Skip to main content
Log in

Chromite in komatiites: 3D morphologies with implications for crystallization mechanisms

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

High-resolution X-ray computed tomography has been carried out on a suite of komatiite samples representing a range of volcanic facies, chromite contents and degrees of alteration and metamorphism, to reveal the wide range of sizes, shapes and degrees of clustering that chromite grains display as a function of cooling history. Dendrites are spectacularly skeletal chromite grains formed during very rapid crystallization of supercooled melt in spinifex zones close to flow tops. At slower cooling rates in the interiors of thick flows, chromite forms predominantly euhedral grains. Large clusters (up to a dozen of grains) are characteristic of liquidus chromite, whereas fine dustings of mostly individual ~20-μm grains form by in situ crystallization from trapped intercumulus liquid. Chromite in coarse-grained olivine cumulates from komatiitic dunite bodies occurs in two forms: as clusters or chains of euhedral crystals, developing into “chicken-wire” texture where chromite is present in supra-cotectic proportions; and as strongly dendritic, semi-poikilitic grains. These dendritic grains are likely to have formed by rapid crescumulate growth from magma that was close to its liquidus temperature but supersaturated with chromite. In some cases, this process seems to have been favoured by nucleation of chromite on the margins of sulphide liquid blebs. This texture is a good evidence for the predominantly cumulus origin of oikocrysts and in situ origin of heteradcumulate textures. Our 3D textural analysis confirms that the morphology of chromite crystals is a distinctive indicator of crystallization environment even in highly altered rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arndt NT, Naldrett AJ, Pyke DR (1977) Komatiitic and iron-rich tholeiitic lavas of Munro Township, northeast Ontario. J Petrol 18:319–369

    Article  Google Scholar 

  • Arndt NT, Barnes SJ, Lesher CM (2008) Komatiite. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Barnes SJ (1986) The distribution of chromium among orthopyroxene, spinel and silicate liquid at atmospheric pressure. Geochim Cosmochim Ac 50:1889–1909

    Article  Google Scholar 

  • Barnes SJ (1998) Chromite in komatiites, 1. Magmatic controls on crystallization and composition. J Petrol 39:1689–1720. doi:10.1093/petroj/39.10.1689

    Article  Google Scholar 

  • Barnes SJ (2000) Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. J Petrol 41:387–409

    Article  Google Scholar 

  • Barnes SJ (2006) Komatiite-hosted nickel sulfide deposits: geology, geochemistry, and genesis. Soc Econ Geol Spec Pub 13:51–118

    Google Scholar 

  • Barnes SJ, Fiorentini ML (2012) Komatiite magmas and nickel sulfide deposits: a comparison of variably endowed Archean terranes. Econ Geol 107:755–780. doi:10.2113/econgeo.107.5.755

    Article  Google Scholar 

  • Barnes SJ, Hill RET (1995) Poikilitic chromfite in komatiitic cumulates. Miner Petrol 54:85–92. doi:10.1007/bf01162760

    Article  Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302. doi:10.1093/petrology/42.12.2279

    Article  Google Scholar 

  • Barnes SJ, Fiorentini ML, Austin P, Gessner K, Hough RM, Squelch AP (2008) Three-dimensional morphology of magmatic sulfides sheds light on ore formation and sulfide melt migration. Geology 36:655–658. doi:10.1130/g24779a.1

    Article  Google Scholar 

  • Barnes SJ, Wells MA, Verrall MR (2009) Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Econ Geol 104:539–562. doi:10.2113/gsecongeo.104.4.539

    Article  Google Scholar 

  • Campbell IH (1968) The origin of heteradcumulate and adcumulate textures in the Jimberlana Norite. Geol Mag 105:378–383

    Article  Google Scholar 

  • Campbell IH (1977) A study of macrorhythmic layering and cumulate processes in the Jimberlana Intrusion, Western Australia, part I: the upper layered series. J Petrol 18:183–215

    Article  Google Scholar 

  • Campbell IH (1978) Some problems with the cumulus theory. Lithos 11:311–323

    Article  Google Scholar 

  • Campbell IH, Roeder PL, Dixon JM (1978) Crystal buoyancy in basaltic liquids and other experiments with a centrifuge furnace. Contrib Mineral Petrol 67:369–377

    Article  Google Scholar 

  • Cashman KV, Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi lava lake. Contrib Mineral Petrol 99:292–305

    Article  Google Scholar 

  • Donaldson CH (1982) Origin of some Rhum harrisite by segregation of intercumulus liquid. Min Mag 45:201–209

