Skip to main content
Log in

Crystal fractionation, magma step ascent, and syn-eruptive mingling: the Averno 2 eruption (Phlegraean Fields, Italy)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The 3.7 ka year-old Averno 2 eruption is one of the rare eruptions to have occurred in the northwest sector of the Phlegraean Fields caldera (PFc) over the past 5 ka. We focus here on the fallout deposits of the pyroclastic succession emplaced during this eruption. We present major and trace element data on the bulk pumices, along with major and volatile element data on clinopyroxene-hosted melt inclusions, in order to assess the conditions of storage, ascent, and eruption of the feeding trachytic magma. Crystal fractionation accounts for the evolution from trachyte to alkali-trachyte magmas; these were intimately mingled (at the micrometer scale) during the climactic phase of the eruption. The Averno 2 alkali trachyte represents one of the most evolved magmas erupted within the Phlegraean Fields area and belongs to the series of differentiated trachytic magmas erupted at different locations 5 ka ago. Melt inclusions record significant variations in H2O (from 0.4 to 5 wt%), S (from 0.01 to 0.06 wt%), Cl (from 0.75 up to 1 wt%), and F (from 0.20 to >0.50 wt%) during both magma crystallization and degassing. Unlike the eruptions occurring in the central part of the PFc, deep-derived input(s) of gas and/or magma are not required to explain the composition of melt inclusions and the mineralogy of Averno 2 pumices. Compositional data on bulk pumices, glassy matrices, and melt inclusions suggest that the Averno 2 eruption mainly resulted from successive extrusions of independent magma batches probably emplaced at depths of 2–4 km along regional fractures bordering the Neapolitan Yellow Tuff caldera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alessio M, Bella F, Improta S, Belluomini G, Cortesi C, Turi B (1971) University of Rome carbon-14 dates IX. Radiocarbon 13(2):395–411

    Google Scholar 

  • Allard P, Maiorani A, Tedesco D, Cortecci G, Turi B (1991) Isotopic study of the origin of sulfur and carbon in Solfatara fumaroles, Campi Flegrei caldera. J Volcanol Geotherm Res 48:39–159

    Article  Google Scholar 

  • Amoruso A, Crescentini L, Berrino G (2008) Simultaneous inversion of deformation and gravity changes in a horizontally layered half-space: evidences for magma intrusion during the 1982–1984 unrest at Campi Flegrei caldera (Italy). Earth Planet Sci Lett 272:181–188

    Article  Google Scholar 

  • Arienzo I, Moretti R, Civetta L, Orsi G, Papale P (2010) The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios. Chem Geol 270:135–147

    Article  Google Scholar 

  • Arienzo I, Civetta L, Heumann A, Wörner G, Orsi G (2009) Isotopic evidence for open system processes within the Campanian Ignimbrite (Campi Flegrei–Italy) magma chamber. Bull Volcanol 71:285–300

    Article  Google Scholar 

  • Armienti P, Gasperini A (2007) Do we really need mantle components to define mantle composition? J Petrol. doi:10.1093/petrology/egl078

    Google Scholar 

  • Armienti P, Barberi F, Bizouard H, Clocchiatti R, Innocenti F, Métrich N, Rosi M, Sbrana A (1983) The Phlegraean Fields: magma evolution within a shallow chamber. J Volcanol Geotherm Res 17:289–311

    Article  Google Scholar 

  • Barberi F, Carapezza M, Innocenti F, Luongo G, Santacroce R (1989) The problem of volcanic unrest: the Phlegrean Fields case history. Atti Convegni Lincei 80:387–405

    Google Scholar 

  • Beccaluva L, Di Girolamo P, Serri G (1991) Petrogenesis and tectonic setting of the Roman volcanic Province (Italy). Lithos 26:191–221

    Article  Google Scholar 

  • Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol. doi:10.1007/s00445-010-0404-5

    Google Scholar 

  • Caliro S, Chiodini G, Moretti R, Avino R, Granieri D, Russo M, Fiebig J (2007) The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim Cosmochim Acta 71:3040–3055

    Article  Google Scholar 

  • Cannatelli C, Lima A, Bodnar RJ, De Vivo B, Webster JD, Fedele L (2007) Geochemistry of melt inclusions from the Fondo Riccio and Minopoli 1 eruptions at Campi Flegrei (Italy). Chem Geol 237:418–432

    Article  Google Scholar 

  • Carroll MR, Webster JD (1994) Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. Volatiles in magmas (Caroll MR, Holloway JR Eds). Mineral 30:231–280

    Google Scholar 

  • Chiodini G, Frondini F (2001) Carbon dioxide degassing from the Albani Hills volcanic region, Central Italy. Chem Geol 177:67–83

    Article  Google Scholar 

  • Chiodini G, Caliro S, Cardellini C, Granieri D, Avino R, Baldini A, Donnini M, Minopoli C (2010) Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J Geophys Res 115, B03205. doi:10.1029/2008JB006258

  • Cipriani F, Marianelli P, Sbrana A (2008) Studio di una sequenza piroclastica del vulcano della Solfatara (Campi Flegrei). Atti Societa Toscana Scienze Naturali Memorie Serie A 113:1–6

