights from experimental petrology. J Petrol 51(5):1027–1051

    Article  Google Scholar 

  • Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP (2011) Fast and furious: crustal CO2 release at Merapi volcano, Indonesia. Geol Today 27(2):63–64

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) Rock forming minerals. Longman, London

    Google Scholar 

  • del Marmol MA (1989) The petrology and geochemistry of Merapi Volcano, Central Java Indonesia. Dissertation, Johns Hopkins University, Baltimore

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • Devine JD, Rutherford MJ, Gardner JE (1998) Petrologic determination of ascent rates for the 1995–1997 Soufrière Hills Volcano andesitic magma. Geophys Res Lett 25:3673–3676

    Article  Google Scholar 

  • Dungan MA, Davidson JP (2004) Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: an example from the Chilean Andes. Geology 32(9):773–776

    Article  Google Scholar 

  • Eichelberger JC, Chertkoff DG, Dreher ST, Nye CJ (2000) Magmas in collision: rethinking chemical zonation in silicic magmas. Geology 28:603–606

    Article  Google Scholar 

  • Fichaut M, Marcelot G, Clocchiatti R (1989) Magmatology of Mt. Pelée (Martinique, F.W.I.). II: petrology of gabbroic and dioritic cumulates. J Volcanol Geotherm Res 38:171–187

    Article  Google Scholar 

  • Garcia MO, Jacobson SS (1979) Crystal clots, amphibole fractionation and the evolution of calc-alkaline magmas. Contrib Mineral Petrol 69:319–327

    Article  Google Scholar 

  • Gertisser R (2001) Gunung Merapi (Java, Indonesien): Eruptionsgeschichte und magmatische Evolution eines Hochrisiko-Vulkans. Dissertation: Universität Freiburg

  • Gertisser R, Keller J (2003a) Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc Magma Genesis. J Petrol 44:457–489

    Article  Google Scholar 

  • Gertisser R, Keller J (2003b) Temporal variations in magma composition at Merapi Volcano (Central Java, Indonesia): magmatic cycles during the past 2000 years of explosive activity. J Volcanol Geotherm Res 123:1–23

    Article  Google Scholar 

  • Gertisser R, Charbonnier SJ, Troll VR, Keller J, Preece K, Chadwick JP, Barclay J, Herd RA (2011) Merapi (Java, Indonesia): anatomy of a killer volcano. Geol Today 27:57–62

    Article  Google Scholar 

  • Gertisser R, Charbonnier SJ, Keller J, Queidelleur X (2012) The geological evolution of Merapi volcano, Central Java, Indonesia. Bull Volcanol 74:1213–1233

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, New York

    Book  Google Scholar 

  • Grove TL, Kinzler RJ (1986) Petrogenesis of Andesites. Ann Rev Earth Planet Sci 14:417–454

    Article  Google Scholar 

  • Grove TL, Kinzler RJ, Baker MB, Donnelly-Nolan JM, Lesher CE (1988) Assimilation of granite by basaltic magma at Burnt Lava flow, Medicine Lake volcano, northern California: decoupling of heat and mass transfer. Contrib Mineral Petrol 99:320–343

    Article  Google Scholar 

  • Hamilton W (1979) Tectonics of the Indonesian region 1979. United States Geol Surv Prof Paper 1078:1–345

    Google Scholar 

  • Hammer JE, Cashman KV, Voight B (2000) Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. J Volcanol Geotherm Res 100:165–192

    Article  Google Scholar 

  • Heliker C (1995) Inclusions in Mount St. Helens dacite erupted from 1980 through 1983. J Volcanol Geotherm Res 66:115–135

    Article  Google Scholar 

  • Hidayat D, Voight B, Langston C, Ratdomopurbopurbo A, Ebeling C (2000) Broadband seismic experiment at Merapi Volcano, Java, Indonesia: very-long-period pulses embedded in multiphase earthquakes. J Volcanol Geotherm Res 100:215–231

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Holness MB, Hallworth MA, Woods A, Sides E (2007a) Infiltration Metasomatism of Cumulates by Intrusive Magma Replenishments: the Wavy Horizon, Isle of Rum. Scotland. J Petrol 48(3):563–587

