Skip to main content
Log in

Zircon textures and composition: refractory recorders of magmatic volatile evolution?

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Zircon textures and composition have been used to infer magmatic processes including closed-system fractional crystallization, magma mixing or replenishment, and country-rock assimilation. Here, we propose that zircon textures and composition may also be refractory recorders of magmatic volatile evolution. We present field, whole-rock chemical, textural, mineral chemical, and U–Pb age data from evolved, fine-to-coarse-grained granite intrusions on Melville Peninsula, Nunavut, Canada. Zircon forms two main populations in these granites, Type-1 and Type-2 zircon. Type-1 zircon is present in all samples, but predominant in fine-grained granite. Crystals are euhedral and inclusion-rich and show periodic, fine-scale oscillatory zoning, comparatively low concentrations of U (<2,200 ppm) and Hf (<1.6 wt%), high Zr/Hf (~40–62), and pervasive alteration. Type-2 zircon is predominant in coarse-grained granite. Crystals form overgrowths on Type-1 zircon and individual crystals. They are subhedral and inclusion-poor and show weak, irregular, large-scale oscillatory zoning, high U (up to ~7,250 ppm) and Hf (1.5–2.0 wt%), low Zr/Hf (~37–44), and only local alteration. Compatible trace-element concentrations and Zr/Hf change sharply across the boundary of Type-1 to Type-2 zircon; 207Pb/206Pb ages preclude a significant hiatus between crystallization of the two types. We argue against magmatic versus hydrothermal crystallization, country-rock assimilation, or magma mixing as causes for the crystallization of Type-1 and Type-2 zircon. We propose instead that Type-1 zircon formed from volatile-undersaturated magmas and that Type-2 zircon formed from volatile-saturated magmas. Magmas fractionated by volatile-driven filter pressing into crystal-rich mush and crystal-poor magma. Crystal-rich mush with abundant Type-1 zircon crystallized to fine-grained granite. Volatile-rich magma crystallized to Type-2 zircon and coarse-grained granite. While Type-1 zircon was pervasively altered by exsolving magmatic volatiles, Type-2 zircon was only locally affected by subsolidus hydrothermal alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott RN Jr (1978) Peritectic reactions in the system An–Ab–Or–H2O. Can Mineral 16:245–256

    Google Scholar 

  • Anderson JL, Smith DR (1995) The effect of temperature and oxygen fugacity on Al-in-hornblende barometry. Am Mineral 80:549–559

    Google Scholar 

  • Anderson AT Jr, Swihart GH, Artioli G, Geiger CA (1984) Segregation vesicles, gas filter-pressing, and igneous differentiation. J Geol 92:55–72

    Article  Google Scholar 

  • Aranovich LY (1991) Mineral equilibria of multicomponent solid solutions. Nauka Press, Moscow

    Google Scholar 

  • Armstrong JT (1988) Quantitative analysis of silicates and oxide minerals: comparison of Monte-Carlo, ZAF and Phi-Rho-Z procedures. Microbeam Anal 239–246

  • Bachmann O, Bergantz GW (2003) Rejuvenation of the Fish Canyon magma body: a window into the evolution of large-volume silicic magma systems. Geology 31:789–792

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2006) Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. J Volcanol Geotherm Res 149:85–102

    Article  Google Scholar 

  • Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper crustal batholith. J Petrol 43:1469–1503

    Article  Google Scholar 

  • Bacon CR, Sisson TW, Mazdab FK (2007) Young cumulate complex beneath Veniaminof caldera, Aleutian arc, dated by zircon in erupted plutonic blocks. Geology 35:491–494

    Article  Google Scholar 

  • Badanina EV, Veksler IV, Thomas R, Syritso LF, Trumbull RB (2004) Magmatic evolution of Li–F, rare-metal granites: a case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia). Chem Geol 210:113–133

