Contributions to Mineralogy and Petrology

, Volume 164, Issue 3, pp 477–492 | Cite as

Fulgurite morphology: a classification scheme and clues to formation

  • Matthew A. PasekEmail author
  • Kristin Block
  • Virginia Pasek
Original Paper


Fulgurites are natural glasses formed by cloud-to-ground lightning. Several different morphologies of fulgurites have been reported in previous studies, including sand fulgurites, rock fulgurites, and clay fulgurites. Herein, we examine sand, clay, and caliche fulgurites and demonstrate that these differ systematically in their morphology. We further use morphological features to constrain properties of fulgurite-forming lightning strikes. We classify fulgurites into four types of morphologies with an additional minor type. Type I fulgurites are sand fulgurites consisting of thin, glass walls; type II fulgurites are clay fulgurites, consisting of thick, melt rich walls; type III fulgurites are caliche fulgurites, consisting of thick, glass poor walls; and type IV fulgurites are rock fulgurites, consisting of glasses with walls consisting of surrounding, unmelted rock. Fulgurite morphology shows that the energy of fulgurite-forming strikes is between 1 and 30 MJ/m of fulgurite formed, suggests heating rates in the order of 1,000 K/s, and lightning channel thicknesses of about 1 mm diameter. Lightning generates mixtures of at least two components in most fulgurites: an SiO2 glass identified as lechatelierite and a groundmass of more varied composition. In addition to these four primary types, a fifth type—droplet fulgurites—is morphologically dissimilar from the other types, but is compositionally related to the type II or IV fulgurites. Additionally, two fulgurites, both from York County, Pennsylvania, USA, showed the reduction of iron to iron metal with an assortment of Fe–Ti and Si–P compounds with stoichiometry that ranges from nearly pure Fe metal to FeSi. These metal silicides include stoichiometric Fe3Si, Fe2Si, and Fe5Si3, and possibly Fe8Si3 and Fe7Si3, and provide a terrestrial source for these phases, which are typically associated with extraterrestrial material.


Fulgurite Lechatelierite Contact metamorphism Silicides 



This research was supported in part by grants from NASA Exobiology and Evolutionary biology (grants NNX07AU08G and NNX10AT30G). The authors thank Dolores Hill for help with sample preparation, Zachary Atlas for help with microprobe and for reviewing the manuscript, Brent Owens for reviewing the manuscript, and Michael Joseph for assistance with microprobe of the Greensboro NC fulgurite. The manuscript benefitted significantly from comments from Chris Ballhaus, Tomas Martín-Crespo, and Kevin Jones.