    Google Scholar 

  • Civetta L, Innocenti F, Sbrana A, Taddeuci G (1988) Variazioni petrografiche e geochimiche nei prodotti di Averno: implicazioni sulla zonatura del sistema di alimentazione. Boll Gr Naz Vulcanol IV:201–217

    Google Scholar 

  • Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes, the Campanian Ignimbrite, Campi Flegrei Caldera, Italy. J Volcanol Geoth Res 75:183–219

    Article  Google Scholar 

  • D’Antonio M, Civetta L, Orsi G, Pappalardo L, Piochi M, Carandente A, De Vita S, Di Vito MA, Isaia R (1999) The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behaviour in the past 12 ka. J Volcanol Geotherm Res 91:247–268

    Article  Google Scholar 

  • D’Oriano C, Poggianti E, Bertagnini A, Cioni R, Landi P, Polacci M, Rosi M (2005) Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): the role of syn-eruptive crystallization. Bull Volcanol 607:601–621

    Article  Google Scholar 

  • De Natale GF, Troise C, Pingue F, Mastrolorenzo G, Pappalardo L, Battaglia M, Boschi E (2006) The Campi Flegrei caldera: unrest mechanisms hazards. Geol Soc Lon Spec Publ 269:25–45

    Article  Google Scholar 

  • De Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Deino A, Di Cesare T, Di Vito MA, Fisher RV, Isaia R, Marotta E, Necco A, Ort MH, Pappalardo L, Piochi M, Southon J (1999) The Agnano-Monte Spina eruption (4100 years B.P.) in the restless Campi Flegrei caldera. J Volcanol Geotherm Res 91:269–301

    Article  Google Scholar 

  • De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineral Petrol 73:47–65

    Article  Google Scholar 

  • Deino AL, Orsi G, De Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170

    Article  Google Scholar 

  • Di Matteo V, Carroll MR, Beherens H, Vetere F, Brooker RA (2004) Water solubility in trachytic melts. Chem Geol 213:187–196

    Article  Google Scholar 

  • Di Vito MA, Isaia R, Orsi G, Southon J, De Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:221–246

    Article  Google Scholar 

  • Di Vito MA, Arienzo I, Braia G, Civetta L, D’Antonio M, Di Renzo V, Orsi G (2010) The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei Caldera (Italy) Bull Volcanol. doi:10.1007/s00445-010-0417-0

  • Ferrucci F, Hirn A, De Natale G, Virieux J, Mirabile L (1992) P-SV conversions at a shallow boundary beneath Campi Flegrei caldera (Italy): evidence for the magma chamber. J Geophys Res 97-NO.B11:15351–15359. doi:10.1029/92JB00888

  • Fourmentraux C (2009) Eruptive processes in the Averno 2 eruption (Campi Flegrei, italy): constraints by physical properties of the juvenile fragments and melt inclusions. PhD thesis, University of Pisa

  • Isaia R, D’Antonio M, Dell’Erba F, Di Vito M, Orsi G (2004) The Astroni volcano: the only example of close eruptions within the same vent area in the recent history of the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 133:171–192

    Article  Google Scholar 

  • Isaia R, Marianelli P, Sbrana S (2009) Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P: implications for caldera dynamics and future eruptive scenarios. Geophys Res Lett 36. doi:10.1029/2009GL040513

  • Mangiacapra A, Moretti R, Rutherford M, Civetta L, Orsi G, Papale P (2008) The deep magmatic system of the Campi Flegrei caldera (Italy). Geophys Res Lett 35:L21304

    Article  Google Scholar 

  • Marianelli P, Sbrana A, Proto M (2006) Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite. Geol 34:937–940

    Article  Google Scholar 

  • Mastrolorenzo G (1994) Averno Tuff ring in Campi Flegrei (south Italy): Bull Volcanol 56:561-572

    Google Scholar 

  • Mastrolorenzo G, Pappalardo L (2006) Magma degassing and crystallization processes during eruptions of high-risk Neapolitan-volcanoes: evidence of common equilibrium rising processes in alkaline magmas. Earth Planet Sci Lett 250:164–181

    Article  Google Scholar 

  • Mc Donough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Métrich N (1983) Les variations chimiques des clinopyroxènes calciques témoins de la complexité des processus pétrogénétiques à l’intérieur d’un réservoir magmatique. Eur Bull Mineral 106:353–364

    Google Scholar 

  • Métrich N, Clocchiatti R (1989) Melt inclusion investigation of the volatile behaviour in historic alkaline magmas of Etna. Bull Volcanol 51:185–198

    Article  Google Scholar 

  • Mosbah M, Métrich N, Massiot P (1991) PIGME fluorine determination using a nuclear microprobe with application to glass inclusions: nuclear instruments and methods. Phys Res B58:227–231

    Google Scholar 

  • Orsi G, Civetta L, D’Antonio M, Di Girolamo P, Piochi M (1995) Step-filling and development of a three-layer magma chamber: the Neapolitan Yellow Tuff case history. J Volcanol Geotherm Res 67:291–312

