Advertisement

Contributions to Mineralogy and Petrology

, Volume 162, Issue 6, pp 1233–1247 | Cite as

Acigöl rhyolite field, central Anatolia (part II): geochemical and isotopic (Sr–Nd–Pb, δ18O) constraints on volcanism involving two high-silica rhyolite suites

  • W. Siebel
  • A. K. Schmitt
  • E. Kiemele
  • M. Danišík
  • F. Aydin
Original Paper

Abstract

The Acigöl rhyolite field erupted the most recent high-silica rhyolites within the Cappadocian Volcanic Province of central Anatolia, Turkey. It comprises two sequences of domes and pyroclastic rocks with eruption ages of ~150–200 ka (eastern group) and ~20–25 ka (western group). Compositionally, the eastern rhyolite group lavas are less evolved (SiO2 = 74–76 wt%), whereas the western group has higher silica abundance (SiO2 = ~77 wt%) with extremely depleted feldspar-compatible trace elements. Within each group, compositional variability is small and 143Nd/144Nd (0.51257–0.51265) and Pb isotope compositions (206Pb/204Pb = 18.87–18.88, 207Pb/204Pb = 15.65–15.67 and 208Pb/204Pb = 38.94–38.98) are homogeneous. The western group rhyolites have δ18O(zircon) overlapping mantle values (5.7 ± 0.2‰), whereas eastern group rhyolites are enriched in δ18O by ~0.5‰, consistent with a tendency to lower εNd values. By contrast, western group rhyolites have markedly more radiogenic 87Sr/86Sr ratios (0.7065–0.7091) compared to those of the eastern group (0.7059–0.7065). The presence of angular granitic xenoliths and a correlation between hydration (based on loss on ignition data) and 87Sr/86Sr in the western lavas, however, indicates that Sr was added during the eruption or post-eruption alteration. Isotope constraints preclude the possibility that the rhyolite magmas formed by partial melting of any known regional crystalline basement rocks. Basalts and andesites erupted in the periphery of the Acigöl field are characterised by 87Sr/86Sr ratios between 0.7040 and 0.7053, 143Nd/144Nd = 0.51259–0.51300, 206Pb/204Pb = 18.85–18.87, 207Pb/204Pb = 15.646–15.655, 208Pb/204Pb = 38.90–38.97. The isotopic and trace element data favour an origin of the rhyolites by mixing of basaltic/andesitic magmas with minor amounts of crustal melts and followed by extensive fractional crystallization.

Keywords

Acigöl δ18O in zircon Rhyolite Silicic volcanism Sr–Nd–Pb isotopes 

Notes

Acknowledgments

We acknowledge the help of S. Eroglu, S. Jahn, E. Reitter and H. Taubald during geochemical and isotope analyses. Janet C. Harvey is thanked for assistance in the field and Erkan Aydar for helpful discussions about Cappadocian volcanism. Comments and suggestions by Calvin Miller and Jonathan Miller have helped us to improve the quality of the manuscript. Jochen Hoefs is thanked for editorial handling. This study was supported by a grant from the German Science Foundation (Si 718/9-1). The ion microprobe facility at UCLA is partly supported by a grant from the Instrumentation and Facilities Program, Division of Earth Sciences, National Science Foundation.

