Skip to main content

Advertisement

Log in

The high PT stability of apatite and Cl partitioning between apatite and hydrous potassic phases in peridotite: an experimental study to 19 GPa with implications for the transport of P, Cl and K in the upper mantle

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

High PT experiments were performed in the range 2.5–19 GPa and 800–1,500°C using a synthetic peridotite doped with trace elements and OH-apatite or with Cl-apatite + phlogopite. The aim of the study was (1) to investigate the stability and phase relations of apatite and its high PT breakdown products, (2) to study the compositional evolution with P and T of phosphate and coexisting silicate phases and (3) to measure the Cl-OH partitioning between apatite and coexisting calcic amphibole, phlogopite and K-richterite. Apatite is stable in a garnet-lherzolite assemblage in the range 2.5–8.7 GPa and 800–1,100°C. The high-P breakdown product of apatite is tuite γ-Ca3 (PO4)2, which is stable in the range 8–15 GPa and 1,100–1,300°C. Coexisting apatite and tuite were observed at 8 GPa/1,050°C and 8.7 GPa/1,000°C. MgO in apatite increases with P from 0.8 wt% at 2.5 GPa to 3.2 wt% at 8.7 GPa. Both apatite and tuite may contain significant Na, Sr and REE with a correlation indicating 2 Ca2+=Na+ + REE3+. Tuite has always higher Sr and REE and lower Fe and Mg than apatite. Phosphorus in the peridotite phases decreases in the order Pmelt ≫ Pgrt ≫ PMg2SiO4 > Pcpx > Popx. The phosphate-saturated P2O5 content of garnet increases from 0.07 wt% at 2.5 GPa to 1.5 wt% at 12.8 GPa. Due to the low bulk Na content of the peridotite, [8]Na[4]P[8]M2+ −1 [4]Si−1 only plays a minor role in controlling the phosphorus content of garnet. Instead, element correlations indicate a major contribution of [6]M2+[4]P[6]M3+ −1 [4]Si−1. Pyroxenes contain ~200–500 ppm P and olivine has 0.14–0.23 wt% P2O5 in the P range 4–8.7 GPa without correlation with P, T or XMg. At ≥12.7 GPa, all Mg2SiO4 polymorphs have <200 ppm P. Coexisting olivine and wadsleyite show an equal preference for phosphorus. In case of coexisting wadsleyite and ringwoodite, the latter fractionates phosphorus. Although garnet shows by far the highest phosphorus concentrations of any peridotite silicate phase, olivine is no less important as phosphorus carrier and could store the entire bulk phosphorus budget of primitive mantle. In the Cl-apatite + phlogopite-doped peridotite, apatite contains 0.65–1.35 wt% Cl in the PT range 2.5–8.7 GPa/800–1,000°C. Apatite coexists with calcic amphibole at 2.5 GPa, phlogopite at 2.5–5 GPa and K-richterite at 7 GPa, and all silicates contain between 0.2 and 0.6 wt% Cl. No solid potassic phase is stable between 5 and 8.7 GPa. Cl strongly increases the solubility of K in hydrous fluids. This may lead to the breakdown of phlogopite and give rise to the local presence in the mantle of fluids strongly enriched in K, Cl, P and incompatible trace elements. Such fluids may get trapped as micro-inclusions in diamonds and provide bulk compositions suitable for the formation of unusual phases such as KCl or hypersilicic Cl-rich mica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The term ‘fluid’ is used in this context to denote any continuum between a solute-rich COH-fluid and a hydrous carbonatitic melt.

References

  • Armstrong JT (1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin films, and particles. Microbeam Anal 4:177–200

    Google Scholar 

  • Bailey DK (1989) Carbonate melt from the mantle in the volcanoes of south-east Zambia. Nature 338:415–418

    Article  Google Scholar 

  • Baker MB, Wyllie PJ (1992) High-pressure apatite solubility in carbonate-rich liquids: implications for mantle metasomatism. Geochim Cosmochim Acta 56:3409–3422

    Article  Google Scholar 

  • Bauer M, Klee WE (1993) The monoclinic-hexagonal phase transition in chlorapatite. Eur J Mineral 5:307–316

    Google Scholar 

  • Bishop FC, Smith JV, Dawson JB (1978) Na, K and Ti in garnet, pyroxene and olivine from peridotite and eclogite xenoliths from African kimberlites. Lithos 11:155–173