    Article  Google Scholar 

  • Holness MB, Anderson AT, Martin VM, MacLennan J, Passmore E, Schwindinger K (2007b) Textures in partially solidified crystalline nodules: a window into the pore structure of slowly cooled mafic intrusions. J Petrol 48(7):1243–1264

    Article  Google Scholar 

  • Housh TB, Luhr JF (1991) Plagioclase-melt equilibria in hydrous system. Am Mineral 76:477–492

    Google Scholar 

  • Hunter RH (1987) Textural equilibrium in layered igneous rocks. In: Parsons I (ed) Origins of igneous layering. D. Reidel Publishing Company, Boston, pp 473–503

    Google Scholar 

  • Irving AJ (1974) Megacrysts from the Newer basalts and the other basaltic rocks of southeastern Austr. Geol Soc Am Bull 85:1503–1514

    Article  Google Scholar 

  • Irving AJ, Frey FA (1984) Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochim Cosmochim Acta 48:1201–1221

    Article  Google Scholar 

  • Itoh H, Takahama J, Takahashi M, Miyamoto K (2000) Hazard estimation of the possible pyroclastic flow disasters using numerical simulation related to the 1994 activity at Merapi volcano. J Volcanol Geotherm Res 100:503–516

    Article  Google Scholar 

  • Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24:217–284

    Article  Google Scholar 

  • Jaxybulatov K, Koulakov I, Ibs-von Seht M, Klinge K, Reichert C, Dahren B, Troll VR (2011) Evidence for high fluid/melt content beneath Krakatau volcano (Indonesia) from local earthquake tomography. J Volcanol Geotherm Res 206:96–105

    Article  Google Scholar 

  • Koulakov I, Bohm M, Asch G, Luehr B-G, Manzanares A, Brotopuspito KS, Fauzi N, Purbawinata MA, Puspito NT, Ratdomopurbo A, Kopp H, Rabbel W, Shevkunova E (2007) P- and S-velocity structure of the crust and the upper mantle beneath Central Java from local tomography inversion. J Geophys Res 112:B08310. doi:10.1029/2006JB004712

    Article  Google Scholar 

  • Le Maitre RW (1989) A classification of igneous rocks and glossary of terms: recommendations of the international union of geological sciences, subcommission on the systematics of igneous rocks. Blackwell, Oxford

    Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD et al (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. Am Mineral 82:1019–1037

    Google Scholar 

  • Luais B, Telouk P, Albarède F (1997) Precise and accurate neodymium isotopic measurements by plasma-source mass spectrometry. Geochim Cosmochim Acta 61:4847–4854

    Article  Google Scholar 

  • Lundstrom CC, Tepley FJ (2006) Investigating the origin of anorthitic plagioclase through a combination of experiments and natural observations. J Volcanol Geotherm Res 157:202–221

    Article  Google Scholar 

  • Maercklin N, Riedel C, Rabbel W, Wegler U, Lühr B-G, Zschau J (2000) Structural investigation of Mt. Merapi by an active seismic experiment. Mitteil/Deutschen Geophysik Gesell 4:13–16

  • Manoli S, Molin GM (1988) Crystallographic procedures in the study of experimental rocks: X-ray single-crystal structure refinement of C2/c clinopyroxene from Lunar 74275 high-pressure experimental basalt. Mineral Petrol 39:87–200

    Article  Google Scholar 

  • Martin VM, Morgan DJ, Jerram DA, Caddick MJ, Prior DJ, Davidson JP (2008) Bang! Month-scale eruption triggering at Santorini volcano. Sci 321:1178

    Article  Google Scholar 

  • McBirney AR (1995) Mechanisms of differentiation in the Skaergaard Intrusion. J Geol Soc Lond 152:421–435

    Article  Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133

    Google Scholar 

  • Müller A, Haak V (2004) 3-D modeling of the deep electrical conductivity of Merapi Volcano (Central Java): integrating magnetotellurics, induction vectors and the effects of steep topography. J Volcanol Geotherm Res 138:205–222