References

  1. Alıcı-Şen P, Temel T, Gourgaud A (2004) Petrogenetic modelling of Quaternary post-collisional volcanism: a case study of central and eastern Anatolia. Geol Mag 141:81–98CrossRefGoogle Scholar
  2. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539CrossRefGoogle Scholar
  3. Aydin F (2008) Contrasting complexities in the evolution of calc-alkaline and alkaline melts of the Nigde volcanic rocks, Turkey: textural, mineral chemical and geochemical evidence. Eur J Mineral 20:101–118CrossRefGoogle Scholar
  4. Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582CrossRefGoogle Scholar
  5. Bacon JR, Bain DC (1995) Characterization of environmental water samples using strontium and lead stable isotope compositions. Environ Geochem Health 17:39–49CrossRefGoogle Scholar
  6. Batum I (1978) Geology and petrography of Acıgöl and Göllüdağ volcanics at southwest of Nevşehir central Anatolia, Turkey. Yerbilimleri 4:50–69 (in Turkish with English abstract)Google Scholar
  7. Beekman PH (1966) The Pliocene and Quaternary volcanism in the Hasan Dag-Melendiz Dag region. Bull Miner Res Explor Inst Turk 66:90–105 (in Turkish)Google Scholar
  8. Bigazzi G, Yegingil Z, Ercan T, Oddone M, Ozdogan M (1993) Fission-track dating obsidians in central and northern Anatolia. Bull Volcanol 55:588–595CrossRefGoogle Scholar
  9. Bozkurt E (2001) Neotectonics of Turkey—a synthesis. Geodin Acta 14:3–30CrossRefGoogle Scholar
  10. Boztug D, Arehart GB (2007) Oxygen and sulfur isotope geochemistry revealing a significant crustal signature in the genesis of the post-collisional granitoids in central Anatolia, Turkey. J Asian Earth Sci 30:403–416CrossRefGoogle Scholar
  11. Chataigner C, Poidevin JL, Arnaud NO (1998) Turkish occurrences of obsidian and use by prehistoric peoples in the Near East from 14, 000 to 6000 BP. J Volcanol Geotherm Res 85:517–537CrossRefGoogle Scholar
  12. Christiansen RL (2001) The Quaternary and Pliocene Yellowstone plateau volcanic field of Wyoming, Idaho, and Montana. US Geol Surf Prof Pap 729-G:120 ppGoogle Scholar
  13. Cousens BL, Henry CD, Harvey BJ, Brownrigg T, Prytulak J, Allan JF (2011) Secular variations in magmatism during a continental arc to post-arc transition: Plio-Pleistocene volcanism in the Lake Tahoe/Truckee area, Northern Sierra Nevada, California. Lithos 123:225–242CrossRefGoogle Scholar
  14. Deniel C, Aydar E, Gourgaud A (1998) The Hasan Dagi stratovolcano (central Anatolia, Turkey): evolution from calc-alkaline to alkaline magmatism in a collision zone. J Volcanol Geotherm Res 87:275–302CrossRefGoogle Scholar
  15. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  16. Dewey JF, Hempton MR, Kidd WSF, Saroglu F, Şengör AMC (1986) Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—a young collision zone. Geol Soc Lond Spec Publ 19:1–36CrossRefGoogle Scholar
  17. Dilek Y, Sandvol E (2009) Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African plate boundary and the Cenozoic orogenic belts in the Eastern Mediterranean region. Geol Soc Lond Spec Publ 327:127–160CrossRefGoogle Scholar
  18. Dirik K, Göncüoğlu C (1996) Neotectonic characteristics of central Anatolia. Int Geol Rev 38:807–817CrossRefGoogle Scholar
  19. Druitt TH, Brenchley PJ, Gökten YE, Francaviglia V (1995) Late Quaternary rhyolitic eruptions from the Acigöl complex, central Turkey. J Geol Soc Lond 152:655–667CrossRefGoogle Scholar
  20. Ehrmann W, Schmiedl G, Hamann Y, Kuhnt T, Hemleben C, Siebel W (2007) Clay minerals in late glacial and Holocene sediments of the northern and southern Aegean Sea. Palaeogeogr Palaeoclimatol Palaeoecol 249:36–57CrossRefGoogle Scholar