    Article  Google Scholar 

  • Baker DR, Conte AM, Freda C, Ottolini L (2002) The effect of halogens on Zr diffusion and zircon dissolution in hydrous metaluminous granitic melts. Contrib Mineral Petrol 142:666–678

    Article  Google Scholar 

  • Ballard JR, Palin JM, Campbell IH (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Petrol 144:347–364

    Article  Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333

    Article  Google Scholar 

  • Bea F, Pereira MD, Stroh A (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem Geol 117:291–312

    Article  Google Scholar 

  • Berman RG (1991) Thermbarometry using multiequilibrium calculations: a new technique with petrological applications. Can Mineral 29:833–856

    Google Scholar 

  • Berman RG (2007) winTWQ (version 2.32): a software package for performing internally-consistent thermobarometric calculations. Geol Surv Can Open File 5462

  • Berman RG, Aranovich LY, Rancourt P, Mercier PH (2007) Reversed phase equilibrium constraints on the stability of Mg–Fe–Al biotite. Am Mineral 92:139–150

    Article  Google Scholar 

  • Bingen B, Austrheim H, Whitehouse M (2001) Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of W. Norway and implications for zircon geochronology. J Petrol 42:355–375

    Article  Google Scholar 

  • Botcharnikov R, Freise M, Holtz F, Behrens H (2005) Solubility of C–O–H mixtures in natural melts: new experimental data and application range of recent models. Ann Geophys 48:633–646

    Google Scholar 

  • Bourgue E, Richet P (2001) The effects of dissolved CO2 on the density and viscosity of silicate melts: a preliminary study. Earth Planet Sci Lett 193:57–68

    Article  Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 71–136

    Google Scholar 

  • Candela PA (1991) Physics of aqueous phase evolution in plutonic environments. Am Mineral 76:1081–1091

    Google Scholar 

  • Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can Mineral 23:381–421

    Google Scholar 

  • Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea R (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineral Mag 70:517–543

    Article  Google Scholar 

  • Clarke DB, Bogutyn PA (2003) Oscillatory epitactic-growth zoning in biotite and muscovite from the Lake Lewis leucogranite, South Mountain Batholith, Nova Scotia, Canada. Can Mineral 41:1027–1047

    Article  Google Scholar 

  • Connelly JN (2001) Degree of preservation of igneous zonation in zircon as a signpost for concordancy in U/Pb geochronology. Chem Geol 172:25–39

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500

    Article  Google Scholar 

  • Corrigan D, Pehrsson S, Wodicka N, de Kemp E (2009) The Paleoproterozoic Trans-Hudson Orogen: a prototype of modern accretionary processes. Geol Soc Lond Spec Publ 327:457–479

    Article  Google Scholar 

  • Corrigan D, Nadeau L, Wodicka N (2011) Precambrian geology of Melville Peninsula, Nunavut: a window on the evolution of the Western Churchill Province. Geological Association of Canada, Mineralogical Association of Canada, Annual Meeting Abst vol 34, p 44

  • Dall’Agnol R, Scaillet B, Pichavant M (1999) An experimental study on a Lower Proterozoic A-type granite from the eastern Amazonian Craton. J Petrol 40:1673–1698

    Article  Google Scholar 

  • Del Moro A, Puxeddu M, Radicati di Brozolo F, Villa IM (1982) Rb–Sr and K–Ar ages on minerals at temperatures of 300–400°C from deep wells of the Larderello geothermal field (Italy). Contrib Mineral Petrol 81:340–349

    Article  Google Scholar 

  • DePaolo DJ (1981) Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291:193–196

    Article  Google Scholar 

  • Ernst WG, Liu J (1998) Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB; a semiquantitative thermobarometer. Am Mineral 83:952–969

    Google Scholar 

  • Fowler AD, Doig R (1983) The significance of europium anomalies in the REE spectra of granites and pegmatites, Mont Laurier, Quebec. Geochim Cosmochim Acta 47:1131–1137

