Skip to main content

Advertisement

Log in

Dissolution–precipitation reactions in hydrothermal experiments with quartz–feldspar aggregates

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Batch and flow-through experiments were performed on quartz–feldspar granular aggregates at hydrothermal conditions (up to ≈150 °C, up to 5 MPa effective pressure, and near-neutral pH) for up to 141 days. The effect of dissolution–precipitation reactions on the surface morphology of the mineral grains was investigated. The starting materials as well as the solids and fluids resulting from the experiments were characterized using BET, energy dispersive X-ray spectroscopy, electron microprobe analysis, inductively coupled plasma-optical emission spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, and X-ray fluorescence spectroscopy. The electrical conductivity of fluid samples was used as a proxy for the evolution of the fluid composition in the experiments. The chemical analyses of the fluids in combination with hydrogeochemical simulations with PHREEQC suggested the precipitation of Al–Si-bearing solid phases. Electron microscopy confirmed the formation of secondary amorphous Al–Si-bearing solid phases. The microscopic observations are consistent with a process of stoichiometric dissolution of the mineral grains, transport of dissolved ions in the fluid phase, and spatially coupled precipitation of sub-μm sized amorphous particles on mineral surfaces. These findings shed light onto early stages of diagenesis of quartz–feldspar sands and indicate that amorphous phases may be precursors for the formation of crystalline phases, for example, clay minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bird G, Boon J, Stone T (1986) Silica transport during steam injection into oil sands: 1. dissolution and precipitation kinetics of quartz: new results and review of existing data. Chem Geol 54:69–80. doi:10.1016/0009-2541(86)90072-0

    Article  Google Scholar 

  • Blake RE, Walter LM (1999) Kinetics of feldspar and quartz dissolution at 70–80 °C and near-neutral pH: effects of organic acids and NaCl. Geochim Cosmochim Acta 63:2043–2059. doi:10.1016/S0016-7037(99)00072-1

    Article  Google Scholar 

  • Bourbie T, Zinszner B (1985) Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone. J Geophys Res 90:11524–11532. doi:10.1029/JB090iB13p11524

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319 doi:10.1021/ja01269a023

    Article  Google Scholar 

  • Busenberg E (1978) The products of the interaction of feldspars with aqueous solutions at 25 °C. Geochim Cosmochim Acta 42(11):1679–1686. doi:10.1016/0016-7037(78)90256-9

    Article  Google Scholar 

  • Chardon ES, Livens FR, Vaughan DJ (2006) Reactions of feldspar surfaces with aqueous solutions. Earth Sci Rev 78(1–2):1–26 doi:10.1016/j.earscirev.2006.03.002

    Article  Google Scholar 

  • Chou L, Wollast R (1985) Steady-state kinetics and dissolution mechanisms of albite. Am J Sci 285:963–993

    Article  Google Scholar 

  • Civan F (2000) Reservoir formation damage—Fundamentals, modeling, assessment, and mitigation. Gulf Publishing Company, Houston

    Google Scholar 

  • Dove PM, Crerar DA (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochim Cosmochim Acta 54(4):955–969. doi:10.1016/0016-7037(90)90431-J

    Article  Google Scholar 

  • Downs RT (2006) The RRUFF project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. In: Program and Abstracts of the 19th general meeting of the international mineralogical association in Kobe, Japan, pp 03–13

  • Drouin D, Couture AR, Joly D, Tastet X, Aimez V, Gauvin R (2007) CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29(3):92–101. doi:10.1002/sca.20000

    Article  Google Scholar 

  • Fiebig J, Hoefs J (2002) Hydrothermal alteration of biotite and plagioclase as inferred from intragranular oxygen isotope- and cation-distribution patterns. Eur J Mineral 14(1):49–60. doi:10.1127/0935-1221/2002/0014-0049

    Article  Google Scholar 

  • Fu Q, Lu P, Konishi H, Dilmore R, Xu H, Seyfried Jr WE, Zhu C (2009) Coupled alkali-feldspar dissolution and secondary mineral precipitation in batch systems: 1. New experiments at 200 °C and 300 bars. Chem Geol 258(3–4):125–135. doi:10.1016/j.chemgeo.2008.09.014