  21. Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Rev Miner 43:319–364Google Scholar
  22. England A, Eastwood WJ, Roberts CN, Turner R, Haldon JF (2008) Historical landscape change in Cappadocia (central Turkey): a palaeoecological investigation of annually laminated sediments from Nar lake. Holocene 18:1229–1245CrossRefGoogle Scholar
  23. Faccenna C, Bellier O, Martinod J, Piromallo C, Regard V (2006) Slab detachment beneath eastern Anatolia: a possible cause for the formation of the North Anatolian fault. Earth Planet Sci Lett 242:85–97CrossRefGoogle Scholar
  24. Floyd PA, Yaliniz MK, Göncüoglu MC (1998) Geochemistry and petrogenesis of intrusive an extrusive ophiolitic plagiogranites, Central Anatolian Crystalline Complex, Turkey. Lithos 42:225–241CrossRefGoogle Scholar
  25. Floyd PA, Göncüoglu MC, Winchester JA, Yaliniz MK (2000) Geochemical character and tectonic environment of Neotethyan ophiolitic fragments and metabasites in the Central Anatolian Crystalline Complex, Turkey. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and magmatism in Turkey and the surrounding area. Geol Soc Lond Spec Publ 173:183–202Google Scholar
  26. Gao S, Luo TC, Zang BR, Zang HF, Han YW, Hu YK, Zhao ZD (1998) Chemical composition of the continental crust as revealed by studies in east China. Geochim Cosmochim Acta 62:1959–1975CrossRefGoogle Scholar
  27. Glazner AF, Coleman DS, Bartley JM (2008) The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology 36:1047–1050CrossRefGoogle Scholar
  28. Goldstein SJ, Murrell MT, Janecky DR (1989) Th and U isotopic systematics of basalts from the Juan de Fuca and Gorda Ridges by mass spectrometry. Earth Planet Sci Lett 96:134–146CrossRefGoogle Scholar
  29. Göncüoğlu MC (1986) Geochronological data from the southern part (Niğde area) of the central Anatolian massif. Bull Miner Res Explor Inst Turk 105(106):83–96Google Scholar
  30. Göncüoğlu MC, Toprak V (1992) Neogene and quaternary volcanism of central Anatolia: a volcano-structural evaluation. Bull Sec Volcanol Soc Géol France 26:1–6Google Scholar
  31. Innocenti F, Mazzuoli R, Pasquaré G, Radicati di Brozolo F, Villari L (1975) The Neogene calcalkaline volcanism of central Anatolia: geochronological data on Kayseri-Nigde area. Geol Mag 112:349–360CrossRefGoogle Scholar
  32. Jiménez-Munt I, Sabadini R, Gardi A, Bianco G (2003) Active deformation in the Mediterranean from Gibraltar to Anatolia inferred from numerical modeling and geodetic and seismological data. J Geophys Res 108(B1):2006Google Scholar
  33. Jones S (2007) The Toba supervolcanic eruption: Tephra-fall deposits in India and paleoanthropological implications. In: Petraglia MD and Allchin B (eds) The evolution and history of human populations in South Asia. Springer, Dordrecht, pp 173–200Google Scholar
  34. Koçyiğit A, Beyhan A (1998) A new intracontinental transcurrent structure: the central Anatolian fault zone, Turkey. Tectonophysics 284:317–336CrossRefGoogle Scholar
  35. Köksal S, Göncüoğlu MC (2008) Sr and Nd isotopic characteristics of some S-, I- and A-type granitoids from central Anatolia. Turkish J Earth Sci 17:111–127Google Scholar
  36. Kürkçüoglu BES, Aydar E, Gourgaud A, Gündogdu N (1998) Geochemical approach to magmatic evolution of Mt. Erciyes stratovolcano central Anatolia, Turkey. J Volcanol Geotherm Res 85:473–494CrossRefGoogle Scholar
  37. Le Pennec JL, Bourdier JL, Froger JL, Temel A, Camus G, Gourgaud A (1994) Neogene ignimbrites of the Nevşehir plateau (central Turkey): stratigraphy, distribution and source constraints. J Volcanol Geotherm Res 63:59–87CrossRefGoogle Scholar