    Article  Google Scholar 

  • Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from the island of Zabargad (St. John), Red Sea: petrology and geochemistry. J Geophys Res 91(B1):599–631

    Article  Google Scholar 

  • Boyce JW, Liu Y, Rossman GR, Guan Y, Eiler JM, Stolper EM, Taylor LA (2010) Lunar apatite with terrestrial volatile abundances. Nature 466:466–470

    Article  Google Scholar 

  • Bromiley DW, Kohn SC (2007) Comparisons between fluoride and hydroxide incorporation into nominally fluorine-free mantle minerals. Geochim Cosmochim Acta 71:A124

    Google Scholar 

  • Brunet F, Chazot G (2001) Partitioning of phosphorus between olivine, clinopyroxene and silicate glass in a spinel lherzolite xenolith from Yemen. Chem Geol 176:51–72

    Article  Google Scholar 

  • Brunet F, Bonneau V, Irifune T (2006) Complete solid-solution between Na3Al2(PO4)3 and Mg3Al2(SiO4)3 garnets at high pressure. Am Min 91:211–215

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grand Comore, Indian Ocean. J Petrol 40:133–165

    Article  Google Scholar 

  • Dalton JA, Presnall DC (1998) Carbonatite melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contrib Mineral Petrol 131:123–135

    Article  Google Scholar 

  • Dawson JB (2002) Metasomatism and partial melting in upper-mantle peridotite xenoliths from the Lashaine Volcano, Northern Tanzania. J Petrol 43:1749–1777

    Article  Google Scholar 

  • Dobson DP, Jones AP, Rabe R, Sekine T, Kurita K, Taniguchi T, Kondo T, Kato T, Shimomura O, Urakawa S (1996) In situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet Sci Lett 143:207–215

    Article  Google Scholar 

  • Exley RA, Smith JV (1982) The role of apatite in mantle enrichment processes and in the petrogenesis of some alkali basalt suites. Geochim Cosmochim Acta 46:1375–1384

    Article  Google Scholar 

  • Foley S (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas Lithos 28:435–453

    Google Scholar 

  • Foley SF, Yaxley GM, Rosenthal A, Buhre S, Kiseeva ES, Rapp RP, Jacob DE (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112S:274–283

    Article  Google Scholar 

  • Fumagalli P, Zanchetta S, Poli S (2009) Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study. Contrib Mineral Petrol 158:723–737

    Article  Google Scholar 

  • Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melts. Nature 336:459–462

    Article  Google Scholar 

  • Greshake A, Fritz J (2009) Discovery of ringwoodite, wadsleyite, and in g-Ca3 (PO4)2 in Chassigny: constraints on shock conditions. 40th lunar and planetary science conference, abstract 1586

  • Guthrie GD, Veblen DR, Navon O, Rossman GR (1991) Submicrometer fluid inclusions in turbid-diamond coats. Earth Planet Sci Lett 105:1–12

    Article  Google Scholar 

  • Hammouda T, Laporte D (2000) Ultrafast mantle impregnation by carbonatite melts. Geology 28:283–285

    Article  Google Scholar 

  • Hauri EH, Shimizu N, Dieu JJ, Hart SR (1993) Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365:221–227

    Article  Google Scholar 

  • Hermann J, Spandler JC (2007) Sediment melts at sub-arc depth: an experimental study. J Petrol 49:717–740

    Article  Google Scholar 

  • Hervig RL, Smith JV (1981) Dolomite-apatite inclusion in chrome-diopside crystal, Bellsbank kimberlite, South Africa. Am Min 66:346–349

    Google Scholar 

  • Humphreys ER, Bailey K, Hawkesworth CJ, Wall F, Najorka J, Rankin AH (2010) Aragonite in olivine from Calatrava, Spain—evidence for mantle carbonatite melts from greater than 100 km depth. Geology 38:911–914

    Article  Google Scholar 

  • Ionov DA, O’Reilly SY, Genshaft YS, Kopylova MG (1996) Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: phase relationships, mineral compositions and trace-element residence. Contrib Mineral Petrol 125:375–392

