Skip to main content
Log in

Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We report δ7Li, Li abundance ([Li]), and other trace elements measured by ion probe in igneous zircons from TTG (tonalite, trondhjemite, and granodiorite) and sanukitoid plutons from the Superior Province (Canada) in order to characterize Li in zircons from typical Archean continental crust. These data are compared with detrital zircons from the Jack Hills (Western Australia) with U–Pb ages greater than 3.9 Ga for which parent rock type is not known. Most of the TTG and sanukitoid zircon domains preserve typical igneous REE patterns and CL zoning. [Li] ranges from 0.5 to 79 ppm, typical of [Li] in continental zircons. Atomic ratios of (Y + REE)/(Li + P) average 1.0 ± 0.7 (2SD) for zircons with magmatic composition preserved, supporting the hypothesis that Li is interstitial and charge compensates substitution of trivalent cations. This substitution results in a relatively slow rate of Li diffusion. The δ7Li and trace element data constrain the genesis of TTGs and sanukitoids. [Li] in zircons from granitoids is significantly higher than from zircons in primitive magmas in oceanic crust. TTG zircons have δ7Li (3 ± 8‰) and δ18O in the range of primitive mantle-derived magmas. Sanukitoid zircons have average δ7Li (7 ± 8‰) and δ18O higher than those of TTGs supporting genesis by melting of fluid-metasomatized mantle wedge. The Li systematics in sanukitoid and TTG zircons indicate that high [Li] in pre-3.9-Ga Jack Hills detrital zircons is a primary igneous composition and suggests the growth in proto-continental crust in magmas similar to Archean granitoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aines RD, Rossman GR (1986) Relationships between radiation damage and trace water in zircon, quartz, and topaz. Am Mineral 71(9–10):1186–1193

    Google Scholar 

  • Ballard J, Palin M, Campbell I (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Petrol 144(3):347–364. doi:10.1007/s00410-002-0402-5

    Google Scholar 

  • Barker F (1979) Trondhjemite: definition, environment and hypotheses of origin. In: Barker F (ed) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, pp 1–12

    Google Scholar 

  • Barth AP, Wooden JL (2010) Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem Geol 277(1–2):149–159

    Google Scholar 

  • Beakhouse GP, McNutt RH (1991) Contrasting types of Late Archean plutonic rocks in northwestern Ontario: implications for crustal evolution in the Superior Province. Precambrian Res 49:141–165

    Google Scholar 

  • Belousova EA, Griffin WL, Pearson NJ (1998) Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons. Mineral Mag 62:355–366

    Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. J Petrol 47(2):329–353. doi:10.1093/petrology/egi077

    Google Scholar 

  • Bowman JR, Moser DE, Valley JW, Kita NT, Mazdab F (2011) U-Pb age, δ18O and trace element zoning in deep crustal zircon from the Kapuskasing Uplift; guidelines for interpreting Archean zircon records of high temperature crustal evolution and lithosphere-fluid interactions. Contr Min Pet (accepted)

  • Bryant CJ, Chappell BW, Bennett VC, McCulloch MT (2004) Lithium isotopic compositions of the New England Batholith: correlations with inferred source rock compositions. Earth Env Sci Trans R Soc Edinb 95(1–2):199–214. doi:10.1017/S0263593300001012

    Google Scholar 

  • Caruba R, Iacconi P (1983) Les zircons des pegmatites de Narssârssuk (Groënland) — L’eau et les groupements OH dans les zircons métamictes. Chem Geol 38(1–2):75–92. doi:10.1016/0009-2541(83)90046-3

  • Cavosie AJ, Wilde SA, Liu D, Weiblen PW, Valley JW (2004) Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precambrian Res 135:251–279

    Google Scholar 

  • Cavosie AJ, Valley JW, Wilde SA, EIMF (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet Sci Lett 235:663–681

    Google Scholar 

  • Cavosie AJ, Valley JW, Wilde SA, EIMF (2006) Correlated microanalysis of zircon: Trace element, δ18O, and U-Th-Pb isotopic constraints on the igneous origin of complex > 3900 Ma detrital grains. Geochim Cosmochim Acta 70:5601–5616

    Google Scholar 

  • Cavosie AJ, Kita NT, Valley JW (2009) Primitive oxygen-isotope ratio recorded in magmatic zircon from the Mid-Atlantic Ridge. Am Mineral 94(7):926–934. doi:10.2138/am.2009.2982

    Google Scholar 

  • Chan L-H, Edmond JM (1988) Variation of lithium isotope composition in the marine environment: a preliminary report. Geochim Cosmochim Acta 52:1711–1717