    Article  Google Scholar 

  • Gautier JM, Oelkers EH, Schott J (2001) Are quartz dissolution rates proportional to B.E.T. surface areas? Geochim Cosmochim Acta 65(7):1059–1070. doi:10.1016/S0016-7037(00)00570-6

    Article  Google Scholar 

  • Gunnársson I, Arnórsson S (2000) Amorphous silica solubility and the thermodynamic properties of H4SiO 04 in the range of 0 °C to 350 °C at P sat. Geochim Cosmochim Acta 64(13):2295–2307 doi:10.1016/S0016-7037(99)00426-3

    Article  Google Scholar 

  • Helgeson HC, Murphy WM, Aagaard P (1984) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants, effective surface area, and the hydrolysis of feldspar. Geochim Cosmochim Acta 48(12):2405–2432. doi:10.1016/0016-7037(84)90294-1

    Article  Google Scholar 

  • Hellmann R (1994) The albite-water system: part I. The kinetics of dissolution as a function of pH at 100, 200 and 300 °C. Geochim Cosmochim Acta 58(2):595–611 doi:10.1016/0016-7037(94)90491-X

    Article  Google Scholar 

  • Hellmann R, Crerar DA, Zhang R (1989) Albite feldspar hydrolysis to 300 °C. Solid State Ionics 32–33(0):314–329 doi:10.1016/0167-2738(89)90236-1

    Article  Google Scholar 

  • Hellmann R, Eggleston CM, Hochella Jr MF, Crerar DA (1990) The formation of leached layers on albite surfaces during dissolution under hydrothermal conditions. Geochim Cosmochim Acta 54(5):1267–1281. doi:10.1016/0016-7037(90)90152-B

    Article  Google Scholar 

  • Hellmann R, Dran JC, Mea GD (1997) The albite-water system: part III. Characterization of leached and hydrogen-enriched layers formed at 300 °C using MeV ion beam techniques. Geochim Cosmochim Acta 61(8):1575–1594. doi:10.1016/S0016-7037(97)00022-7

    Article  Google Scholar 

  • Hellmann R, Penisson JM, Hervig R, Thomassin JH, Abrioux MF (2003) An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: evidence for interfacial dissolution–reprecipitation. Phys Chem Miner 30:192–197. doi:10.1007/s00269-003-0308-4

    Article  Google Scholar 

  • Hellmann R, Wirth R, Daval D, Barnes JP, Penisson JM, Tisserand D, Epicier T, Florin B, Hervig RL (2012) Unifying natural and laboratory chemical weathering with interfacial dissolution–reprecipitation: a study based on the nanometer-scale chemistry of fluid-silicate interfaces. Chem Geol 294–295(0):203–216. doi:10.1016/j.chemgeo.2011.12.002

    Article  Google Scholar 

  • Icenhower JP, Strachan DM, McGrail BP, Scheele RD, Rodriguez EA, Steele JL, Legore VL (2006) Dissolution kinetics of pyrochlore ceramics for the disposition of plutonium. Am Min 91(1):39–53. doi:10.2138/am.2006.1709

    Article  Google Scholar 

  • Jamtveit B, Yardley B (eds) (1997) Fluid flow and transport in rocks: mechanisms and effects. Chapman & Hall, London

    Google Scholar 

  • Ji H, Rouxel T, Abdelouas A, Grambow B, Jollivet P (2005) Mechanical behavior of a borosilicate glass under aqueous corrosion. J Am Ceram Soc 88(11):3256–3259. doi:10.1111/j.1551-2916.2005.00574.x

    Article  Google Scholar 

  • Kawano M, Tomita K (1996) Amorphous aluminium hydroxide formed at the earliest weathering stages of K-feldspar. Clay Clay Miner 44:672–676

    Article  Google Scholar 

  • Kawano M, Tomita K (2001) TEM-EDX study of weathered layers on the surface of volcanic glass, bytownite, and hypersthene in volcanic ash from Sakurajima volcano, Japan. Am Min 86(3):284–292