    Article  Google Scholar 

  • Ionov DA, Hofmann AW, Merlet C, Gurenko AA, Hellebrand E, Montagnac G, Gillet P, Prikhodko VS (2006) Discovery of whitlockite in mantle xenoliths: Inferences for water- and halogen-poor fluids and trace element residence in the terrestrial upper mantle. Earth Planet Sci Lett 244:201–217

    Article  Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sci Lett 187:323–332

    Article  Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2004) Fluid and mineral inclusions in cloudy diamonds from Koffiefontein, South Africa. Geochim Cosmochim Acta 68:2561–2575

    Article  Google Scholar 

  • Katsura T, Ito E (1989) The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: precise determination of the stabilities of olivine, modified spinel, and spinel. J Geophys Res 94:15663–15670

    Article  Google Scholar 

  • Klein EM (2004) Geochemistry of the igneous oceanic crust. In: Rudnick RL (ed) The crust; Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3, Elsevier-Pergamon, Oxford, pp 433–465

  • Klein-BenDavid O, Wirth R, Navon O (2006) TEM imaging and analysis of microinclusions in diamonds: a close look at diamond-growing fluids. Am Min 91:353–365

    Article  Google Scholar 

  • Kolker A (1982) Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis. Econ Geol 77:1146–1158

    Article  Google Scholar 

  • Konzett J, Fei Y (2000) Transport and storage of potassium in the Earth’s upper mantle and transition zone: an experimental study to 23 GPa in simplified and natural bulk compositions. J Petrol 41:583–603

    Article  Google Scholar 

  • Konzett J, Frost DJ (2009) The high P-T stability of hydroxyl-apatite in natural and simplified MORB–an experimental study to 15 GPa with implications for transport and storage of phosphorus and halogens in subduction zones. J Petrol 50:2043–2062

    Article  Google Scholar 

  • Konzett J, Ulmer P (1999) The stability of hydrous potassic phases in lherzolitic mantle–an experimental study to 9.5 GPa in simplified and natural bulk compositions. J Petrol 40:629–652

    Article  Google Scholar 

  • Konzett J, Frost DJ, Proyer A, Ulmer P (2008) The Ca-Eskola component in eclogitic clinopyroxene as a function of pressure, temperature and bulk composition: an experimental study to 15 GPa with possible implications for the formation of oriented SiO2-inclusions in omphacite. Contrib Mineral Petrol 155:215–228

    Article  Google Scholar 

  • Kullerud K (1995) Chlorine, titanium and barium-rich biotites: factors controlling biotite composition and the implications for garnet-biotite geothermometry. Contrib Mineral Petrol 120:42–59

    Article  Google Scholar 

  • Lang AR, Walmsley JC (1983) Apatite inclusions in natural diamond coat. Phys Chem Miner 9:6–8

    Article  Google Scholar 

  • Le Roex AP, Bell DR, Davis P (2003) Petrogenesis of group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286

    Article  Google Scholar 

  • Leshin L (2000) Insights into martian water reservoirs from analyses of martian meteorite QUE94201. Geophys Res Lett 14:2017–2020

    Article  Google Scholar 

  • Matson DW, Muenow DW, Garcia MO (1986) Volatile contents of phlogopite micas from South African kimberlite. Contrib Mineral Petrol 93:399–408

    Article  Google Scholar 

  • Matsumoto T, Honda M, McDougall I, Yatsevich I, O’Reilly SY (1997) Plume-like neon in a metasomatic apatite from the Australian lithospheric mantle. Nature 388:162–164

    Article  Google Scholar 

  • McCubbin FM, Steele A, Hauri E, Nekvasil H (2010) Quantitative SIMS analysis of OH in lunar apatite: implications for water in the lunar interior. Goldschmidt conference abstracts 2010, A687

  • McDonough WF (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett 101:1–18

    Article  Google Scholar 

  • McDonough WF, Rudnick RL (1998) Mineralogy and composition of the upper mantle. In: Hemley RJ (ed) Ultrahigh-pressure mineralogy, vol 37; Ribbe PH (ed) Reviews in mineralogy. Mineralogical Society of America, Washington DC, pp 139–164

  • McDonough WF, Sun SS (1995) Composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Médard E, McCammon CA, Barr JA, Grove TL (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Min 93:1838–1844