    Google Scholar 

  • Chan LH, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160

    Google Scholar 

  • Chan L-H, Edmond JM, Thompson G (1993) A lithium isotope study of hot springs and metabasalts from mid-ocean ridge hydrothermal systems. J Geophys Res 98. doi:10.1029/92jb00840

  • Chan L-H, Alt JC, Teagle DAH (2002a) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet Sci Lett 201(1):187–201

    Google Scholar 

  • Chan LH, Leeman WP, You CF (2002b) Lithium isotopic composition of Central American volcanic arc lavas: implications for modification of subarc mantle by slab-derived fluids: correction. Chem Geol 182:293–300

    Google Scholar 

  • Cherniak DJ, Watson EB (2003) Diffusion in zircon. In: Hanchar JM, Hoskin WO (eds) Zircon, vol Rev Min Geoch, pp 113–139

  • Cherniak D, Watson E (2010) Li diffusion in zircon. Contrib Mineral Petrol 160(3):383–390. doi:10.1007/s00410-009-0483-5

    Google Scholar 

  • Cherniak DJ, Hanchar JM, Watson EB (1997) Rare-earth diffusion in zircon. Chem Geol 134:289–301

    Google Scholar 

  • Condie K (2005) TTGs and adakites: are they both slab melts? Lithos 80:33–44

    Google Scholar 

  • Crowley JL, Myers JS, Sylvester PJ, Cox RA (2005) Detrital zircon from the Jack Hills and Mount Narryer, Western Australia: evidence for diverse 14.0 Ga source rocks. J Geol 113:239–263

    Google Scholar 

  • Davis WD, Williams IS, Krogh TE (2003) Historical development of zircon geochronology. In: Hanchar JM, Hoskin PWO (eds) Zircon, vol Rev Min Geoch, pp 145–182

  • Davis DW, Amelin Y, Nowell GM, Parrish RR (2005) Hf isotopes in zircon from the western Superior Province, Canada: Implication for the Archean crustal development and evolution of the depleted mantle reservoir. Precambrian Res 140:132–156

    Google Scholar 

  • Dohmen R, Kasemann SA, Coogan L, Chakraborty S (2010) Diffusion of Li in olivine. Part I: experimental observations and a multi species diffusion model. Geochim Cosmochim Acta 74(1):274–292

    Google Scholar 

  • Drummond MS, Defant MJ (1990) A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95:21503–21521

    Google Scholar 

  • Elliott T, Thomas A, Jeffcoate A, Niu Y (2006) Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443(7111):565–568. doi:http://www.nature.com/nature/journal/v443/n7111/suppinfo/nature05144_S1.html

    Google Scholar 

  • Ferry J, Watson E (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154(4):429–437. doi:10.1007/s00410-007-0201-0

    Google Scholar 

  • Finch JR, Hanchar JM, Hoskin PWO, Burns PC (2001) Rare-earth elements in synthetic zircon: part 2. A single crystal X-ray study of xenotime substitution. Am Mineral 86:681–689

    Google Scholar 

  • Frondel C (1953) Hydroxyl substitution in thorite and zircon.

  • Fu B, Page F, Cavosie A, Fournelle J, Kita N, Lackey J, Wilde S, Valley J (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156(2):197–215. doi:10.1007/s00410-008-0281-5

    Google Scholar 

  • Geisler T, Schleicher H (2000a) Improved U-Th-total Pb dating of zircons by electron microprobe using a new background modeling method and Ca as a chemical indicator of fluid-induced U-Th-Pb discordance in zircon. Chem Geol 163:269–285

    Google Scholar 

  • Geisler T, Schleicher H (2000b) Improved U-Th-total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon. Chem Geol 163(1–4):269–285

    Google Scholar 

  • Geisler T, Pidgeon RT, Kurtz R, Van Bronswijk W, Schleicher H (2003a) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 88:1496–1513

    Google Scholar 

  • Geisler T, Rashwan AA, Rahn M, Poller U, Zwingmann H, Pidgeon RT, Schleicher H (2003b) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral Mag 67:485–508

    Google Scholar 

  • Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghøj K, Schwartz JJ (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35(7):643–646. doi:10.1130/g23603a.1

    Google Scholar 

  • Grimes C, John B, Cheadle M, Mazdab F, Wooden J, Swapp S, Schwartz J (2009) On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib Mineral Petrol 158(6):757–783. doi:10.1007/s00410-009-0409-2