    Google Scholar 

  • Kühn M, Bartels J, Iffland J (2002) Predicting reservoir property trends under heat exploitation: Interaction between flow, heat transfer, transport, and chemical reactions in a deep aquifer at Stralsund, Germany. Geothermics 31(25):725–749. doi:10.1016/S0375-6505(02)00033-0

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86–748. Tech. rep., Los Alamos National Laboratory

  • Lasaga A, Kirkpatrick R (eds) (1983) Kinetics of geochemical processes, Reviews in mineralogy, vol 8. Mineralogical Society of America Geochemical Society

  • Lee M (2010) Transmission electron microscopy (TEM) of earth and planetary materials: a review. Min Mag 74(1):1–27. doi:10.1180/minmag.2010.074.1.1

    Article  Google Scholar 

  • Lee MR, Parsons I (1995) Microtextural controls of weathering of perthitic alkali feldspars. Geochim Cosmochim Acta 59(21):4465–4488. doi:10.1016/0016-7037(95)00255-X

    Article  Google Scholar 

  • Lee MR, Brown DJ, Hodson ME, MacKenzie M, Smith CL (2008) Weathering microenvironments on feldspar surfaces: implications for understanding fluid-mineral reactions in soils. Min Mag 72(6):1319–1328. doi:10.1180/minmag.2008.072.6.1319

    Article  Google Scholar 

  • Lin F, Clemency C (1980) The kinetics of dissolution of muscovites at 25 °C and 1 atm CO2 partial pressure. In: Third international symposium on water-rock interaction, pp 44–47

  • Long JCS, Ewing RC (2004) Yucca Mountain: earth-science issues at a geologic repository for high-level nuclear waste. Annu Rev Earth Pl Sc 32:363–401. doi:10.1146/annurev.earth.32.092203.122444

    Article  Google Scholar 

  • Matter J, Kelemen PB (2009) Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat Geosci 2:837–841. doi:10.1038/ngeo683

    Article  Google Scholar 

  • Milsch H, Spangenberg E, Kulenkampff J, Meyhöfer S (2008) A new apparatus for long-term petrophysical investigations on geothermal reservoir rocks at simulated in-situ conditions. Transport Porous Med 74(1):73–85. doi:10.1007/s11242-007-9186-4

    Article  Google Scholar 

  • Moore DE, Morrow CA, Byerlee JD (1983) Chemical reactions accompanying fluid flow through granite held in a temperature gradient. Geochim Cosmochim Acta 47:445–453. doi:10.1016/0016-7037(83)90267-3

    Article  Google Scholar 

  • Mueller RF, Saxena SK (1977) Chemical Petrology. Springer, New York

    Book  Google Scholar 

  • Nesbitt H, Skinner W (2001) Early development of Al, Ca, and Na compositional gradients in labradorite leached in pH 2 HCl solutions. Geochim Cosmochim Acta 65(5):715–727. doi:10.1016/S0016-7037(00)00530-5

    Article  Google Scholar 

  • Page R, Wenk HR (1979) Phyllosilicate alteration of plagioclase studied by transmission electron microscopy. Geology 7(8):393–397

    Article  Google Scholar 

  • Pape H, Clauser C, Iffland J (1999) Permeability prediction based on fractal pore-space geometry. Geophysics 64(5):1447–1460. doi:10.1190/1.1444649

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Min Mag 66(5):689–708. doi:10.1180/0026461026650056

    Article  Google Scholar 

  • Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10(1–2):254–269. doi:10.1111/j.1468-8123.2010.00285.x

    Google Scholar 

  • Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180(5):1783–1786. doi:10.1016/j.jssc.2007.03.023

    Article  Google Scholar 

  • Reed SJB (2005) Electron microprobe analysis and scanning electron microscopy in geology, 2nd edn. Cambridge University Press, Cambridge, NY