    Article  Google Scholar 

  • Milman-Barris MS, Beckett JR, Baker MB, Hofmann AE, Morgan Z, Crowley MR, Vielzeuf D, Stolper E (2008) Zoning of phosphorus in igneous olivine. Contrib Mineral Petrol 155:739–765

    Article  Google Scholar 

  • Mitchell RH (1995) Geochemistry of Orangeites. In: Kimberlites, Orangeites, and related rocks. Plenum Press, pp 249–301

  • Morishita T, Arai S, Tamura A (2003) Petrology of an apatite-rich layer in the Finero phlogopite-peridotite, Italian Western Alps; implications for evolution of a metasomatic agent. Lithos 69:37–49

    Article  Google Scholar 

  • Murayama JK, Nakai S, Kato M, Kumazawa M (1986) A dense polymorph of Ca3(PO4)2: a high pressure phase of apatite decomposition and its geochemical significance. Phys Earth Planet Int 44:293–303

    Article  Google Scholar 

  • Naemura K, Hirajima T, Svojtka M (2009) The pressure-temperature path and the origin of phlogopite in spinel-garnet peridotites from the Blansky Les Massif of the Moldnaubian Zone, Czech Republic. J Petrol 50:1795–1827

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (1988) Mantle metasomatism beneath western Victoria, Australia: I. Metasomatic processes in Cr-diopside lherzolites. Geochim Cosmochim Acta 52:433–447

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (2000) Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 53:217–232

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL, Ryan CG (1991) Residence of trace elements in metasomatized spinel lherzolite xenoliths: a proton microprobe study. Contrib Mineral Petrol 109:98–113

    Article  Google Scholar 

  • Oberti R, Ungaretti L, Cannillo E, Hawthorne FC (1993) The mechanism of Cl incorporation into amphibole. Am Mineral 78:746–752

    Google Scholar 

  • Ozawa S, Ohtani E, Suzuki A, Miyahara M, Terada K, Kimura M (2007) Shock metamorphism of L6 chondrites Sahara 98222 and Yamato 74445: the P-T conditions and the shock age. American Geophysical Union Fall Meeting, abstract #MR43B-1234

  • Palme H, O’Neill HStC (2004) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) The mantle and core, vol 2. Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier-Pergamon, Oxford, pp 1–39

  • Patiño Douce AE, Roden M (2006) Apatite as a probe of halogen and water fugacities in the terrestrial planets. Geochim Cosmochim Acta 70:3173–3196

    Article  Google Scholar 

  • Pearson DG, Canil D, Shirey SB (2004) Mantle samples included in volcanic rocks: xenoliths and Diamonds. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 171–275

    Google Scholar 

  • Peng G, Lewis J, Lipin B, McGee J, Bao P, Wang X (1995) Inclusions of phlogopite and phlogopite hydrates in chromite from the Hongguleleng ophiolite in Xinjiang, northwest China. Am Mineral 80:1307–1316

    Google Scholar 

  • Peslier AH, Woodland AB, Wolff JA (2008) Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from Southern Africa. Geochim Cosmochim Acta 72:2711–2722

    Article  Google Scholar 

  • Rosenbaum JM, Wilson M, Condliffe E (1997) Partial melts of subducted phosphatic sediments in the mantle. Geology 25:77–80

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The Crust, vol 3. Holland HD, Turekian KK (eds) Treatise on geochemistry, Elsevier-Pergamon, Oxford, pp 1–64

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    Article  Google Scholar 

  • Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim Cosmochim Acta 58:761–771

    Article  Google Scholar 

  • Smith JV, Delaney JS, Hervig RL, Dawson JB (1981) Storage of F and Cl in the upper mantle: geochemical implications. Lithos 14:133–147

    Article  Google Scholar 

  • Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geotherm Res 155:18–48

    Article  Google Scholar 

  • Straub SM, Layne GD (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203

    Article  Google Scholar 

  • Sugiyama K, Tokonami M (1987) Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca3(PO4)2: a host to accommodate large lithophile elements in the Earth’s mantle. Phys Chem Min 15:125–130

    Article  Google Scholar 

  • Thompson RN (1975) Is upper mantle phosphorus contained in sodic garnet? Earth Planet Sci Lett 26:417–424

    Article  Google Scholar 

  • Titkov SV, Gorshov AI, Zudin NG, Ryabchikov ID, Magazina LO, Sivtsov AV (2006) Microinclusions in dark grey diamond crystals of octahedral habit from Yakutian kimberlites. Geochem Int 44:1121–1128

