Contributions to Mineralogy and Petrology

, Volume 164, Issue 1, pp 101–122 | Cite as

Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic magma

Original Paper

Abstract

The evolution of a carbonated nephelinitic magma can be followed by the study of a statistically significant number of melt inclusions, entrapped in co-precipitated perovskite, nepheline and magnetite in a clinopyroxene- and nepheline-rich rock (afrikandite) from Kerimasi volcano (Tanzania). Temperatures are estimated to be 1,100°C for the early stage of the melt evolution of the magma, which formed the rock. During evolution, the magma became enriched in CaO, depleted in SiO2 and Al2O3, resulting in immiscibility at ~1,050°C and crustal pressures (0.5–1 GPa) with the formation of three fluid-saturated melts: an alkali- and MgO-bearing, CaO- and FeO-rich silicate melt; an alkali- and F-bearing, CaO- and P2O5-rich carbonate melt; and a Cu–Fe sulfide melt. The sulfide and the carbonate melt could be physically separated from their silicate parent and form a Cu–Fe–S ore and a carbonatite rock. The separated carbonate melt could initially crystallize calciocarbonatite and ultimately become alkali rich in composition and similar to natrocarbonatite, demonstrating an evolution from nephelinite to natrocarbonatite through Ca-rich carbonatite magma. The distribution of major elements between perovskite-hosted coexisting immiscible silicate and carbonate melts shows strong partitioning of Ca, P and F relative to FeT, Si, Al, Mn, Ti and Mg in the carbonate melt, suggesting that immiscibility occurred at crustal pressures and plays a significant role in explaining the dominance of calciocarbonatites (sövites) relative to dolomitic or sideritic carbonatites. Our data suggest that Cu–Fe–S compositions are characteristic of immiscible sulfide melts originating from the parental silicate melts of alkaline silicate–carbonatite complexes.

Keywords

Melt inclusion Liquid immiscibility Carbonate melt Sulfide melt Silicate melt Carbonatite Natrocarbonatite Nephelinite Kerimasi Tanzania 

Supplementary material

410_2012_728_MOESM1_ESM.xls (63 kb)
Supplementary material 1 (XLS 63 kb)