    Article  Google Scholar 

  • Fowler A, Prokoph A, Stern R, Dupuis C (2002) Organization of oscillatory zoning in zircon: analysis, scaling, geochemistry, and model of a zircon from Kipawa, Quebec, Canada. Geochim Cosmochim Acta 66:311–328

    Article  Google Scholar 

  • Fraser G, Ellis D, Eggins S (1997) Zirconium abundance in granulite facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25:607–610

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Fu B, Mernagh TP, Kita NT, Kemp AIS, Valley JW (2009) Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia. Chem Geol 259:131–142

    Article  Google Scholar 

  • Gao S, Luo T-C, Zhang B-R, Zhang H-F, Han Y-W, Zhao Z-D, Hu Y-K (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta 62:1959–1975

    Article  Google Scholar 

  • Geisler T, Pidgeon RT, Kurtz R, van Bronswijk W, Schleicher H (2003) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 88:1496–1513

    Google Scholar 

  • Geisler T, Burakov BE, Zirlin V, Nikolaeva L, Pöml P (2005) A Raman spectroscopic study of high-uranium zircon from the Chernobyl “lava”. Eur J Mineral 17:883–894

    Article  Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50

    Article  Google Scholar 

  • GeoREM: Geological and environmental reference materials. http://georem.mpch-mainz.gwdg.de/. Accessed Dec 2011

  • Hacker BR, Ratschbacher L, Webb L, Ireland T, Walker D, Shuwen D (1998) U–Pb zircon ages constrain the architecture of ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet Sci Lett 161:215–230

    Article  Google Scholar 

  • Halden NM, Hawthorne FC, Campbell JL, Teesdale WJ, Maxwell JA, Higuchi D (1993) Chemical characterization of oscillatory zoning and overgrowths in zircon using 3 MeV μ-PIXE. Can Miner 31:637–647

    Google Scholar 

  • Halter WE, Webster JD (2004) The magmatic to hydrothermal transition and its bearing on ore-forming systems. Chem Geol 210:1–6

    Article  Google Scholar 

  • Hanchar JM, Rudnick RL (1995) Revealing hidden structures: the application of cathodoluminescence and backscattered electron imaging to dating zircon from lower crustal xenoliths. Lithos 36:289–303

    Article  Google Scholar 

  • Hay DC, Dempster TJ (2009) Zircon alteration, formation and preservation in sandstones. Sedimentology 56:2175–2191

    Article  Google Scholar 

  • Henderson JR (1983) Structure and metamorphism of the Aphebian Penrhyn group and its Archean basement complex in the Lyon Inlet area, Melville Peninsula, District of Franklin. Geol Surv Bull 324:50

    Google Scholar 

  • Henderson JR (1987) Geology, Southeastern Melville Peninsula, Northwest Territories. Geol Surv Can, “A” Series Map, 1655A, 2 sheets, scale 1:100 000

  • Hersum TG, Marsh BD (2007) Igneous textures: on the kinetics behind the words. Elements 3:247–252

    Article  Google Scholar 

  • Hoffman PF (1988) United Plates of America, the birth of a craton: early Proterozoic assembly and growth of Laurentia. Annu Rev Earth Planet Sci 16:543–603

    Article  Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447

    Article  Google Scholar 

  • Hoskin PWO (2000) Patterns of chaos: fractal statistics and the oscillatory chemistry of zircon. Geochim Cosmochim Acta 64:1905–1923

    Article  Google Scholar 

  • Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62

    Article  Google Scholar 

  • Hoskin PWO, Kinny PD, Wyborn D (1998) Chemistry of hydrothermal zircon: investigating timing and nature of water–rock interaction. In: Arehart GB, Hulston JR (eds) Water–rock interaction. AA Balkema, Rotterdam, pp 545–548

  • Hoskin PWO, Kinny PD, Wyborn D, Chappell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach. J Petrol 41:1365–1396