    Google Scholar 

  • Grimes C, Ushikubo T, John B, Valley JW (2011) Uniformly mantle-like δ18O in zircons from oceanic plagiogranites and gabbros. Contrib Mineral Petrol 161(1):13–33. doi:10.1007/s00410-010-0519-x

    Google Scholar 

  • Halden NM, Hawthorne FC, Campbell JL, Teesdale WJ, Maxwell JA, Higuchi D (1993) Chemical characterization of oscillatory zoning and overgrowths in zircon using 3 MeV μ-PIXE. Can Mineral 31:637–647

    Google Scholar 

  • Hanchar JM, Finch JR, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AN (2001) Rare earth element in synthetic zircon. Part 1: synthesis, and rare earth element and phosphorus doping. Am Mineral 86:667–680

    Google Scholar 

  • Harrison TM, Schmitt AK (2007) High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet Sci Lett 261(1–2):9–19

    Google Scholar 

  • Hinton RW, Upton BGJ (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim Cosmochim Acta 55:3287–3302

    Google Scholar 

  • Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon, vol 53. Rev Min Geoch, pp 27–55

  • Hoskin PWO, Kinny PD, Wyborn D, Chappell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an interpreted approach. J Petrol 41:1365–1396

    Google Scholar 

  • Huang X-L, Niu Y, Xu Y-G, Yang Q-J, Zhong J-W (2010) Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton: implications for late Archean crustal accretion. Precambrian Res 182(1–2):43–56

    Google Scholar 

  • Huh Y, Chan L-H, Edmond JM (2001) Lithium isotopes as a probe of weathering processes: Orinoco River. Earth Planet Sci Lett 194(1–2):189–199

    Google Scholar 

  • Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218

    Google Scholar 

  • Kasemann S, Jeffcoate A, Elliott T (2005) Lithium isotope composition of basalt glass reference material. Anal Chem 77:5251–5257

    Google Scholar 

  • King EM, Valley JW, Davis DW, Edwards GR (1998) Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: indicator of magmatic source. Precambrian Res 92:365–387

    Google Scholar 

  • Kisakürek B, Widdowson M, James RH (2004) Behaviour of Li isotopes during continental weathering: the Bidar laterite profile, India. Chem Geol 212(1–2):27–44

    Google Scholar 

  • Lancaster PJ, Fu B, Page FZ, Kita NT, Bickford ME, Hill BM, McLelland JM, Valley JW (2009) Genesis of metapelitic migmatites in the Adirondack Mts., New York. J Meta Geol 27:41–54

    Google Scholar 

  • Li X-H, Li Q-L, Liu Y, Tang G-Q (2011) Further characterization of M257 zircon standard: a working reference for SIMS analysis of Li isotopes. J Anal At Spectrom 26(2):352–358

    Google Scholar 

  • Lundstrom CC, Chaussidon M, Hsui AT, Kelemen P, Zimmerman M (2005) Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69:735–751

    Google Scholar 

  • Maas R, Kinny PD, Williams IS, Froude DO, Compston W (1992) The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim Cosmochim Acta 56:1281–1300

    Google Scholar 

  • Magna T, Wiechert U, Halliday AN (2006) New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet Sci Lett 243(3–4):336–353. doi:10.1016/j.epsl.2006.01.005

    Google Scholar 

  • Magna T, Janousek V, Kohút M, Oberli F, Wiechert U (2010) Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites. Chem Geol 274(1–2):94–107

    Google Scholar 

  • Marks MAW, Rudnick RL, McCammon C, Vennemann T, Markl G (2007) Arrested kinetic Li isotope fractionation at the margin of the Ilímaussaq complex, South Greenland: evidence for open-system processes during final cooling of peralkaline igneous rocks. Chem Geol 246(3–4):207–230. doi:10.1016/j.chemgeo.2007.10.001

    Google Scholar 

  • Marschall H, Pogge von Strandmann PAE, Seitz H-M, Elliott T, Niu Y (2007) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262(3–4):563–580

    Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen J-F, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications fro crustal evolution. Lithos 79:1–24

    Google Scholar 

  • Martin H, Moyen J-F, Rapp R (2009) The sanukitoid series: magmatism at the Archaean/Proterozoic transition. Earth Environ Sci Trans R Soc Edinb 100(Special Issue 1–2):15–33. doi:10.1017/S1755691009016120

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • Millot R, Guerrot C, Vigier N (2004) Accurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS. Geostand Geoanal Res 28(1):153–159. doi:10.1111/j.1751-908X.2004.tb01052.x

    Google Scholar 

  • Moriguti T, Nakamura E (1998) Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth Planet Sci Lett 163(1–4):167–174