References

  1. Andersen T, Griffin WL, O’Reilly SY (1987) Primary sulfide melt inclusions in mantle derived phenocrysts and pyroxenites. Lithos 20:279–294CrossRefGoogle Scholar
  2. Bailey DK (1993) Carbonatite magmas. J Geol Soc London 150:637–651CrossRefGoogle Scholar
  3. Bell K (ed) (1989) Carbonatites: genesis and evolution, Unwin Hyman, LondonGoogle Scholar
  4. Bodnar RJ, Student JJ (2006) Melt inclusions in plutonic rocks: petrography and microthermometry. In: Webster JD (ed) Melt inclusions in plutonic rocks, vol 36. Mineralogical Association of Canada Short Course, Canada, pp 1–25Google Scholar
  5. Brooker RA, Kjarsgaard BA (2010) Silicate–carbonate liquid immiscibility and phase relations in the system SiO2–Na2O–Al2O3–CaO–CO2 at 0.1–2.5 GPa with applications to carbonatite genesis. J Petrol 52:1281–1305Google Scholar
  6. Carroll MR, Rutherford MJ (1985) Sulphide and sulfate saturation in hydrous silicate melts. J Geophys Res 90:C601–C612Google Scholar
  7. Clemente B, Scaillet B, Pichavant M (2004) The solubility of sulphur in hydrous rhyolitic melts. J Petrol 45:2171–2196CrossRefGoogle Scholar
  8. Danyushevsky LV, McNeil AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24CrossRefGoogle Scholar
  9. Dawson JB, Pinkerton H, Norton GE, Pyle DM (1990) Physiochemical properties of alkali carbonatite lavas: data from the 1988 eruption of Oldoinyo Lengai, Tanzania. Geology 18:260–263CrossRefGoogle Scholar
  10. Dawson JB, Pinkerton H, Pyle DM, Nyamweru C (1994) June 1993 eruption of Oldoinyo Lengai, Tanzania: exceptionally viscous and large carbonatite lava flows and evidence for coexisting silicate and carbonate magmas. Geology 22:799–802CrossRefGoogle Scholar
  11. Dawson JB, Pyle DM, Pinkerton H (1996) Evolution of natrocarbonatite from a wollastonite nephelinite parent: evidence from the June 1993 eruption of Oldoinyo Lengai, Tanzania. J Geol 104:41–54CrossRefGoogle Scholar
  12. Eggler DH (1978) The effect of CO2 upon partial melting peridotite in the system Na2O–CaO–Al2O3–MgO–SiO2–CO2 to 35 kb, with an analysis of melting in a peridotite–H2O–CO2 system. Am J Sci 278:305–343CrossRefGoogle Scholar
  13. Flet ME, Stone WE (1990) Nickeliferous sulfides in xenoliths, olivine phenocrysts and basaltic glass. Contrib Mineral Petrol 105:629–636CrossRefGoogle Scholar
  14. Groves DI, VielReicher MN (2001) The Phalabowra (Palabora) carbonatite-hosted magnetite-copper sulfide deposit, South Africa: an end member of the iron-oxide copper-gold–rare earth element deposit group? Mineral Deposit 36:189–194CrossRefGoogle Scholar
  15. Guzmics T, Zajacz Z, Kodolányi J, Werner H, Szabó C (2008) LA-ICP-MS study of apatite- and K-feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres, Hungary: implication for significance of carbonatite melts in the Earth’s mantle. Geochim Cosmochim Acta 72:1864–1886CrossRefGoogle Scholar
  16. Guzmics T, Mitchell RH, Szabó Cs, Berkesi M, Milke R, Abart R (2011) Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis. Contrib Mineral Petrol 161:177–196CrossRefGoogle Scholar
  17. Hamilton DL, Freestone IC, Dawson JB, Donaldson CH (1979) Origin of carbonatites by liquid immiscibility. Nature 279:52–54CrossRefGoogle Scholar
  18. Haughton DR, Roeder PL, Skinner BJ (1974) Solubility of sulfur in mafic magmas. Econ Geol 69:451–467CrossRefGoogle Scholar
  19. Hay RL (1983) Natrocarbonatite tefra of Kerimasi volcano, Tanzania. Geology 11:599–602CrossRefGoogle Scholar
  20. Heinrich EW (1966) The geology of carbonatites. Rand McNally, Chicago 555 pGoogle Scholar
  21. Hidas K, Guzmics T, Szabó Cs, Kovács I, Bodnar RJ, Zajacz Z, Nédli Zs, Vaccari L, Perucchi A (2010) Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian-Pannonian region (central Hungary). Chem Geol 274:1–18CrossRefGoogle Scholar