    Article  Google Scholar 

  • Iacono Marziano G, Gaillard F, Pichavant M (2007) Limestone assimilation and the origin of CO2 emissions at the Alban Hills (Central Italy): constraints from experimental petrology. J Volcanol Geotherm Res 166:91–105

    Article  Google Scholar 

  • Icenhower JP, London D (1997) Partitioning of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 MPa H2O. Contrib Mineral Petrol 127:17–29

    Article  Google Scholar 

  • Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508

    Article  Google Scholar 

  • Jackson SE (2008) LAMTRACE data reduction software for LA-ICP-MS. In: Sylvester P (ed) Laser ablation-ICP-mass spectrometry in the earth sciences: current practices and outstanding issues. Mineral Ass Can (MAC) Short Course Ser 40, pp 305–307

  • Klein M, Stosch HG, Seck HA (1997) Partitioning of high field-strength and rare-earth elements between hornblende and quartz-dioritic to tonalitic melts: An experimental study. Chem Geol 138:257–271

    Article  Google Scholar 

  • Li Z, Tainosho Y, Shiraishi K, Owada M (2003) Chemical characteristics of fluorine-bearing biotite of early Paleozoic plutonic rocks from the Sør Rondane Mountains, East Antarctica. Geochem J 37:145–161

    Article  Google Scholar 

  • Linnen RL, Keppler H (2002) Melt composition control of Zr/Hf fractionation in magmatic processes. Geochim Cosmochim Acta 66:3293–3301

    Article  Google Scholar 

  • Locock AJ (2008) An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput Geosci 34:1769–1780

    Article  Google Scholar 

  • Lofgren G (1980) Experimental studies on the dynamic crystallization of silicate melts. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, New Jersey, pp 487–551

    Google Scholar 

  • Longerich HP, Jackson SE, Günther D (1996) Laser ablation-inductively coupled plasma-mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904

    Article  Google Scholar 

  • Ludwig KR (2003) User’s manual for Isoplot/Ex rev. 3.00: a geochronological toolkit for Microsoft Excel. Spec Publ 4, Berkeley Geochronology Center, Berkeley

  • Mahood G, Hildreth W (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochim Cosmochim Acta 47:11–30

    Article  Google Scholar 

  • McLelland J, Hamilton M, Selleck B, McLelland J, Walker D, Orrell S (2001) Zircon U–Pb geochronology of the Ottawan Orogeny, Adirondack Highlands, New York: regional and tectonic implications. Precambrian Res 109:39–72

    Article  Google Scholar 

  • Miller JS, Wooden JL (2004) Residence, resorption and recycling of zircons in Devils Kitchen rhyolite, Coso Volcanic field, California. J Petrol 45:2155–2170

    Article  Google Scholar 

  • Mollo S, Putirka K, Iezzi G, Del Gaudio P, Scarlato P (2011) Plagioclase-melt (dis)equilibrium due to cooling dynamics: implications for thermometry, barometry and hygrometry. Lithos 125:221–235

    Article  Google Scholar 

  • Mortensen JK, Card KD (1993) U–Pb age constraints for the magmatic and tectonic evolution of the Pontiac Subprovince, Quebec. Can J Earth Sci 30:1970–1980

    Article  Google Scholar 

  • Nabelek PI, Whittington AG, Sirbescu M-LC (2010) The role of H2O in rapid emplacement and crystallization of granite pegmatites: resolving the paradox of large crystals in highly undercooled melts. Contrib Miner Petrol 160:313–325

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass standard reference materials. Geostand Newsl 21:115–144

    Article  Google Scholar 

  • Peiffert C, Cuney M, Nguyen-Trung C (1994) Uranium in granitic magmas: part 1. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide–haplogranite–H2O–Na2CO3 system at 720–770°C, 2 kbar. Geochim Cosmochim Acta 58:2495–2507