    Article  Google Scholar 

  • Dowling SE, Barnes SJ, Hill RET, Hicks JD (2004) Komatiites and nickel sulfide ores of the Black Swan area, Yilgarn Craton, Western Australia. 2: geology and genesis of the orebodies. Min Deposita 39:707–728

    Article  Google Scholar 

  • Eales HV (2000) Implications of the chromium budget of the Western Limb of the Bushveld Complex. S Afr J Geol 103:141

    Article  Google Scholar 

  • Eales HV, Costin G (2012) Crustally contaminated komatiite: primary source of the chromitites and marginal, lower, and critical zone magmas in a staging chamber beneath the Bushveld Complex. Econ Geol 107:645–665. doi:10.2113/econgeo.107.4.645

    Article  Google Scholar 

  • Fonseca ROC, Campbell IH, O’Neill HSC, Fitzgerald JD (2008) Oxygen solubility and speciation in sulphide-rich mattes. Geochim Cosmochim Acta 72:2619–2635

    Article  Google Scholar 

  • Frost KM, Grove DI (1989) Ocellar units in the Kambalda–Widgiemooltha komatiite sequence: evidence for sediment assimilation by komatiite lavas. In: Prendrergast MJ, Jones MJ (eds) Magmatic sulphides - The Zimbabwe volume, vol Institution., of Mining and MetallurgyLondon, U.K., pp 204–214

    Google Scholar 

  • Godel B, Barnes SJ, Barnes S-J, Maier WD (2010) Platinum ore in 3D: insights from high-resolution X-ray computed tomography. Geology 38:1127–1130

    Article  Google Scholar 

  • Godel B, Gonzalez-Alvarez I, Barnes SJ, Barnes S-J, Parker P, Day J (2012) Sulfides and sulfarsenides from the Rosie Nickel Prospect, Duketon Greenstone Belt, Western Australia. Econ Geol 107:275–294

    Article  Google Scholar 

  • Groves DI, Hudson DR, Hack TB (1974) Modification of iron-nickel sulfides during serpentinization and talc-carbonate alteration at Black Swan, Western Australia. Econ Geol 69:1265–1281. doi:10.2113/gsecongeo.69.8.1265

    Article  Google Scholar 

  • Higgins MD (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, Cambridge 265 pp

    Book  Google Scholar 

  • Hill RET, Barnes SJ, Gole MJ, Dowling SE (1995) The volcanology of komatiites as deduced from field relationships in the Norseman-Wiluna greenstone belt, Western Australia. Lithos 34:159–188

    Google Scholar 

  • Hill RET, Barnes SJ, Dowling SE, Thordarson T (2004) Komatiites and nickel sulphide orebodies of the Black Swan area, Yilgarn Craton, Western Australia. 1. Petrology and volcanology of host rocks. Miner Deposita 39:684–706

    Article  Google Scholar 

  • Irvine TN (1965) Chromian spinel as a petrogenetic indicator: part 1 theory. Can J Earth Sci 2:648–672. doi:10.1139/e65-046

    Article  Google Scholar 

  • Irvine TN (1967) Chromian spinel as a petrogenetic indicator: part 2 petrologic applications. Can J Earth Sci 4:71–103. doi:10.1139/e67-004

    Article  Google Scholar 

  • Irvine TN (1980) Magmatic density currents and cumulus processes. Am J Sci 280A:1–58

    Google Scholar 

  • Jackson ED (1961) Primary textures and mineral associations in the ultramafic zone of the Stillwater Complex. Montana 358:1–106

    Google Scholar 

  • Jerram DA, Cheadle MJ (2000) On the cluster analysis of grains and crystals in rocks. Am Mineral 85:47–67

    Google Scholar 

  • Jerram DA, Cheadle MJ, Hunter RH, Elliott MT (1996) The spatial distribution of grains and crystals in rocks. Contrib Mineral Petrol 125:60–74

    Article  Google Scholar 

  • Jerram DA, Cheadle MJ, Philpotts AR (2003) Quantifying the building blocks of igneous rocks; are clustered crystal frameworks the foundation? J Petrol 44:2033–2051

    Article  Google Scholar 

  • Jerram DA, Davis GR, Mock A, Charrier A, Marsh BD (2010) Quantifying 3D crystal populations, packing and layering in shallow intrusions: a case study from the Basement Sill, Dry Valleys, Antarctica. Geosphere 6:537–548. doi:10.1130/ges00538.1