  22. Holzheid A (2010) Separation of sulfide melt droplets in sulfur saturated silicate liquids. Chem Geol 274:127–135CrossRefGoogle Scholar
  23. King BC, Sutherland DL (1960) Alkaline rocks of eastern and southern Africa. Sci Prog 47:298–321, 504–521, 709–720Google Scholar
  24. Kjarsgaard BA (1998) Phase relations of a carbonated high CaO nephelinite at 0.2 and 0.5 GPa. J Petrol 39:2061–2075CrossRefGoogle Scholar
  25. Kjarsgaard BA, Peterson TD (1991) Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: petrographic and experimental evidence. Mineral Petrol 43:293–314CrossRefGoogle Scholar
  26. Kjarsgaard BA, Hamilton DL, Peterson TD (1995) Peralkaline nephelinite/carbonatite liquid immiscibility: comparison of phase compositions in experiments and natural lavas from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism. Springer, Berlin, pp 163–190CrossRefGoogle Scholar
  27. Kogarko LN, Plant DA, Henderson CMB, Kjarsgaard BA (1991) Na-rich carbonate inclusions in perovskite and calzirtite from the Guli intrusive Ca-carbonatite, polar Siberia. Contrib Mineral Petrol 109:124–129CrossRefGoogle Scholar
  28. Kogarko LN, Kurat G, Ntaflos T (2001) Cabonate metasomatism of the oceanic mantle beneath Fernando de Noronha Island, Brazil. Contrib Mineral Petrol 140:577–587CrossRefGoogle Scholar
  29. Korobeinikov AN, Mitrofanov FP, Gehör S, Laajoki K, Pavlov VP, Mamontov VP (1998) Geology and copper sulphide mineralization of the Salmagorskii Ring igneous complex, Kola Peninsula, NW Russia. J Petrol 39:2033–2041CrossRefGoogle Scholar
  30. Koster van Groos AF, Wyllie PJ (1968) Liquid immiscibility in the join NaAlSi3O8–Na2CO3–H2O. Am J Sci 266:932–967CrossRefGoogle Scholar
  31. Le Bas MJ (1977) Carbonatite-nephelinite volcanism. Wiley, London 347 pGoogle Scholar
  32. Le Bas MJ, Aspden JA (1981) The comparability of carbonatitic fluid inclusions in ijolites and natrocarbonatite lava. Bull Volcan 44:429–438CrossRefGoogle Scholar
  33. Lee W-J, Wyllie PJ (1997) Liquid immiscibility in the join NaAlSiO4–NaAlSi3O8–CaCO3 at 1 GPa: Implications for crustal carbonatites. J Petrol 38:1113–1135CrossRefGoogle Scholar
  34. Lee W-J, Wyllie PJ (1998) Petrogenesis of Carbonatite Magmas from Mantle to Crust, Constrained by the System CaO–(MgO + FeO*)–(Na2O + K2O)–(SiO2 + Al2O3 + TiO2)–CO2. J Petrol 39:495–517CrossRefGoogle Scholar
  35. Li C, Ripley EM (2005) Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. Mineral Deposit 40:218–230CrossRefGoogle Scholar
  36. Liu Y, Samaha N-T, Baker DR (2007) Sulfur concentration at sulfide saturation (SCSS) in magmatic silicate melts. Geochim Cosmochim Acta 71:1783–1799CrossRefGoogle Scholar
  37. Mavrogenes JA, O’Neill H (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180CrossRefGoogle Scholar
  38. Mitchell RH (2005) Carbonatites and carbonatites and carbonatites. Can Mineral 43:1852–1853Google Scholar
  39. Mitchell RH (2009) Peralkaline nephelinite-natrocarbonatite immiscibility and carbonatite assimilation at Oldoinyo Lengai, Tanzania. Contrib Mineral Petrol 158:589–598CrossRefGoogle Scholar
  40. Mungall JE (2002) Kinetic controls on the partitioning of trace elements between silicate and sulfide liquids. J Petrol 43:749–768CrossRefGoogle Scholar
  41. Naldrett AJ (1989) Magmatic sulfide deposits. Oxford University Press, OxfordGoogle Scholar
  42. Nielsen TFD (1980) The petrology of a melilitolite, melteigite, carbonatite and syenite ring dike system in the Gardiner complex, East Greenland. Lithos 13:181–197CrossRefGoogle Scholar
  43. Nielsen TFD, Solovova IP, Veksler IV (1997) Parental melts of melilitolite and origin of alkaline carbonatite: evidence from crystallised melt inclusions, Gardiner complex. Contrib Mineral Petrol 126:331–344CrossRefGoogle Scholar