    Article  Google Scholar 

  • Tomlinson E, De Schrijver I, De Corte K, Jones AP, Moens L, Vanhaecke F (2005) Trace element compositions of submicroscopic inclusions in coated diamond: a tool for understanding diamond petrogenesis. Geochim Cosmochim Acta 69:4719–4732

    Article  Google Scholar 

  • Volvinger M, Robert JL, Vielzeuf D, Neiva AMR (1985) Structural control of the chlorine content of OH-bearing silicatesa (micas and amphiboles). Geochim Cosmochim Acta 49:37–48

    Article  Google Scholar 

  • Vrána S (2009) Mineral inclusions in pyrope from garnet peridotites, Kolín area, central Czech Republic. J Geosci 53:17–30

    Google Scholar 

  • Wartho J-A, Kelley SP (2003) 40Ar/39Ar ages in mantle xenolith phlogopites: determining the ages of multiple lithospheric mantle events and diatreme ascent rates in southern Africa and Malaita, Solomon Islands. Geol Soc Lond Spec Publ 220:231–248

    Article  Google Scholar 

  • Wass SY, Henderson P, Elliott CJ (1980) Chemical heterogeneity and metasomatism in the upper mantle: evidence from rare earth and other elements in apatite-rich xenoliths in basaltic rocks from eastern Australia. Philos T R Soc Lond A A297:333–346

    Article  Google Scholar 

  • Wilson L, Head JW (2007) An integrated model of kimberlite ascent and eruption. Nature 447:53–57

    Article  Google Scholar 

  • Wirth R, Kaminsky F, Matsyuk S, Schreiber A (2009) Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil. Earth Planet Sci Lett 286:292–303

    Article  Google Scholar 

  • Woodland AB, Kornprobst J, McPherson E, Bodinier J-L, Menzies MA (1996) Metasomatic interactions in the lithospheric mantle: petrologic evidence from the Lherz massif, French Pyrenees. Chem Geol 134:83–112

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Xie X, Minitti ME, Chen M, Mao HK, Wang D, Shu J, Fei Y (2003) Tuite, γ-Ca3(PO4)2: a new mineral from the Suizhou L6 chondrite. Eur J Mineral 15:1001–1005

    Article  Google Scholar 

  • Yaxley GM, Green DH, Kamenetsky V (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317

    Article  Google Scholar 

  • Zaccharini F, Stumpfl EF (2004) Zirconolite and Zr-Th-U minerals in chromitites of the Finero Complex, Western Alps, Italy: evidence for carbonatite-type metasomatism in a subcontinental mantle plume. Can Min 42:1825–1845

    Article  Google Scholar 

  • Zanetti A, Vannucci R, Botazzi P, Oberti R, Ottolini L (1996) Infiltration metasomatism at Lherz as monitored by systematic ion-microprobe investigations close to a hornblendite vein. Chem Geol 134:113–133

    Article  Google Scholar 

  • Zanetti A, Mazzucchelli G, Rivalenti G, Vannucci R (1999) The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism. Contrib Mineral Petrol 134:107–122

    Article  Google Scholar 

  • Zhang W, Shao J, Xu X, Wang R, Chen L (2007) Mantle metasomatism by P- and F-rich melt/fluids: evidence from phosphate glass in spinel lherzolite xenolith in Keluo, Heilongjiang Province. Chin Sci Bull 52:1827–1835

    Article  Google Scholar 

  • Zhu C, Sverjensky DA (1992) F-Cl-OH partitioning between biotite and apatite. Geochim Cosmochim Acta 56:3435–3467

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Hubert Schulze from BGI for the skilful preparation of experimental charges. Constructive and thoughtful reviews by Odet Navon and Alberto Patiño Douce helped to improve the manuscript and are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Konzett.

Additional information

Communicated by T. L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konzett, J., Rhede, D. & Frost, D.J. The high PT stability of apatite and Cl partitioning between apatite and hydrous potassic phases in peridotite: an experimental study to 19 GPa with implications for the transport of P, Cl and K in the upper mantle. Contrib Mineral Petrol 163, 277–296 (2012). https://doi.org/10.1007/s00410-011-0672-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0672-x

Keywords

Navigation