    Article  Google Scholar 

  • Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. Contrib Mineral Petrol 99:277–291. doi:10.1007/bf00375362

    Article  Google Scholar 

  • Marsh BD (1998) On the interpretation of crystal size distributions in magmatic systems. J Petrol 39:553–599. doi:10.1093/petroj/39.4.553

    Article  Google Scholar 

  • Mathison CI, Booth RA (1990) Macrorhythmically layered gabbronorites in the Windimurra gabbroid complex, Western Australia. Lithos 24:171–180

    Article  Google Scholar 

  • McBirney AR, Hunter RH (1995) The cumulate paradigm reconsidered. J Geol 103:114–122

    Article  Google Scholar 

  • McBirney AR, Noyes RM (1979) Crystallization and layering in the Skaergaard Intrusion. J Petrol 20:487–554

    Article  Google Scholar 

  • Morse SA (1986) Convection in aid of adcumulus growth. J Petrol 27:1183–1214

    Article  Google Scholar 

  • Murck BW, Campbell IH (1986) The effects of temperature, oxygen fugacity and melt composition on the behaviour of chromium in basic and ultrabasic melts. Geochim Cosmochim Acta 50:1871–1887

    Article  Google Scholar 

  • Naldrett A, Wilson A, Kinnaird J, Yudovskaya M, Chunnett G (2011) The origin of chromitites and related PGE mineralization in the Bushveld Complex: new mineralogical and petrological constraints. Miner Deposita 47:209–232. doi:10.1007/s00126-011-0366-3

    Article  Google Scholar 

  • O’Driscoll B, Troll VR, Donaldson CH, Jerram DA (2006) A crystal size distribution study of harrisitic and granular olivine from the Rum Layered Suite, NW Scotland. J Petrol 48:253–270

    Article  Google Scholar 

  • Page P, Barnes S-J (2009) Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines Ophiolite, Quebec, Canada. Econ Geol 104:997–1018. doi:10.2113/gsecongeo.104.7.997

    Article  Google Scholar 

  • Perring CS, Barnes SJ, Hill RET (1995) The physical volcanology of komatiite sequences from Forrestania, Southern Cross Province, Western Australia. Lithos 34:189–207

    Google Scholar 

  • Ricard LP, Godel BM, Chanu J-B (2012) CSDToolbox 1.0: a MATLAB program for the analysis of crystal-size distribution of large datasets. Comput Geosci. doi:10.1016/j.cageo.2012.01.010

    Google Scholar 

  • Thébaud N, Barnes SJ, Fiorentini ML (2012) Komatiites of the Wildara Leonora Belt, Yilgarn Craton, WA: the missing link in the Kalgoorlie Terrane? Precambrian Res 196–197:234–246

    Article  Google Scholar 

  • Toriumi M (1994) Cluster formation of Cr-spinel during magmatic differentiation. In: Takaki R (ed) Research of pattern formation, Chapter 4. KTK Scientific Publishers, Tokyo, pp 239–257

    Google Scholar 

  • Vinet N, Higgins MD (2010) Magma solidification processes beneath Kilauea Volcano, Hawaii: a quantitative textural and geochemical study of the 1969–1974 Mauna Ulu Lavas. J Petrol 51:1297–1332. doi:10.1093/petrology/egq020

    Article  Google Scholar 

  • Wager LR, Brown GM (eds) (1968) Layered igneous rocks. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Zhou M-F, Kerrich R (1992) Morphology and composition of chromite in komatiites from the Belingwe greenstone belt, Zimbabwe. Can Mineral 30:303–317

    Google Scholar 

Download references

Acknowledgments

Bélinda Godel is funded by the CSIRO Office of the Chief Executive Post-Doctoral Fellowship scheme. Analytical costs were partially funded by a “Pump Priming Grant” from the Faculty of Natural and Agricultural Sciences at The University of Western Australia. Accessibility to supercomputing facilities was provided by iVEC at the Australian Resources Research Centre (Perth). Dr Greg Hitchen provided assistance with electron microprobe analyses. This paper is an output from the CSIRO Minerals Down Under National Research Flagship. Associate editor Chris Ballhaus and two anonymous referees are acknowledged for their comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bélinda Godel.

Additional information

Communicated by C. Ballhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godel, B., Barnes, S.J., Gürer, D. et al. Chromite in komatiites: 3D morphologies with implications for crystallization mechanisms. Contrib Mineral Petrol 165, 173–189 (2013). https://doi.org/10.1007/s00410-012-0804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0804-y

Keywords

Navigation