  44. O’Neill H, Mavrogenes JA (2002) The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400°C and 1 bar. J Petrol 43:1049–1087CrossRefGoogle Scholar
  45. Panina LI (2005) Multiphase carbonate-salt immiscibility in carbonatite melts: data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia). Contrib Mineral Petrol 150:19–36CrossRefGoogle Scholar
  46. Panina LI, Stoppa F (2009) Silicate-carbonate-salt liquid immiscibility and origin of the sodalite-haüyne rocks: study of melt inclusions in olivine foidite from Vulture volcano, S Italy. Cent Eur J Geosci 1:377–392CrossRefGoogle Scholar
  47. Poulson SR, Ohmoto H (1990) An evaluation of the solubility of sulfide sulfur in silicate melts from experimental data and natural samples. Chem Geol 85:57–75CrossRefGoogle Scholar
  48. Rass IT, Plechov PY (2000) Melt inclusions in olivines of olivine–melilite rocks, Guli Massif, northwest of the Siberian Platform. Dokl Earth Sci 375:389–392Google Scholar
  49. Ripley EM, Brophy JG, Li C (2002) Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe. Geochim Cosmochim Acta 66:2791–2800CrossRefGoogle Scholar
  50. Roedder E (1984) Fluid inclusions. In: Ribbe PH (ed) Reviews in mineralogy, vol 12. Mineralogical Society of America Series, Chelsea, p 646Google Scholar
  51. Roedder E (1987) Silicate liquid immiscibility in magmas. In: Yoder HS (ed) The evolution of the igneous rocks. Princeton University Press, Princeton, pp 15–58Google Scholar
  52. Roedder E (1992) Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochim Cosmochim Acta 56:5–20CrossRefGoogle Scholar
  53. Seifert W, Thomas R (1995) Silicate-carbonate immiscibility: a melt inclusion study of olivine melilitite and wehrlite xenoliths in tephrite from the Elbe Zone, Germany. Chem Erde 55:263–279Google Scholar
  54. Sokolov SV, Veksler IV, Senin VG (1999) Alkalis in carbonatite magmas: new evidence from melt inclusions. Petrology 7:602–609Google Scholar
  55. Solovova IP, Girnis AV, Ryabchikov ID, Simakin SG (2006) High-temperature carbonatite melt and its interrelations with alkaline magmas of the Dunkel’dyk complex, southeastern Pamirs. Dokl Earth Sci 410:1148–1151CrossRefGoogle Scholar
  56. Szabó C, Bodnar RJ (1995) Chemistry and origin of mantle sulfides in spinel peridotite xenoliths from alkaline basaltic lavas, Nógrád-Gömör volcanic field, northern Hungary and southern Slovakia. Geochim Cosmochim Acta 59:3917–3927CrossRefGoogle Scholar
  57. Tuttle OF, Gittins J (1966) Carbonatites. Interscience, New York 591 pGoogle Scholar
  58. Veksler IV (2006) Crystallized melt inclusions in gabbroic rocks. In: Webster JD (ed) Melt inclusions in plutonic rocks, vol 36. Mineralogical Association of Canada Short Course, Canada, pp 99–122Google Scholar
  59. Veksler IV, Lentz D (2006) Parental magmas of plutonic carbonatites, carbonate-silicate immiscibility and decarbonation reactions: evidence from melt and fluid inclusions. In: Webster JD (ed) Melt inclusions in plutonic rocks, vol 36. Mineralogical Association of Canada Short Course, Canada, pp 123–150Google Scholar
  60. Wooley AR, Kjarsgaard BA (2008) Carbonatite occurrences of the world: map and database; geological survey of Canada, Open file 5796, 1 CD-ROM + 1 mapGoogle Scholar
  61. Wyllie PJ, Huang W-L (1976) Carbonation and melting reactions in the system CaO–MgO–SiO2–CO2 at mantle pressures with geophysical and petrological applications. Contrib Mineral Petrol 54:79–107CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Lithosphere Fluid Research LaboratoryInstitute of Geography and Earth Sciences, Eötvös University BudapestBudapestHungary
  2. 2.Lakehead UniversityThunder BayCanada
  3. 3.Free University BerlinBerlinGermany
  4. 4.Material Science and Biological Research CenterEötvös University BudapestBudapestHungary

Personalised recommendations