  1. Altaratz O, Levin Z, Yair Y, Ziv B (2003) Lightning activity over land and sea on the eastern coast of the Mediterranean. Month Weath Rev 131:2060–2070CrossRefGoogle Scholar
  2. Anand M, Taylor LA, Nazarov MA, Shu J, Mao H-K, Hemley RJ (2004) Space weathering on airless planetary bodies: clues from the lunar mineral hapkeite. Proc Natl Acad Sci USA 101:6847–6851CrossRefGoogle Scholar
  3. Arago M (1821) A perfect glass. Annales Chimie Physique 19:647–648Google Scholar
  4. Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Min 83:1127–1131Google Scholar
  5. Boccippio DJ, Cummins KL, Christian HJ, Goodman SJ (2000) Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Month Weath Rev 129:108–122CrossRefGoogle Scholar
  6. Borucki WJ, Chameides WL (1984) Lightning—estimates of the rates of energy dissipation and nitrogen fixation. Rev Geophys Space Phys 22:363–372CrossRefGoogle Scholar
  7. Butterman WC, Foster WR (1967) Zircon stability and the ZrO2-SiO2 phase diagram. Am Min 52:880–885Google Scholar
  8. Cardona MR, Castro KF, Garcia PPC, Hernandez LEO (2006) Mineralogical study of binary iron silicides (Fe–Si system) in a fulgurite from Hidalgo, Mexico. Bol Minerol 17:69–76Google Scholar
  9. Carter EA, Hargreaves MD, Kee TP, Pasek MA, Edwards HGM (2010a) A Raman spectroscopic study of a fulgurite. Phil Trans Royal Soc A 368:3087–3097CrossRefGoogle Scholar
  10. Carter EA, Pasek MA, Smith T, Kee TP, Hines P, Edwards HGM (2010b) Rapid Raman mapping of a fulgurite. Anal Bioanal Chem 397:2647–2658CrossRefGoogle Scholar
  11. Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J Geophys Res 108:ACL 4–15Google Scholar
  12. Consolmagno GJ, Britt DT (1998) The density and porosity of meteorites from the Vatican collection. Meteorit Planet Sci 33:1231–1241CrossRefGoogle Scholar
  13. Davis GH (2010) Geoarchaeology of the sanctuary of Zeus, Mt. Lykaion, Peloponnesos, Greece. Geol Soc Am Abstr Programs 42:29Google Scholar
  14. Domanik K, Kolar S, Musselwhite D, Drake MJ (2004) Accessory silicate mineral assemblages in the Bilanga diogenite: a petrographic study. Meteorit Planet Sci 39:567–579CrossRefGoogle Scholar
  15. Essene EJ, Fisher DC (1986) Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science 234:189–193CrossRefGoogle Scholar
  16. Frenzel G, Ottemann J (1978) Über Blitzgläser vom Katzenbuckel, Odenwald, und ihre Ähnlichkeit mit Tektiten. Neues Jahrbuch Mineral Monatsh 10:439–446Google Scholar
  17. Frenzel G, Stähle V (1982) Fulgurite glass on peridotite from near Frankenstein near Darmstadt. Chem Erde 41:111–119Google Scholar
  18. Frenzel G, Stähle V (1984) Über Aluminosilikatglas mit Lechatelierit-Einschlüssen von einer Fulguritröhre des Hahnenstockes (Glarner Freiburg, Schweiz). Chem Erde 43:17–26Google Scholar
  19. Frenzel G, Irouschek-Zumthor A, Stähle V (1989) Stoβwellenmetamorphose, Aufschmelzung and Verdampfung bei Fulguritbildung an exponierten Berggipfeln. Chem Erde 49:265–286Google Scholar
  20. Garcia-Guinea J, Furio M, Fernandez-Hernan M, Bustillo MA, Crespo-Feo E, Correcher V, Sanchez-Munoz L, Matesanz E (2009) The quartzofeldspathic fulgurite of Bustarviejo (Madrid): glassy matrix and silicon phases. Conf Micro-Raman Spectr Lumin Studies Earth Planet Sci 1473:34–35Google Scholar
  21. Gevork’yan VK (1969) The occurrence of natural ferrosilicon in the northern Azov region. Dokl Ahad Nauh S S SR 185:416–418Google Scholar
  22. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Min Pet 119:197–212CrossRefGoogle Scholar
  23. Grapes RH, Muller-Sigmund H (2010) Lightning-strike fusion of gabbro and formation of magnetite-bearing fulgurite, Cornone di Blumone, Adamello, Western Alps, Italy. Miner Petrol 99:67–74CrossRefGoogle Scholar
  24. Hill RD (1979) A survey of lightning energy estimates. Rev Geophys Space Phys 17:155–164CrossRefGoogle Scholar
  25. Ingersoll LR, Koepp OA (1924) Thermal diffusivity and conductivity of some soil materials. Phys Rev 24:92–93CrossRefGoogle Scholar
  26. Ivanov BA, Deutsch A (2002) The phase diagram of CaCO3 in relation to shock compression and decomposition. Phys Earth Planet Int 129:131–143CrossRefGoogle Scholar
  27. Jones BE, Jones KS, Rambo KJ, Rakov VA, Jerald J, Uman MA (2005) Oxide reduction during triggered-lightning fulgurite formation. J Atmos Solar-Terres Phys 67:423–428CrossRefGoogle Scholar