    Article  Google Scholar 

  • Müller M, Hördt A, Neubauer FM (2002) Internal structure of Mount Merapi, Indonesia, derived from long-offset transient electromagnetic data. J Geophys Res 107:2–14

    Google Scholar 

  • Nakamura M, Shimakita S (1996) Partial dissolution kinetics of plagioclase: implication for magma mixing time scale and origin of melt inclusions. EOS Trans Am Geophys Un 77(46):F841

    Google Scholar 

  • Newhall CG, Bronto S, Alloway B, Banks NG, Bahar I, del Marmol MA, Hadisantono RD, Holcomb RT, McGeehin J, Miksic JN, Rubin M, Sayudi SD, Sukhyar R, Andreastuti S, Tilling RI, Torley R, Trimble D, Wirakusumah AD (2000) 10,000 Years of explosive eruptions of Merapi Volcano, Central Java: archeological and modern implications. J Volcanol Geotherm Res 100:9–50

    Article  Google Scholar 

  • Nimis P (1995) A clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Contrib Mineral Petrol 121:115–125

    Article  Google Scholar 

  • Nimis P (1999) Clinopyroxene geobarometry of magmatic rocks. Part 2. Structural geobarometers for basic to acid, tholeiitic and midly alkaline magmatic systems. Contrib Mineral Petrol 135:62–74

    Article  Google Scholar 

  • Nimis P, Ulmer P (1998) Clinopyroxene geobarometry of magmatic rocks. Part 1. An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contrib Mineral Petrol 133:314–327

    Article  Google Scholar 

  • Pallister JS, Hoblitt RP, Reyes AG (1992) A basalt trigger for the 1991 eruptions of Pinatubo Volcano. Nature 356:426–428

    Article  Google Scholar 

  • Panjasawatwong Y, Danyushevsky LV, Crawford AJ, Harris KL (1995) An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase. Contrib Mineral Petrol 118:420–432

    Article  Google Scholar 

  • Peters STM, Chadwick JP, Troll VR (2011) Amphibole antecrysts in deposits of Merapi volcano, Indonesia: a plutonic phase in extrusive magmas. Goldschmidt supplement. Mineral Mag 75:1627

    Google Scholar 

  • Pietranik A, Waight TE (2008) Processes and sources during late Variscan Dioritic-Tonalitic magmatism: insights from plagioclase chemistry (Gęsiniec Intrusion, NE Bohemian Massif, Poland). J Petrol 49:1619–1645

    Article  Google Scholar 

  • Price RC, Gamble JA, Smith IEM, Stewart RB, Eggins S, Wright IC (2005) An integrated model for the temporal evolution of andesites and rhyolites and crustal development in New Zealand’s North Island. J Volcanol Geotherm Res 140:1–24

    Article  Google Scholar 

  • Price RC, George R, Gamble JA, Turner S, Smith IEM, Cook C, Hobden B, Dosseto A (2007) U-Th-Ra fractionation during crustal-level andesite formation at Ruapehu volcano. New Zealand. Chem Geol 244(3–4):437–451

    Google Scholar 

  • Price RC, Turner S, Cook C, Hobden B, Smith IEM, Gamble JA, Möbis A (2010) Crustal and mantle influences and U-Th-Ra disequilibrium in andesitic lavas of Ngauruhoe Volcano, New Zealand. Chem Geol 277(3–4):355–373

    Article  Google Scholar 

  • Price RC, Gamble JA, Smith IEM, Maas R, Waight TE, Stewart RB, Woodhead J (2012) The anatomy of an andesitic volcano: a time-stratigraphic study of andesite petrogenesis and crustal evolution at Ruapehu Volcano, New Zealand. J Petrol 53:2139–2189

    Google Scholar 

  • Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Mineral 88:1542–1554

    Google Scholar 

  • Ratdomopurbo A, Poupinet G (2000) An overview of the seismicity of Merapi volcano (Java, Indonesia), 1983–1994. J Volcanol Geotherm Res 100:193–214

    Article  Google Scholar 

  • Renzulli A, Santi P (1997) Sub-volcanic crystallization at Stromboli (Aeolian Islands, southern Italy) preceding the Sciara del Fuoco sector collapse: evidence from monzonite lithic-suite. Bull Volcanol 59:10–20