    Article  Google Scholar 

  • Orsi G, De Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214

    Article  Google Scholar 

  • Orsi G, Civetta L, Del Gaudio C, De Vita S, Di Vito MA, Isaia R, Petrazzuoli SM, Ricciardi G, Ricco C (1999) Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): an example of active block-resurgence in a densely populated area. J Volcanol Geotherm Res 91:415–451

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530

    Article  Google Scholar 

  • Pappalardo L, Civetta L, D’Antonio M, Deino AL, Di Vito MA, Orsi G, Carandente A, De Vita S, Isaia R, Piochi M (1999) Chemical and isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite 37 ka and the Neapolitan Yellow Tuff 12 ka eruptions. J Volcanol Geotherm Res 91:141–166

    Article  Google Scholar 

  • Pappalardo L, Piochi M, D’Antonio M, Civetta L, Petrini R (2002) Evidence for multi-stage magmatic evolution during the past 60 Kyr at Campi Flegrei (Italy) Deduced from Sr, Nd and Pb isotope data. J Petrol 43:1415–1437

    Article  Google Scholar 

  • Perugini D, Poli G, Petrelli M, De Campos CP, Dingwell DB (2010) Time-scales of recent Phlegrean fields eruptions inferred from the application of a ‘diffusive fractionation’ model of trace elements. Bull Volcanol 72(4):431–447

    Article  Google Scholar 

  • Rosi M, Sbrana A (1987) The Phlegrean fields. Quad Ric Sci CNR, Rome, pp 1–175

  • Signorelli S, Carroll MR (2002) Experimental study of Cl solubility in hydrous alkaline melts: constraints on the theoretical maximum amount of Cl in trachytic and phonolitic melts. Contrib Mineral Petrol 143:209–218

    Article  Google Scholar 

  • Signorelli S, Vaggelli G, Francalanci L, Rosi M (1999) Origin of magmas feeding the Plinian phase of the Campanian Ignimbrite eruption, Phlegrean Fields, Italy: constraints based on matrix-glass and glass-inclusion compositions. J Volcanol Geotherm Res 91:199–220

    Article  Google Scholar 

  • Signorelli S, Vaggelli G, Romano C, Caroll MR (2001) Volatile element zonation in Campanian Ignimbrite magmas (Phlegrean Fields, Italy): evidence from the study of glass inclusions and matrix glasses. Contrib Mineral Petrol 140:543–553

    Article  Google Scholar 

  • Spilliaert N, Allard P, Métrich N, Sobolev AV (2006) Melt inclusion record of the conditions of ascent, degassing and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res 111:B04203

    Google Scholar 

  • Tonarini S, Leeman WP, Civetta L, D’Antonio M, Ferrara G, Necco A (2004) B/Nb and δ11B systematics in the phlegrean volcanic district (PVD). J Volcanol Geotherm Res 133:123–139

    Article  Google Scholar 

  • Tonarini S, D’Antonio M, Di Vito MA, Orsi G, Carandente A (2009) Geochemical and B-Sr–Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (southern Italy). Lithos 107:135–151

    Article  Google Scholar 

  • Troise C, De Natale G, Pingue F, Obrizzo F, De Martino P, Tammaro U, Boschi E (2007) Renewed ground uplift at Campi Flegrei caldera (Italy): new insight on magmatic processes and forecast. Geophys Res Lett 34:L03301, 5PP. doi:10.1029/2006GL028545

  • Villemant B (1988) Trace element evolution in the Phlegrean Fields Central Italy: fractional crystallization and selective enrichment. Contrib Mineral Petrol 98:169–183

    Article  Google Scholar 

  • Webster JD, Sintoni MF, De Vivo B (2009) The partitioning behavior of Cl, S, and H2O in aqueous vapor- ± saline-liquid saturated phonolitic and trachytic melts at 200 MPa. Chem Geol 263:19–36

    Article  Google Scholar 

  • Wohletz K, Civetta L, Orsi G (1999) Thermal evolution of the Phlegraean magmatic system. J Volcanol Geotherm Res 91:381–414

    Article  Google Scholar 

  • Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35:L12306. doi:10.1029/2008GL034242

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to G. Orsi and M. Di Vito for their help in sampling the Averno 2 sequence, to L. Civetta for the stimulating discussions in the early stages of this work, to P. Fulignati and P. Marianelli for providing the statistics on SEM–EDS standard data, and to P. Armienti for providing the Anamorphosis program and helpful discussion. G. Moore and an anonymous reviewer are thanked for their suggestions and critical comments that significantly improved the manuscript. Financial support was provided by Dipartimento di Scienze della Terra, Speed Project ‘‘Scenari di pericolosità per la prevenzione del rischio dei vulcani della Campania" and IPGP contribution 3259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Bertagnini.

Additional information

Communicated by G. Moore.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fourmentraux, C., Métrich, N., Bertagnini, A. et al. Crystal fractionation, magma step ascent, and syn-eruptive mingling: the Averno 2 eruption (Phlegraean Fields, Italy). Contrib Mineral Petrol 163, 1121–1137 (2012). https://doi.org/10.1007/s00410-012-0720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0720-1

Keywords

Navigation