    Google Scholar 

  • Moyen J-F, Martin H, Jayananda M (1997) Origine du granite fini-Archéen de Closepet (Inde du Sud): apports de la modélisation géochimique du comportement des éléments en traces. C R Acad Sci Paris 325:659–664

    Google Scholar 

  • Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay damage in zircon. Am Mineral 76:1510–1532

    Google Scholar 

  • Page FZ, Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen V, Basei MAS, Valley JW (2007) Zircons from kimberlites: new insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim Cosmochim Acta 71:3887–3903

    Google Scholar 

  • Pearce NJG, Westgate JA, Perkins WT (1996) Developments in the analysis of volcanic glass shards by laser ablation ICP-MS: quantitative and single internal standard-multielement methods. Quat Int 34–36:213–227

    Google Scholar 

  • Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference material. Geostand Newslett 21:115–144

    Google Scholar 

  • Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochim Cosmochim Acta 65:4215–4229

    Google Scholar 

  • Pidgeon RT, Nemchin AA, Hitchen GJ (1998) Internal structures of zircons from Archean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U-Pb ages. Contrib Mineral Petrol 132:288–299

    Google Scholar 

  • Pistiner JS, Henderson GM (2003) Lithium-isotope fractionation during continental weathering processes. Earth Planet Sci Lett 214:327–339

    Google Scholar 

  • Rayner N, Stern RA, Carr SD (2005) Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. Contrib Mineral Petrol 148(6):721–734

    Google Scholar 

  • Richter FM, Davis AM, DePaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923

    Google Scholar 

  • Romans PA, Brown LL, White JC (1975) An electron microprobe study of yttrium, rare earth, and phosphorus distribution in zoned and ordinary zircons. Am Mineral 60:475–480

    Google Scholar 

  • Rudnick RL, Ionov DA (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: product of recent melt/fluid–rock reaction. Earth Planet Sci Lett 256:278–293

    Google Scholar 

  • Rudnick RL, Tomascak PB, Njo HB, Gardner LR (2004) Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chem Geol 212:45–57

    Google Scholar 

  • Seitz H-M, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chem Geol 212(1–2):163–177. doi:10.1016/j.chemgeo.2004.08.009

    Google Scholar 

  • Seyfried WE Jr, Chen X, Chan L-H (1998) Trace element mobility and lithium isotope exchange during hydrothermal alteration of seafloor weathered basalt: an experimental study at 350°C, 500 bars. Geochim Cosmochim Acta 62(6):949–960

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Google Scholar 

  • Shirey SB, Hanson GN (1984) Mantle-derived Archean monzodiorites and trachyandesites. Nature 310:222–224

    Google Scholar 

  • Silver LT, Deutsch S (1963) Uranium-lead isotopic variations in zircons: a case study. J Geol 71:721–758

    Google Scholar 

  • Smithies RH (2000) The Archean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125

    Google Scholar 

  • Smithies RH, Champion DC (1999) High-Mg diorite from the Archaean Pilbara Craton: anorogenic magmas derived from a subduction-modified mantle. Geol Surv West Aust Annu Rev 1998–1999:45–59

    Google Scholar 

  • Speer JA (1982) Zircon. In: Orthosilicates, vol 5. Rev Min, pp 67–112

  • Stern RA (1989) Petrogenesis of the Archaean sanukitoid suite. State University, Stony Brook

  • Stern RA, Hanson GN (1991) Archean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. J Petrol 32:201–238

    Google Scholar 

  • Stevenson R, Henry P, Gariépy C (1999) Assimilation–fractional crystallization origin of Archean Sanukitoid Suites: Western Superior Province, Canada. Precambrian Res 96:83–99

    Google Scholar 

  • Stevenson RK, Henry P, Gariépy C (2009) Isotopic and geochemical evidence for differentiation and crustal contamination from granitoids of the Berens river subprovince, Superior Province, Canada. Precambrian Res 168(1–2):123–133

    Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Walker RJ (2006a) Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet Sci Lett 243(3–4):701–710

    Google Scholar 

  • Teng F-Z, McDonough WF, Rudnick RL, Walker RJ, Sirbescu M-LC (2006b) Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. Am Mineral 91(10):1488–1498. doi:10.2138/am.2006.2083

    Google Scholar 

  • Teng F-Z, Rudnick RL, McDonough WF, Gao S, Tomascak PB, Liu Y (2008) Lithium isotopic composition and concentration of the deep continental crust. Chem Geol 255:47–59

    Google Scholar 

  • Teng F-Z, Rudnick RL, McDonough WF, Wu F-Y (2009) Lithium isotopic systematics of A-type granites and their mafic enclaves: further constraints on the Li isotopic composition of the continental crust. Chem Geol 262(3–4):370–379