    Article  Google Scholar 

  • Peiffert C, Nguyen-Trung C, Cuney M (1996) Uranium in granitic magmas: part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide–haplogranite–H2O–NaX (X = Cl, F) system at 770°C, 2 kbar. Geochim Cosmochim Acta 60:1515–1529

    Article  Google Scholar 

  • Pérez-Soba C, Villaseca C, Tánago JG, Nasdala L (2007) The composition of zircon in the peraluminous Hercynian granites of the Spanish Central System batholith. Can Mineral 45:509–527

    Article  Google Scholar 

  • Pettke T, Audétat A, Schaltegger U, Heinrich CA (2005) Magmatic-to-hydrothermal crystallization in the W–Sn mineralized Mole Granite (NSW, Australia): part II: evolving zircon and thorite trace element chemistry. Chem Geol 220:191–213

    Article  Google Scholar 

  • Pidgeon RT (1992) Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contrib Mineral Petrol 110:463–472

    Article  Google Scholar 

  • Pidgeon RT, Nemchin AA, Hitchen GJ (1998) Internal structures of zircons from Archaean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U–Pb ages. Contrib Mineral Petrol 132:288–299

    Article  Google Scholar 

  • Pietro A (2008) Decryption of igneous rock textures: crystal size distribution. Rev Mineral Geochem 69:623–649

    Article  Google Scholar 

  • Rainbird RH, Davis WJ, Pehrsson SJ, Wodicka N, Rayner N, Skulski T (2010) Early Paleoproterozoic supracrustal assemblages of the Rae domain, Nunavut, Canada: intracratonic basin development during supercontinent break-up and assembly. Precambrian Res 181:167–186

    Article  Google Scholar 

  • Rayner N, Stern RA, Carr D (2005) Grainscale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. Contrib Miner Petrol 148:721–734

    Article  Google Scholar 

  • Reed MJ, Candela PA, Piccoli PM (2000) The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800°C and 200 MPa. Contrib Miner Petrol 140:251–262

    Article  Google Scholar 

  • Reiners PW, Nelson BK, Ghiorso MS (1995) Assimilation of felsic crust and its partial melt by basaltic magma: thermal limits and extents of crustal contamination. Geology 23:563–566

    Article  Google Scholar 

  • Rubin JN, Henry CD, Price JG (1989) Hydrothermal zircons and zircon overgrowths, Sierra-Blanca Peaks, Texas. Am Mineral 74:865–869

    Google Scholar 

  • Ryerson FJ, Watson EB (1987) Rutile saturation in magmas: implications for Ti–Nb–Ta depletion in island-arc basalts. Earth Planet Sci Lett 86:225–239

    Article  Google Scholar 

  • Schaltegger U (2007) Hydrothermal zircon. Elements 3:51–79

    Article  Google Scholar 

  • Schmitt AK, Lindsay JM, de Silva S, Trumbull RB (2002) U–Pb zircon chronostratigraphy of early-Pliocene ignimbrites from La Pacana, north Chile: implications for the formation of stratified magma chambers. J Volcanol Geotherm Res 120:43–53

    Article  Google Scholar 

  • Silver LT, Deutsch S (1963) Uranium–lead isotopic variations in zircons: a case study. J Geol 71:721–758

    Article  Google Scholar 

  • Sisson TW, Bacon CR (1999) Gas-driven filter pressing in magmas. Geology 27:613–616

    Article  Google Scholar 

  • Spera FJ, Bohrsson WA, Till CB, Ghiorso MS (2007) Partitioning of trace elements among coexisting crystals, melt, and supercritical fluid during isobaric crystallization and melting. Am Mineral 92:1881–1898

    Article  Google Scholar 

  • Štemprok M, Dolejš D, Müller A, Seltmann R (2008) Textural evidence of magma decompression, devolatilization and disequilibrium quenching: an example from the Western Krušné hory/Erzgebirge granite pluton. Contrib Mineral Petrol 155:93–109