  28. Keil K, Berkley JL, Fuchs LH (1982) Suessite, Fe3Si: a new mineral in the North Haig Ureilite. Am Min 67:126–131Google Scholar
  29. Krider EP, Dawson GA, Uman MA (1968) Peak power and energy dissipation in a single-stroke lightning flash. J Geophys Res 73:3335CrossRefGoogle Scholar
  30. Lay EH, Jacobson AR, Holzworth RH, Rodger CJ, Dowden RL (2007) Local time variation in land/ocean lightning flash density as measured by the World Wide Lightning Location Network. J Geophys Res 112:D13111 1–9Google Scholar
  31. Libby CA (1986) Fulgurite in the Sierra Nevada. Calif Geol 39:262Google Scholar
  32. Martin-Crespo T, Lozano-Fernandez RP, Gonzalez-Laguna R (2009) The fulgurite of Terre de Moncorvo (Portugal): description and analysis of the glass. Eur J Miner 21:783–794CrossRefGoogle Scholar
  33. Navarro-Gonzalez R, Mahan SA, Singhvi AK, Navarro-Aceves R, Rajot J-L, McKay CP, Coll P, Raulin F (2007) Paleoecology reconstruction from trapped gases in a fulgurite from the late Pleistocene of the Libyan desert. Geology 35:171–174CrossRefGoogle Scholar
  34. O’Keefe J (1984) Natural glass. J Non Crystalline Solids 67:1–17CrossRefGoogle Scholar
  35. Orville RE (1968) A high-speed time-resolved spectroscopic study of the lightning return stroke: part II. A quantitative analysis. J Atmos Sci 25:839–851CrossRefGoogle Scholar
  36. Parnell J, Thackrey S, Muirhead D, Wright A (2008) Transient high-temperature processing of silicates in fulgurites as analogues for meteorite and impact melts. Lunar Planet Sci Conf XXXIX:1286Google Scholar
  37. Pasek MA (2008) Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci USA 105:853–858CrossRefGoogle Scholar
  38. Pasek MA, Block K (2009) Lightning reduction of phosphate: implications for phosphorus biogeochemistry. Nat Geosci 2:553–556CrossRefGoogle Scholar
  39. Pasek MA, Greenberg R (2012) Acidification of Europa’s subsurface ocean as a consequence of oxidant delivery. Astrobiology 12:151–159CrossRefGoogle Scholar
  40. Pasek MA, Milsom JA, Ciesla FJ, Lauretta DS, Sharp C, Lunine DS (2005) Sulfur chemistry in protoplanetary nebulae with time-varying oxygen abundances. Icarus 175:1–14CrossRefGoogle Scholar
  41. Pye K (1982) SEM observations on some sand fulgurites from northern Australia. J Sed Res 52:991–998Google Scholar
  42. Rakov VA, Uman MA (2003) Lightning: physics and effects. Cambridge University Press, CambridgeGoogle Scholar
  43. Rowan LR, Ahrens TJ (1994) Observations of impact-induced molten metal-silicate partitioning. Earth Planet Sci Lett 122:71–88CrossRefGoogle Scholar
  44. Schultz PH, Zarate M, Hames B, Koeberl C, Bunch T, Storzer D, Renne P, Wittke J (2004) The quaternary impact record from the Pampas, Argentina. Earth Planet Sci Lett 219:221–238CrossRefGoogle Scholar
  45. Sheffer AA (2007) Chemical reduction of silicates by meteorite impacts and lightning strikes. Dissertation, University of ArizonaGoogle Scholar
  46. Spray JG (1995) Pseudotachylyte controversy: fact or friction. Geology 23:1119–1122CrossRefGoogle Scholar
  47. Switzer G, Melson WG (1968) Origin and composition of rock fulgurite glass. Smithsonian Contrib Earth Sci 9:47–51Google Scholar
  48. Uman MA, Beasley WH, Tiller JA, Lin Y, Krider EP, Weidmann CD, Krehbiel PR, Brook M, Few AA Jr, Bohannon JL, Lennon CL, Poehler HA, Jafferis W, Gulick JR, Nicholson JR (1978) An unusual lightning flash at Kennedy Space Center. Science 201:9–16CrossRefGoogle Scholar
  49. White WB, Johnson SM, Dantzig GB (1958) Chemical equilibrium in complex mixtures. J Chem Phys 28:751–755CrossRefGoogle Scholar
  50. Williams E, Chan T, Boccippio D (2004) Islands as miniature continents: another look at the land-ocean lightning contrast. J Geophys Res 109:D16206 1–5Google Scholar
  51. Yu Z (1984) Two new minerals gupeiite and xifengite in cosmic dusts from Yanshan. Acta Petro Miner Anal 3:231–238Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Matthew A. Pasek
    • 1
    Email author
  • Kristin Block
    • 2
  • Virginia Pasek
    • 3
  1. 1.Department of GeologyUniversity of South FloridaTampaUSA
  2. 2.Department of Planetary ScienceUniversity of ArizonaTucsonUSA
  3. 3.Free Radical ConsultingSeffnerUSA

Personalised recommendations