  38. Mahood GA, Halliday AN (1988) Generation of high-silica rhyolite—a Nd, Sr, and O isotopic study of Sierra-La-Primavera, Mexican Neovolcanic belt. Contrib Mineral Petrol 100:183–191CrossRefGoogle Scholar
  39. Metz JM, Mahood GA (1985) Precursors to the Bishop tuff eruption: Glass Mountain, Long Valley, California. J Volcanol Geotherm Res 90:11121–11126Google Scholar
  40. Metz JM, Mahood GA (1991) Development of the Long Valley, California, magma chamber recorded in precaldera rhyolite lavas of Glass mountain. Contrib Mineral Petrol 106:379–397CrossRefGoogle Scholar
  41. Miller CF, Mittlefehldt DW (1984) Extreme fractionation in felsic magma chambers: a product of liquid-state diffusion or fractional crystallization? Earth Planet Sci Lett 68:151–158CrossRefGoogle Scholar
  42. Mouralis D, Pastre JF, Kuzucuoglu C, Türkecan A, Atici Y, Slimak L, Guillou H, Kunesch S (2002) Les complexes volcaniques rhyolitiques quaternaires d’Anatolie centrale (Göllü dag et Acigöl, Turquie): genèse, instabilité, contraintes environnementales. Quatenaire 13:219–228CrossRefGoogle Scholar
  43. Notsu K, Fujitani T, Ui T, Matsuda J, Ercan T (1995) Geochemical features of collision-related volcanic rocks in central and eastern Anatolia, Turkey. J Volcanol Geotherm Res 64:171–191CrossRefGoogle Scholar
  44. Olanca K (1994) Géochimie des laves quaternaires de Cappadoce (Turquie). Les appareils monogéniques. PhD thesis, Univ Clermont-Ferrand, 156 ppGoogle Scholar
  45. Pasquarè G (1968) Geology of the Cenozoic volcanic area of central Anatolia. Atti Accademia Nazionale Lincei Memoire 9:54–204Google Scholar
  46. Pasquarè G, Poli S, Vezzoli L, Zanchi A (1988) Continental arc volcanism and tectonic setting in central Anatolia, Turkey. Tectonophysics 146:217–230CrossRefGoogle Scholar
  47. Pearce JA, Harris NBW, Tindle AG (1984) Trace-element discrimination diagrams for the tectonic interpretation of granitic-rocks. J Petrol 25:956–983Google Scholar
  48. Poupeau G, Le Bourdonnec FX, Carter T, Delerue S, Shackley MS, Barrat JA, Dubernet S, Moretto P, Calligaro T, Milić M, Kobayashi K (2010) The use of SEM-EDS, PIXE and EDXRF for obsidian provenance studies in the Near East: a case study from Neolithic Çatalhöyük (central Anatolia). J Archaeol Sci 37:2705–2720CrossRefGoogle Scholar
  49. Rampino MR, Self S (1992) Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359:50–52CrossRefGoogle Scholar
  50. Robertson AHF (2000) Mesozoic-Tertiary tectonic-sedimentray evolution of a south Tethyan oceanic basin and its margins in southern Turkey. In: Bozkurt E, Winchester JA and Piper JDA (eds) Tectonics and magmatism in Turkey and the surrounding area. Geol Soc Lond Spec Publ 173:97–138Google Scholar
  51. Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL (ed) The crust. Treatise on geochemistry, vol 3. Elsevier-Pergamon, Oxford, pp 1–64CrossRefGoogle Scholar
  52. Saunders KE, Morgan DJ, Baker JA, Wysoczanski RJ (2010) The magmatic evolution of the Whakamaru supereruption, New Zealand, constrained by a microanalytical study of plagioclase and quartz. J Petrol 51:2465–2488CrossRefGoogle Scholar
  53. Şengör AMC, Özeren MS, Keskin M, Sakinç M, Özbakır AD, Kayan I (2008) Eastern Turkish high plateau as a small Turkic-type orogen: implications for post collisional crust-forming processes in Turkic-type orogens. Earth Sci Rev 90:1–48CrossRefGoogle Scholar