    Article  Google Scholar 

  • Stern RA (1997) The GSC Sensitive High Resolution Ion Microprobe (SHRIMP): analytical techniques of zircon U–Th–Pb age determinations and performance evaluation. Radiogenic age and isotopic studies, report 10. Geol Surv Can Curr Res 1–31

  • Stern RA, Amelin Y (2003) Assessment of errors in SIMS zircon U–Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chem Geol 197:111–146

    Article  Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002) Dynamic recrystallization of quartz: correlation between natural and experimental conditions. Geol Soc Lond Spec Publ 200:171–190

    Article  Google Scholar 

  • Thompson AB, Matile L, Ulmer P (2002) Some thermal constraints on crustal assimilation during fractionation of hydrous, mantle-derived magma with examples from Central Alpine batholiths. J Petrol 43:403–422

    Article  Google Scholar 

  • Tomaschek F (2004) Zircon reequilibration by dissolution–reprecipitation: reaction textures from flux-grown solid solutions. Beihefte Eur J Mineral 12:214

    Google Scholar 

  • Uher P, Černý P (1998) Zircon in Hercynian granitic pegmatites of the western Carpathians, Slovakia. Geol Carpathica 49:261–270

    Google Scholar 

  • Van Lichtervelde M, Holtz F, Dziony W, Ludwig T, Meyer H-P (2011) Incorporation mechanisms of Ta and Nb in zircon and implications for pegmatitic systems. Am Mineral 96:1079–1089

    Article  Google Scholar 

  • Vavra G (1994) Systematics of internal zircon morphology in major Variscan granitoid types. Contrib Mineral Petrol 117:331–334

    Article  Google Scholar 

  • Veksler IV (2004) Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies. Chem Geol 210:7–31

    Article  Google Scholar 

  • Veksler IV, Thomas R (2002) An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contrib Mineral Petrol 143:673–683

    Article  Google Scholar 

  • Veksler IV, Petibon C, Jenner GA, Dorfman AM, Dingwell DB (1998) Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J Petrol 39:2095–2104

    Article  Google Scholar 

  • Wark DA, Hildreth W, Spear FS, Cherniak DJ, Watson EB (2007) Pre-eruption recharge of the Bishop magma system. Geology 35:235–238

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Wayne DM, Sinha AK (1992) Stability of zircon U–Pb systematics in a greenschist-grade mylonite: an example from the Rockfish Valley fault zone, central Virginia, USA. J Geol 100:593–603

    Article  Google Scholar 

  • Wheeler JO, Hoffman PF, Card KD, Davidson A, Sanford BV, Okulitch AV, Roest WR (1996) Geological map of Canada/Carte géologique du Canada. Geol Surv Can, “A” Ser Map 1860A. doi:10.4095/208175

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Wörner G, Beusen JM, Duchateau N, Gijbels R, Schmincke HU (1983) Trace element abundances and mineral/melt distribution coefficients in phonolites from the Laacher See volcano (Germany). Contrib Mineral Petrol 84:152–173

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported through GEM Melville Peninsula project led by D. Corrigan and L. Nadeau. S.E. acknowledges support through an NSERC visiting fellowship. We would like to thank R. Berman and B. Davis for insightful discussions, J. Whalen for stimulating discussions and comments on an earlier manuscript version, and P. Hunt, T. Pestaj, N. Rayner, and K. Venance for assistance with imaging and data acquisition. I. Ames, K. McIntyre, and L. Richan provided great support in the field. Mary Reid and an anonymous reviewer are thanked for insights and detailed comments, which helped us to improve our model and presentation. This is GSC contribution number 20110040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Erdmann.

Additional information

Communicated by F. Poitrasson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdmann, S., Wodicka, N., Jackson, S.E. et al. Zircon textures and composition: refractory recorders of magmatic volatile evolution?. Contrib Mineral Petrol 165, 45–71 (2013). https://doi.org/10.1007/s00410-012-0791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0791-z

Keywords

Navigation