    Article  Google Scholar 

  • Reubi O, Blundy J (2008) Assimilation of plutonic roots, formation of high-K ‘exotic’ melt inclusions and genesis of andesitic magmas at Volcán de Colima, Mexico. J Petrol 49:2221–2243

    Article  Google Scholar 

  • Rogers G, Hawkesworth CJ (1989) A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth Plan Sci Lett 91:271–285

    Article  Google Scholar 

  • Rutherford MJ, Devine JD (2003) Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2002 Soufrière Hills magma. J Petrol 44:1433–1453

    Article  Google Scholar 

  • Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J Geophys Res 98:19667–19685

    Article  Google Scholar 

  • Schwarzkopf LM, Schmincke H-U, Troll VR (2001) Pseudotachylite on impact marks of block surfaces in block-and ash flows at Merapi volcano, Central Java, Indonesia. Int J Earth Sci 90:769–775

    Article  Google Scholar 

  • Schwarzkopf LM, Schmincke H-U, Cronin SJ (2005) A conceptual model for block-and-ash flow basal avalanche transport and deposition, based on deposit architecture of 1998 and 1994 Merapi flows. J Volcanol Geotherm Res 139:117–134

    Article  Google Scholar 

  • Simkin T, Siebert L (1994) Volcanoes of the world. Geoscience Press Inc., Tuscon

    Google Scholar 

  • Sisson TW, Bronto S (1998) Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature 391:883–886

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Article  Google Scholar 

  • Siswowidjoyo S, Suryo I, Yokoyama I (1995) Magma eruption rates of Merapi volcano, Central Java, Indonesia during one century (1880–1992). Bull Volcanol 57:111–116

    Google Scholar 

  • Smyth HR, Hall R, Hamilton J, Kinny P (2005) East Java: Cenozoic basins, volcanoes and ancient basement. In: Proceedings, Indonesian Petroleum Association. Thirtieth Annual Convention & Exhibition, pp 251–266

  • Sparks RSJ, Sigurdsson H, Wilson L (1977) Magma mixing—mechanism for triggering acid explosive eruptions. Nature 267:315–318

    Article  Google Scholar 

  • Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42:313-345

  • Surono, Jousset P, Pallister J, Boichu M, Buongiorno M, Budisantoso A, Costa F, Andreastuti S, Prata F, Schneider D, Clarisse L, Humaida H, Sumarti S, Bignami C, Griswold J, Carn S, Oppenheimer C (2012) The 2010 explosive eruption of Javas Merapi volcano a 100-year event. J Volcanol Res. doi:10.1016/j.jvolgeores.2012.06.018

  • Tepley FJ, Davidson JP, Tilling RI, Arth JG (2000) Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon volcano, Mexico. J Petrol 41:397–1411

    Article  Google Scholar 

  • Thouret J-C, Lavigne F, Kelfoun K, Bronto S (2000) Toward a revised hazard assessment at Merapi volcano, Central Java. J Volcanol Geotherm Res 100:479–502

    Article  Google Scholar 

  • Tiede C, Camacho AG, Gerstenecker C, Fernández J, Suyanto I (2005). Modeling the density at Merapi volcano area, Indonesia, via the inverse gravimetric problem. Geochem Geophys Geosyst 6:Q09011. doi:10.1029/2005GC000986

  • Tregoning P, Brunner FK, Bock Y, Puntodewo SSO, McCaffrey R, Genrich JF, Calais E, Rais J, Subaraya C (1994) First geodetic measurement of convergence across the Java Trench. Geophys Res Lett 21:2135–2138

    Article  Google Scholar 

  • Troll VR, Donaldson CH, Emeleus CH (2004) Pre-eruptive magma mixing in ash-flow deposits of the Tertiary Rum Igneous Centre, Scotland. Contrib Mineral Petrol 147:722–739

    Article  Google Scholar 

  • Troll VR, Hilton DR, Jolis EM, Chadwick JP, Blythe LS, Deegan FM, Schwarzkopf LM, Zimmer M (2012a) Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia. Geophys Res Lett 39:L11302. doi:10.1029/2012GL051307