    Google Scholar 

  • Tomascak PB (2004) Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. Rev Mineral Geochem 55(1):153–195. doi:10.2138/gsrmg.55.1.153

    Google Scholar 

  • Tomascak PB, Tera F, Helz RT, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63(6):907–910

    Google Scholar 

  • Tomascak PB, Langmuir CH, le Roux PJ, Shirey SB (2008) Lithium isotopes in global mid-ocean ridge basalts. Geochim Cosmochim Acta 72(6):1626–1637

    Google Scholar 

  • Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB, Young ED (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem Geophys Geosyst 8. doi:10.1029/2006gc001449

  • Ushikubo T, Kita NT, Cavosie AJ, Wilde SA, Rudnick RL, Valley JW (2008) Lithium in Jack Hills zircons: evidence for extensive weathering of Earth’s earliest crust. Earth Planet Sci Lett 272:666–676

    Google Scholar 

  • Utsunomiya S, Valley JW, Cavosie AJ, Wilde SA, Ewing RC (2007) Radiation damage and alteration of zircon from a 3.3 Ga porphyritic granite from the Jack Hills, Western Australia. Chem Geol 236(1–2):92–111

    Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. Rev Mineral Geochem 53(1):343–385. doi:10.2113/0530343

    Google Scholar 

  • Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11

    Google Scholar 

  • Valley JW, Lackey J-S, Cavosie AJ, Clechenko C, Spicuzza MJ, Basei M, Bindeman I, Ferreira V, Sial AN, King E, Peck WH, Sinha A, Wei C (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150(6):561–580. doi:10.1007/s00410-005-0025-8

    Google Scholar 

  • Watson EB, Baxter EF (2007) Diffusion in solid-Earth systems. Earth Planet Sci Lett 253(3–4):307–327

    Google Scholar 

  • Watson EB, Cherniak DJ (1997) Oxygen diffusion in zircon. Earth Planet Sci Lett 148(3–4):527–544

    Google Scholar 

  • Whitehouse MJ, Kamber BS (2003) A rare earth element study of complex zircons from early Archaean Amîtsoq gneisses, Godthåbsfjord, south-west Greenland. Precambrian Res 126:363–377

    Google Scholar 

  • Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley JW, Whitehouse MJ et al (2004) Further characterization of the 91500 zircon crystal. Geostandards Geoanalytical Res 28:9–39

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409(6817):175–178

    Google Scholar 

  • Williams HR, Stott GM, Thurston PC, Sutcliffe RH, Bennett G, Easton RM, Armstrong DK (1991) Tectonic evolution of Ontario: summary and synthesis. In: Geology of ontario, vol Special Volume 4 part 2. Ontario Geological Survey, Ontario, Canada, pp 1255–1332

  • Woodhead JA, Rossman GR, Silver LT (1991) The metamictization of zircon; radiation dose-dependent structural characteristics. Am Mineral 76(1–2):74–82

    Google Scholar 

  • Wunder B, Meixner A, Romer RL, Heinrich W (2006) T-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120

    Google Scholar 

  • Xiong X, Keppler H, Audetat A, Gudfinnsson G, Sun W, Song M, Xiao W, Yuan L (2009) Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. Am Mineral 94(8–9):1175–1186. doi:10.2138/am.2009.3158

    Google Scholar 

  • You CF, Chan LH (1996) Precise determination of lithium isotopic composition in low concentration natural samples. Geochim Cosmochim Acta 60:909–915

    Google Scholar 

  • Zhang XY, Cherniak DJ, Watson EB (2006) Oxygen diffusion in titanite: lattice diffusion and fast-path diffusion in single crystals. Chem Geol 235(1–2):105–123

    Google Scholar 

Download references

Acknowledgments

The authors thank Jim Kern for maintaining the ion microprobe, John Fournelle for assistance on the SEM, and Brian Hess for expertise in sample preparation. Don Davis and Elizabeth King are thanked for zircon separates from their studies. This study was funded by NSF-EAR (0838058) and DOE (93ER14389). The WiscSIMS Lab is partially funded by NSF-EAR (0319230, 0516725, 0744079, and 1053466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Sophie Bouvier.

Additional information

Communicated by F. Poitrasson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 1743 kb)

Supplementary material 2 (TIFF 8672 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouvier, AS., Ushikubo, T., Kita, N.T. et al. Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids. Contrib Mineral Petrol 163, 745–768 (2012). https://doi.org/10.1007/s00410-011-0697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0697-1

Keywords

Navigation