    Book  Google Scholar 

  • Renders P, Gammons C, Barnes H (1995) Precipitation and dissolution rate constants for cristobalite from 150 to 300 °C. Geochim Cosmochim Acta 59(1):77–85 doi:10.1016/0016-7037(94)00232-B

    Article  Google Scholar 

  • Rimstidt JD, Barnes HL (1980) The kinetics of silica-water reactions. Geochim Cosmochim Acta 44:1683–1699. doi:10.1016/0016-7037(80)90220-3

    Article  Google Scholar 

  • Song I, Renner J (2008) Hydromechanical properties of Fontainebleau sandstone: experimental determination and micromechanical modeling. J Geophys Res 113(B9):B09211. doi:10.1029/2007JB005055

    Article  Google Scholar 

  • Stober I, Bucher K (eds) (2002) Water-rock interaction. Kluwer Academic Publishers, Berlin

    Google Scholar 

  • Tenthorey E, Scholz CH (2002) Mapping secondary mineral formation in porous media using heavy metal tracers. J Geophys Res 107. doi:10.1029/2000JB000109

  • Tenthorey E, Scholz CH, Aharonov E, Léger A (1998) Precipitation sealing and diagenesis-1. Experimental results. J Geophys Res 103:23951–23967. doi:10.1029/98JB02229

    Article  Google Scholar 

  • Tester JW, Worley W, Robinson BA, Grigsby CO, Feerer JL (1994) Correlating quartz dissolution kinetics in pure water from 25 to 625 °C. Geochim Cosmochim Acta 58(11):2407–2420. doi:10.1016/0016-7037(94)90020-5

    Article  Google Scholar 

  • Toby B (2001) EXPGUI, a graphical user interface for GSAS. J Appl Chrystallogr 34:210–213. doi:10.1107/S0021889801002242

    Article  Google Scholar 

  • Walther JV (1996) Relation between rates of aluminosilicate mineral dissolution, pH, temperature, and surface charge. Am J Sci 296:693–728

    Article  Google Scholar 

  • Wirth R (2004) Focused ion beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16(6):863–876. doi:10.1127/0935-1221/2004/0016-0863

    Article  Google Scholar 

  • Wirth R (2009) Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261(3-4):217–229. doi:10.1016/j.chemgeo.2008.05.019

    Article  Google Scholar 

  • Yasuhara H, Polak A, Mitani Y, Grader AS, Halleck PM, Elsworth D (2006) Evolution of fracture permeability through fluid-rock reaction under hydrothermal conditions. Earth Planet Sci Lett 244(1–2):186–200. doi:10.1016/j.epsl.2006.01.046

    Article  Google Scholar 

  • Zhu C, Lu P (2009) Alkali feldspar dissolution and secondary mineral precipitation in batch systems: 3. Saturation states of product minerals and reaction paths. Geochim Cosmochim Acta 73(11):3171–3200. doi:10.1016/j.gca.2009.03.015

    Article  Google Scholar 

  • Zhu C, Veblen DR, Blum AE, Chipera SJ (2006) Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization. Geochim Cosmochim Acta 70(18):4600–4616. doi:10.1016/j.gca.2006.07.013

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tanja Ballerstedt, Ronny Giese, Andreas Kratz, Siegfried Raab, Erik Spangenberg, and the GFZ machine shop staff. Hans-Peter Nabein and Rudolf Naumann are acknowledged for performing the XRD measurements. Richard Wirth operated the TEM and Anja Schreiber prepared the TEM samples. Sabine Tonn operated the ICP-OES. Moreover, the authors wish to thank Sandra Kons for the preparation of the starting materials. Constructive reviews by two anonymous reviewers helped to improve the manuscript and are greatly acknowledged. This work was financially supported by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety under grants BMU 0327682 and BMU 0325069A as well as by the Federal Ministry of Education and Research under grant BMBF 03G0671A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Schepers.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schepers, A., Milsch, H. Dissolution–precipitation reactions in hydrothermal experiments with quartz–feldspar aggregates. Contrib Mineral Petrol 165, 83–101 (2013). https://doi.org/10.1007/s00410-012-0793-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0793-x

Keywords

Navigation