  • Troll VR, Deegan FM, Jolis EM, Harris C, Chadwick JP, Gertisser R, Schwarzkopf LM, Borisova A, Bindeman IN, Sumarti S, Preece K (2012b) Magmatic differentiation processes at Merapi volcano: inclusion petrology and oxygen isotopes. J Volcanol Geotherm Res (in revision)

  • Tsuchiyama A (1985) Dissolution kinetics of plagioclase in the melt of the system diopside–albite–anorthite, and origin of dusty plagioclase in andesite. Contrib Mineral Petrol 89:1–16

    Article  Google Scholar 

  • Turner SP, Platt JP, George RMM, Kelley SP, Pearson DG, Nowell GM (1999) Magmatism associated with orogenic collapse of the Betic–Alboran domain, SE Spain. J Petrol 40:1011–1036

    Article  Google Scholar 

  • Turner S, George R, Jerram D, Carpenter N, Hawkesworth C (2003) Some case studies of plagioclase growth and residence times in island arc lavas from the Lesser Antilles and Tonga, and a model to reconcile apparently disparate age information. Earth Planet Sci Lett 214:279–294

    Article  Google Scholar 

  • Untung M, Sato Y (1978) Gravity and geological studies in Java, Indonesia. Geol Survey of Indonesia and Geological Survey of Japan, Special Publication 6:207

  • van Bemmelen RW (1949) The geology of Indonesia, vol 1 A., General Geol. The Hague, Government Printing Office, The Netherlands

  • Voight B, Constantine EK, Siswowidjoyo S, Torley R (2000) Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100:69–138

    Article  Google Scholar 

  • Wager LR, Brown GM (1968) Layered igneous rocks. W.H. Freeman, San Francisco

    Google Scholar 

  • Wagner D, Koulakov I, Rabbel W, Luehr B-G, Wittwer A, Kopp H, Bohm M, Asch G, The MERAMEX Scientists (2007) Joint inversion of active and passive seismic data in Central Java. Geophys J Intern 170(2):923–932

    Article  Google Scholar 

  • Waight TE, Baker JA, Peate DW (2002) Sr isotope ratio measurements by double focusing MC-ICPMS: techniques, observations and pitfalls. Intern J Mass Spectrom 221:229–244

    Article  Google Scholar 

  • Wassermann J, Ohrnberger M, Scherbaum F (1998) Continuous measurements at Merapi Volcano (Java, Indonesia) using a network of small-scale seismograph arrays; In: J Zschau & M Westerhaus (ed), Decade-Volcanoes under Investigation, Dt Geophys Ges 3:81–82

  • Wegler U, Lühr B-G (2001) Scattering behaviour at Merapi volcano (Java) revealed from an active seismic experiment. Geophys J Intern 145:579–592

    Article  Google Scholar 

  • Westerhaus M, Rebscher D, Welle W, Pfaff A, Körner A, Nandaka M (1998) Deformation measurements at the flanks of Merapi Volcano. In: J Zschau & M Westerhaus (ed) Decade-Volcanoes under Investigation, Dt. Geophys Ges 3:93–100

  • Wiesmaier S, Deegan FM, Troll VR, Carracedo JC, Chadwick JP, Chew JM (2011) Magma mixing in the 1100 AD Montaña Reventada composite lava flow, Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing systems. Contrib Mineral Petrol 162:651–669

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to M. Gardner and M. Mahjum for help during sample collection. The authors would also like to acknowledge T. Leeper for help with the isotope analysis. Discussion with J. Gamble, B. Lühr, E. M. Jolis and D. Wagner was much appreciated. We also acknowledge generous financial support from the EC Marie Curie mobility scheme, the Danish National Reasearch Foundation, the Mineralogical Society of Great Britain and Ireland and the Swedish Science Foundation (VR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Troll.

Additional information

Communicated by J.Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chadwick, J.P., Troll, V.R., Waight, T.E. et al. Petrology and geochemistry of igneous inclusions in recent Merapi deposits: a window into the sub-volcanic plumbing system. Contrib Mineral Petrol 165, 259–282 (2013). https://doi.org/10.1007/s00410-012-0808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0808-7

Keywords

Navigation