  54. Serpelloni E, Vannucci G, Pondrelli S, Argnani A, Casula G, Anzidei M, Baldi P, Gasperini P (2007) Kinematics of the western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys J Int 169:1180–1200CrossRefGoogle Scholar
  55. Slimak L, Kuhn SL, Roche H, Mouralis D, Buitenhuis H, Balkan-Atli N, Binder D, Kuzucuoglu C, Guillou H (2008) Kaletepe Deresi 3 (Turkey): archaeological evidence for early human settlement in central Anatolia. J Hum Evol 54:99–111CrossRefGoogle Scholar
  56. Stephenson R, Marti Y, Okay A, Robertson AHF, Saintot A, Stovba S, Khriachtchevskaia O (2004) Transect VIII: Eastern European Craton—Crimea—Black Sea—Anatolia—Cyprus—Levant Sea—Red Sea. In: Cavvaza W, Roure F, Spakman W, Stampfli GM, Ziegler PA (eds) The TRANSMED Atlas—the Mediterranean region from crust to mantle. Springer, BerlinGoogle Scholar
  57. Stewart BW, Capo RC, Chadwick OA (2001) Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils. Geochim Cosmochim Acta 65:1087–1099CrossRefGoogle Scholar
  58. Streck MJ, Grunder AL (2008) Phenocryst-poor rhyolites of bimodal, tholeiitic provinces: the Rattlesnake tuff and implications for mush extraction models. Bull Volcanol 70:385–401CrossRefGoogle Scholar
  59. Temel A, Gündogdu MN, Gourgaud A, Le Pennec JL (1998) Ignimbrites of Cappadocia (central Anatolia, Turkey): petrology and geochemistry. J Volcanol Geotherm Res 85:447–471CrossRefGoogle Scholar
  60. Toprak V (1998) Vent distribution and its relation to regional tectonics, Cappadocian volcanics, Turkey. J Volcanol Geotherm Res 85:55–67CrossRefGoogle Scholar
  61. Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB, Young ED (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem Geophys Geosyst 8:22 ppGoogle Scholar
  62. Trail D, Bindeman IN, Watson EB, Schmitt AK (2009) Experimental calibration of oxygen isotope fractionation between quartz and zircon. Geochim Cosmochim Acta 73:7110–7126CrossRefGoogle Scholar
  63. Tryon CA, Logan MAV, Mouralis D, Kuhn SL, Slimak L, Balkan-Atil N (2009) Building a tephrostratigraphic framework for the Paleolithic of central Anatolia, Turkey. J Archaeol Sci 36:637–652CrossRefGoogle Scholar
  64. Türkecan A, Kuzucuoğlu C, Mouralis D, Pastre J-F, Atıcı Y, Guillou H, Fontugne M (2004) Upper Pleistocene volcanism and palaeogeography in Cappadocia, Turkey. MTA-CNRS-TÜBİTAK 2001-2003 Research Programme. Tübitak Project No. 101Y109, MTA Report No. 10652 (unpublished) 180 ppGoogle Scholar
  65. Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11CrossRefGoogle Scholar
  66. Viereck-Götte L, Lepetit P, Gürel A, Ganskow G, Çopuroğlu I, Abratis M (2010) Revised volcanostratigraphy of the Upper Miocene to Lower Priocene Ürgüp Formation, central Anatolian volcanic province, Turkey. Geol Soc Am Spec Pap 464:85–112CrossRefGoogle Scholar
  67. Watson EB, Harrison TM (1983) Zircon saturation revisited - temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304CrossRefGoogle Scholar
  68. Yildirim T, Özgür R (1981) The Acigöl caldera. Jeomorfoloji Dergisi (Bulletin of Geomorphology) 10:59–70 (in Turkish)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • W. Siebel
    • 1
  • A. K. Schmitt
    • 2
  • E. Kiemele
    • 1
  • M. Danišík
    • 3
    • 4
  • F. Aydin
    • 5
  1. 1.Department of GeosciencesUniversity of TübingenTübingenGermany
  2. 2.Department of Earth and Space SciencesUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of Earth and Oceanic SciencesUniversity of WaikatoHamiltonNew Zealand
  4. 4.John de Laeter Centre for Isotope Research, Applied Geology, Curtin UniversityPerthAustralia
  5. 5.Department of Geological EngineeringKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations