Origin of silicic volcanism in the Panamanian arc: evidence for a two-stage fractionation process at El Valle volcano

Abstract

In the Central American Volcanic Arc, adakite-like volcanism has often been described as volumetrically insignificant. However, extensive silicic adakitic volcanism does occur in the Panamanian arc and provides an opportunity to evaluate the origin of this magma-type as well as to contrast its origin with other Central American silicic magmas. The Quaternary volcanic deposits of El Valle volcano are characterized by pronounced depletions in the heavy rare earth elements, low Y, high Sr, high Sr/Y, relatively high MgO, and low K2O/Na2O, when compared with other Quaternary Central American volcanics at similar SiO2. These chemical features are also diagnostic of adakitic signatures. Our new 40Ar/39Ar ages of lava flows and ash flows that compose the volcanic edifice of El Valle volcano illustrate that the eruptive volume of adakitic-like volcanism is substantial during the Quaternary (~120 km3). Adakitic-like magmas dominate the stratigraphic record. Common to all models for the origin of an adakite geochemical signature is the involvement of garnet, as a residual or fractionating phase. The stability of garnet in hydrous magmas has been recently reevaluated with important consequences; garnet is a stable primary igneous phase at pressure and temperature conditions expected for magma differentiation at the roots of a mature island arc. Moreover, adakite-like volcanism erupted at El Valle volcano displays the middle rare earth element depletion observed in other Panamanian volcanic centers that has been attributed to significant amphibole fractionation. Extensive amphibole fractionation may have occurred in two stages. The first stage of fractionation, garnet + amphibole fractionation, occurs from hydrous basaltic–andesitic parental magmas that have ponded at the base of an overthickened crust. The second stage occurs at mid-lower crustal levels where abundant amphibole + plagioclase and minor sphene crystallized from water-rich magmas. These two stages combined may have resulted in an amphibole-rich cumulate layer. This amphibole layer is likely the source of the abundant amphibole-rich cumulate enclaves and blobs found in volcanic products across the Panamanian arc. Stalling of water-rich magmas during this two-stage fractionation process could drive the interstitial liquids to the evolved compositions typical of continental crust, while leaving behind amphibole-rich cumulate rocks that may eventually be returned to the asthenosphere. Differentiation of H2O-rich magmas under the conditions appropriate for the roots of island arcs may therefore be a key process in developing a better understanding of the generation of continental crust in island arc environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Allen JC, Boettcher AL (1978) Amphiboles in andesite and basalt: II. Stability as a function of P-T-fH2O-fO2. Am Mineral 63(11–12):1074–1987

    Google Scholar 

  2. Allen JC, Boettcher AL (1983) The stability of amphibole in andesite and basalt at high pressures. Am Mineral 68(3–4):307–314

    Google Scholar 

  3. Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Mineral Petrol 157(4):541–558

    Article  Google Scholar 

  4. Andersen DJ, Lindsley DH (1988) Internal consistent solution models for Fe–Mg–Mn–Ti oxides. Am Mineral 73:714–726

    Google Scholar 

  5. Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: a pascal program to assess equilibria among Fe–Mg–Mn–Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19(9):1333–1350

    Article  Google Scholar 

  6. Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203(3–4):937–955

    Article  Google Scholar 

  7. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Article  Google Scholar 

  8. Arculus R, Wills K (1980) The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol 21(4):743–799

    Google Scholar 

  9. Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146

    Article  Google Scholar 

  10. Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45(8):1565–1582

    Article  Google Scholar 

  11. Bachmann O, Bergantz GW (2008) Rhyolites and their source mushes across tectonic settings. J Petrol 49(12):2277–2285

    Article  Google Scholar 

  12. Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98(2):224–256

    Article  Google Scholar 

  13. Barckhausen U, Ranero CR, von Huene R, Cande SC, Roeser HA (2001) Revised tectonic boundaries in the Cocos Plate off Costa Rica: implications for the segmentation of the convergent margin and for plate tectonic models. J Geophys Res 106(B9):19207–19220. doi:10.1029/2001JB000238

    Article  Google Scholar 

  14. Barclay J, Carmichael ISE (2004) A hornblende basalt from western Mexico: water-saturated phase relations constrain a pressure-temperature window of eruptibility. J Petrol 45(3):485–506

    Article  Google Scholar 

  15. Beard JS (1986) Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14(10):848–851

    Article  Google Scholar 

  16. Bernard A, Knittel U, Weber B, Weis D, Albrecht A, Hattori K, Klein J, Oles D (1996) Petrology and geochemistry of the 1991 eruption products of Mount Pinatubo. In: Newhall CG, Punongbayan AS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Hong Kong, pp 767–797

  17. Bindeman IN, Eiler JM, Yogodzinski GM, Tatsumi Y, Stern CR, Grove TL, Portnyagin M, Hoernle K, Danyushevsky LV (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet Sci Lett 235(3–4):480–496

    Article  Google Scholar 

  18. Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210(3–4):383–397

    Article  Google Scholar 

  19. Bottazzi P, Tiepolo M, Vannucci R, Zanetti A, Brumm R, Foley S, Oberti R (1999) Distinct site preferences for heavy and light REE in amphibole and the prediction of Amph/L D REE. Contrib Mineral Petrol 137(1):36–45

    Article  Google Scholar 

  20. Bowen N (1928) The evolution of the igneous rocks. Princeton University Press, Princeton

    Google Scholar 

  21. Bowin CO (1976) The Caribbean: gravity field and plate tectonics. Geol Soc Am Spec Pap 169:79

    Google Scholar 

  22. Briceno-Guarupe L (1978) The crustal structure and tectonic framework of the Gulf of Panama. Masters thesis, Oregon State University, Corvallis

  23. Burg B, Chaudhry S, Hussain S, Dawood H (1998) Infra-arc mantle crust transition and intra-arc mantle diapirs in the Kohistan Complex (Pakistani Himalaya): petro-structural evidence. Terra Nova 10(2):74–80

    Article  Google Scholar 

  24. Bush MB, Colinvaux PA (1990) A pollen record of a complete glacial cycle from lowland Panama. J Veg Sci 1(1):105–118

    Article  Google Scholar 

  25. Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106(2):129–141

    Article  Google Scholar 

  26. Carmichael ISE (2002) The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105-99 degrees W) Mexico. Contrib Mineral Petrol 143(6):641–663

    Article  Google Scholar 

  27. Castillo PR (2006) An overview of adakite petrogenesis. Chin Sci Bull 51(3):257–376

    Article  Google Scholar 

  28. Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol 134(1):33–51

    Article  Google Scholar 

  29. Cawthorn R, O’Hara M (1976) Amphibole fractionation in calc-alkaline magma genesis. Am J Sci 276(3):309–329

    Article  Google Scholar 

  30. Chiaradia M, Müntener O, Beate B, Fontignie D (2009) Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contrib Mineral Petrol 158(5):563–588

    Article  Google Scholar 

  31. Claeson D, Meurer W (2004) Fractional crystallization of hydrous basaltic “arc-type” magmas and the formation of amphibole-bearing gabbroic cumulates. Contrib Mineral Petrol 147(3):288–304

    Article  Google Scholar 

  32. Clark LF (1989) The geology, geochemistry, and petrogenesis of El Valle volcano, Panama. MSc thesis, University of South Florida, Tampa

  33. Condie KC (2005) TTGs and adakites: are they both slab melts? Lithos 80(1–4):33–44

    Article  Google Scholar 

  34. Conrad W, Kay R (1984) Ultramafic and mafic inclusions from Adak Island: crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. J Petrol 25(1):88–125

    Google Scholar 

  35. Costa F, Dungan MA, Singer BS (2002) Hornblende-and phlogopite-bearing gabbroic xenoliths from Volcan San Pedro (36 S), Chilean Andes: evidence for melt and fluid migration and reactions in subduction-related plutons. J Petrol 43(2):219–241

    Article  Google Scholar 

  36. Dalpe C, Baker D (2000) Experimental investigation of large-ion-lithophile-element-, high-field-strength-element-and rare-earth-element-partitioning between calcic amphibole and basaltic melt: the effects of pressure and oxygen fugacity. Contrib Mineral Petrol 140(2):233–250

    Article  Google Scholar 

  37. Davidson JP, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35(9):787–790

    Article  Google Scholar 

  38. Day RA, Green TH, Smith IEM (1992) The origin and significance of garnet phenocrysts and garnet-bearing xenoliths in Miocene calcalkaline volcanics from Northland, New Zealand. J Petrol 33(1):125–161

    Google Scholar 

  39. de Boer JZ, Defant MJ, Stewart RH, Bellon H (1991) Evidence for active subduction below western Panama. Geology 19(6):649–652

    Article  Google Scholar 

  40. de Boer JZ, Drummond MS, Bordelon MJ, Defant MJ, Bellon H, Maury RC (1995) Cenozoic magmatic phases of the Costa Rican island arc (Cordillera de Talamanca). In: Mann P (ed) Geologic and tectonic development of the Caribbean plate boundary in southern Central America. Geological Society of America Special Paper, vol 295, pp 35–55

  41. Debari SM, Coleman RG (1989) Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J Geophys Res 94(4):4373–4391. doi:10.1029/JB094iB04p04373

    Article  Google Scholar 

  42. Deering C (2009) Cannibalization of an amphibole-rich andesitic progenitor induced by caldera-collapse during the Matahina eruption: evidence from amphibole compositions. Am Mineral 94(8–9):1162–1174

    Article  Google Scholar 

  43. Deering CD, Vogel TA, Patino LC, Alvarado GE (2007) Origin of distinct silicic magma types from the Guachipelín Caldera, NW Costa Rica: evidence for magma mixing and protracted subvolcanic residence. J Volcanol Geotherm Res 165(3–4):103–126. doi:10.1016/j.jvolgeores.2007.05.004

    Article  Google Scholar 

  44. Deering CD, Cole JW, Vogel TA (2008) A rhyolite compositional continuum governed by lower crustal source conditions in the Taupo volcanic zone, New Zealand. J Petrol 49(12):2245–2276

    Article  Google Scholar 

  45. Deering CD, Gravley D, Vogel T, Cole J, Leonard G (2010) Origins of cold-wet-oxidizing to hot-dry-reducing rhyolite magma cycles and distribution in the Taupo Volcanic Zone, New Zealand. Contrib Mineral Petrol 160(4):609–629

    Article  Google Scholar 

  46. Defant MJ (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  47. Defant M, de Boer JZ, Oles D (1988) The western central Luzon volcanic arc, the Philippines: two arcs divided by rifting? Tectonophysics 45:305–317. doi:10.1016/0040-1951(88)90202-8

    Article  Google Scholar 

  48. Defant MJ, Clark LF, Stewart RH, Drummond MS, de Boer JZ, Maury RC, Bellon H, Jackson TE, Restrepo JF (1991a) Andesite and dacite genesis via contrasting processes: the geology and geochemistry of El Valle volcano, Panama. Contrib Mineral Petrol 106:309–324

    Article  Google Scholar 

  49. Defant MJ, Richerson PM, Deboer JZ, Stewart RH, Maury RC, Bellon H, Drummond MS, Feigenson MD, Jackson TE (1991b) Dacite genesis via both slab melting and differentiation—petrogenesis of La-Yeguada volcanic complex, Panama. J Petrol 32(6):1101–1142

    Google Scholar 

  50. DeMets C (2001) A new estimate for present-day Cocos-Caribbean plate motion: implications for slip along the Central American Volcanic Arc. Geophys Res Lett 28(21):4043–4046. doi:10.1029/2002GL01501

    Article  Google Scholar 

  51. Denyer P, Baumgartner PO, Gazel E (2006) Characterization and tectonic implications of Mesozoic-Cenozoic oceanic assemblages of Costa Rica and Western Panama. Geol Acta 4(1–2):219–235

    Google Scholar 

  52. Dreher S, Macpherson C, Pearson D, Davidson J (2005) Re–Os isotope studies of Mindanao adakites: implications for sources of metals and melts. Geology 33(12):957

    Article  Google Scholar 

  53. Drummond MS, Defant MJ (1990) A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting; Archean to modern comparisons. J Geophys Res 95:21503–21521. doi:10.1029/JB095iB13p21503

    Article  Google Scholar 

  54. Dufek J, Bachmann O (2010) Quantum magmatism: magmatic compositional gaps generated by melt-crystal dynamics. Geology 38(8):687

    Article  Google Scholar 

  55. Dufek J, Bergantz G (2005) Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt-crust interaction. J Petrol 46(11):2167

    Article  Google Scholar 

  56. Eiler JM, Schiano P, Kitchen N, Stolper E (2000) Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts. Nature 403(6769):530–534

    Article  Google Scholar 

  57. Eiler JM, Schiano P, Valley J, Kita NT, Stolper EM (2007) Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle. Geochem Geophys Geosyst 8:Q09012. doi:10.1029/2006GC001503

    Article  Google Scholar 

  58. Evans B, Vance J (1987) Epidote phenocrysts in dacitic dikes, Boulder County, Colorado. Contrib Mineral Petrol 96(2):178–185

    Article  Google Scholar 

  59. Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117(1–4):251–284

    Article  Google Scholar 

  60. Falloon TJ, Danyushevsky LV, Crawford AJ, Meffre S, Woodhead JD, Bloomer SH (2008) Boninites and adakites from the northern termination of the Tonga trench: implications for adakite petrogenesis. J Petrol 49(4):697–715

    Article  Google Scholar 

  61. Fitton J (1972) The genetic significance of almandine-pyrope phenocrysts in the calc-alkaline Borrowdale Volcanic Group, Northern England. Contrib Mineral Petrol 36(3):231–248

    Article  Google Scholar 

  62. Foley S, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417(6891):837–840

    Article  Google Scholar 

  63. Fujimaki H, Tatsumoto M, Aoki K (1984) Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. Paper presented at the American Geophysical Union and NASA, Lunar and Planetary Science Conference, 14th Houston, TX, 14–18 March 1983

  64. Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308(9):957

    Article  Google Scholar 

  65. Gill J (1981) Orogenic andesites and plate tectonics. Springer, New York

    Google Scholar 

  66. Gillot PY, Chiesa S, Alvarado GE (1994) Chronostratigraphy and evolution of the Neogene-Quaternary volcanism in north Costa Rica: the Arenal volcano-structural frame work. Revista Geológica de América Central 17:45–53

    Google Scholar 

  67. Goff J, Cochran J (1996) The Bauer scarp ridge jump: a complex tectonic sequence revealed in satellite altimetry. Earth Planet Sci Lett 141(1–4):21–33

    Article  Google Scholar 

  68. Green TH (1972) Crystallization of calc-alkaline andesite under controlled high-pressure hydrous conditions. Contrib Mineral Petrol 34(2):150–166

    Article  Google Scholar 

  69. Green TH (1992) Experimental phase equilibrium studies of garnet-bearing I-type volcanics and high-level intrusives from Northland, New Zealand. Trans R Soc Edinb Earth Sci 83:429–438

    Article  Google Scholar 

  70. Green TH, Pearson NJ (1987) An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim Cosmochim Acta 51(1):55–62

    Article  Google Scholar 

  71. Green TH, Ringwood AE (1968) Genesis of the calc-alkaline igneous rock suite. Contrib Mineral Petrol 18(2):105–162

    Article  Google Scholar 

  72. Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142:375–396

    Article  Google Scholar 

  73. Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Muntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145(5):515–533

    Article  Google Scholar 

  74. Grove T, Chatterjee N, Parman S, MÈdard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249(1–2):74–89

    Article  Google Scholar 

  75. Gutscher M, Malavieille J, Lallemand S, Collot J (1999) Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet Sci Lett 168(3–4):255–270

    Article  Google Scholar 

  76. Gutscher M-A, Maury R, Eissen J-P, Bourdon E (2000) Can slab melting be caused by flat subduction? Geology 28(6):535–538

    Article  Google Scholar 

  77. Hannah R, Vogel T, Patino L, Alvarado G, Pérez W, Smith D (2002) Origin of silicic volcanic rocks in Central Costa Rica: a study of a chemically variable ash-flow sheet in the Tiribí Tuff. Bull Volcanol 64(2):117–133

    Article  Google Scholar 

  78. Harangi SZ, Downes H, Kusa L, Szabo CS, Thirlwall M, Mason PRD, Mattey D (2001) Almandine garnet in calc-alkaline volcanic rocks of the Northern Pannonian Basin (Eastern-Central Europe): geochemistry, petrogenesis and geodynamic implications. J Petrol 42(10):1813

    Article  Google Scholar 

  79. Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117(1–4):149–166

    Article  Google Scholar 

  80. Helz RT (1973) Phase relations of basalts in their melting range at PH2O = 5 kb as a function of oxygen fugacity. J Petrol 14(2):249

    Google Scholar 

  81. Hidalgo PJ (2007) Petrology and geochemistry of El Hato silicic ignimbrite, El Valle volcano, Panama. MSc thesis, Michigan State, East Lansing

  82. Hidalgo PJ, Rooney TO (2010) Crystal fractionation processes at Baru volcano from the deep to shallow crust. Geochem Geophys Geosyst 11(12):Q12S30. doi:10.1029/2010GC003262

    Article  Google Scholar 

  83. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98(4):455–489

    Article  Google Scholar 

  84. Hoernle K, van den Bogaard P, Werner R, Lissina B, Hauff F, Alvarado GE, Garbe-Schoenberg CD (2002) Missing history (16–71 Ma) of Galapagos hotspot: implications for the tectonic and biological evolution of the Americas. Geology 30:795–798

    Article  Google Scholar 

  85. Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116(4):433–447

    Article  Google Scholar 

  86. Ionov D, Hofmann A (1995) Nb-Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett 131(3–4):341–356

    Article  Google Scholar 

  87. Jagoutz O, Muntener O, Burg JP, Ulmer P, Jagoutz E (2006) Lower continental crust formation through focused flow in km-scale melt conduits: The zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan). Earth Planet Sci Lett 242(3–4):320–342

    Article  Google Scholar 

  88. Jahn BM, Glikson AY, Peucat JJ, Hickman AH (1981) REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: Implications for early crust evolution. Geochim Cosmochim Acta 45:1633–1652

    Article  Google Scholar 

  89. Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24(2):217–284

    Article  Google Scholar 

  90. Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. J Volcanol Geotherm Res 4:117–132

    Article  Google Scholar 

  91. Kay RW, Kay SM (2002) Andean adakites: three ways to make them. Acta Petrol Sin 18:303–311

    Google Scholar 

  92. Kelemen PB (1995) Genesis of high Mg-number andesites and the continental crust. Contrib Mineral Petrol 120(1):1–19

    Article  Google Scholar 

  93. Kelemen P, Dunn J (1992) Depletion of Nb relative to other highly incompatible elements by melt/rock reaction in the upper mantle. Eos 73:656–657

    Google Scholar 

  94. Kellogg JN, Vega V, Stallings TC, Aiken CLV (1995) Tectonic development of Panama, Costa Rica, and the Columbian Andes: constraints from global positioning system geodetic studies and gravity. In: Mann P (ed) Geologic and tectonic development of the Caribbean Plate boundary in southern Central America. Geological Society of America Special Paper, vol 295. Geological Society of America, pp 75–86

  95. Kessel R, Schmidt M, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nat (Lond) 437(7059):724–727

    Article  Google Scholar 

  96. Kincaid C, Griffiths RW (2003) Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature 425(6953):58–62

    Article  Google Scholar 

  97. Lanphere MA, Dalrymple GB (2000) First-principles calibration of 38Ar tracers: implications for the ages of 40Ar/39Ar fluence monitors. US Geol Surv Prof Pap 1621:10

    Google Scholar 

  98. Larocque J, Canil D (2010) The role of amphibole in the evolution of arc magmas and crust: the case from the Jurassic Bonanza arc section, Vancouver Island, Canada. Contrib Mineral Petrol 159(4):475–492

    Article  Google Scholar 

  99. Layer PW (2000) Argon-40/argon-39 age of the El’gygytgyn impact event, Chukotka, Russia. Meteorit Planet Sci 35:591–599

    Article  Google Scholar 

  100. Layer PW, Hall CM, York D (1987) The derivation of 40Ar/39Ar age spectra of single-grains of hornblende and biotite by laser step heating. Geophys Res Lett 14:757–760

    Article  Google Scholar 

  101. Leake B, Woolley A, Arps C, Birch W, Gilbert M, Grice J, Hawthorne F, Kato A, Kisch H, Krivovichev V, Linthout K, Laird J, Mandarino J, Maresch W, Nickel E, Rock N, Schumacher J, Smith D, Stephenson N, Ungaretti L, Whittaker E, Guo Y (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Am Mineral 35:219–246

    Google Scholar 

  102. Linkimer L, Beck SL, Schwartz SY, Zandt G, Levin V (2010) Nature of crustal terranes and the Moho in northern Costa Rica from receiver function analysis. Geochem Geophys Geosyst 11(1):Q01S19. doi:10.1029/2009gc002795

    Article  Google Scholar 

  103. Lonsdale P (2005) Creation of the Cocos and Nazca plates by fission of the Farallon plate. Tectonophysics 404(3–4):237–264. doi:10.1016/j.tecto.2005.05.011

    Article  Google Scholar 

  104. Lonsdale P, Klitgord KD (1978) Structure and tectonic history of the eastern Panama Basin. Geol Soc Am Bull 89(7):981–999

    Article  Google Scholar 

  105. Luhr JF, Carmichael ISE (1980) The colima volcanic complex, Mexico. Contrib Mineral Petrol 71(4):343–372

    Article  Google Scholar 

  106. MacKenzie L, Abers GA, Fischer KM, Syracuse EM, Protti JM, Gonzalez V, Strauch W (2008) Crustal structure along the southern Central American volcanic front. Geochem Geophys Geosyst 9(8):Q08S09. doi:10.1029/2008gc001991

    Article  Google Scholar 

  107. Macpherson CG (2008) Lithosphere erosion and crustal growth in subduction zones: insights from initiation of the nascent East Philippine Arc. Geology 36(4):311–314

    Article  Google Scholar 

  108. Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243(3–4):581–593

    Article  Google Scholar 

  109. Mann P, Kolarsky RA (1995) East Panama deformed belt: age, structure, neotectonic significance. In: Mann P (ed) Geologic and tectonic development of the Caribbean plate boundary in southern Central America. Geological Society of America Special Paper. Geological Society of America, Boulder, pp 111–129

  110. McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, New York

    Google Scholar 

  111. Mckenzie D, O’nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32(5):1021–1091. doi:10.1093/petrology/32.5.1021

    Google Scholar 

  112. Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130(3):304–319

    Article  Google Scholar 

  113. Müntener O, Ulmer P (2006) Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophys Res Lett 33(21):L21308. doi:10.1029/2006GL027629

    Article  Google Scholar 

  114. Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658

    Article  Google Scholar 

  115. O’Neill HSC, Pownceby MI (1993) Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe–“FeO”, Co–CoO, Ni–NiO and Cu–Cu2O oxygen buffers, and new data for the W–WO2 buffer. Contrib Mineral Petrol 114(3):296–314

    Article  Google Scholar 

  116. Pallister JS, Hoblitt RP, Meeker GP, Knight RJ, Siems DF (1996) Magma mixing at Mount Pinatubo: petrographic and chemical evidence from the 1991 deposits. In: Newhall CG, Punongbayan AS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Hong Kong, pp 687–731

  117. Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planet Sci Lett 121(1–2):227–244

    Article  Google Scholar 

  118. Prouteau G, Scaillet B (2003) Experimental constraints on the origin of the 1991 Pinatubo dacite. J Petrol 44(12):2203–2241

    Article  Google Scholar 

  119. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931

    Google Scholar 

  120. Rapp RP, Long X, Shimizu N (2002) Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrol Sin 18:293–302

    Google Scholar 

  121. Rapp RP, Shimizu N, Norman MD (2003) Growth of early continental crust by partial melting of eclogite. Nature 425(6958):605–609

    Article  Google Scholar 

  122. Rapp RP, Laporte D, Martin H, Shimizu N (2006) Experimental insights into slab-mantle interactions in subduction zones: melting of adakite-metasomatized peridotite and the origin of the “arc signature”. Geochim Cosmochim Acta 70(18, Supplement 1):A517–A517

    Article  Google Scholar 

  123. Ridolfi F, Puerini M, Renzulli A, Menna M, Toulkeridis T (2008) The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products. J Volcanol Geotherm Res 176(1):94–106

    Article  Google Scholar 

  124. Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160(1):45–66

    Article  Google Scholar 

  125. Rodriguez C, Selles D, Dungan M, Langmuir C, Leeman W (2007) Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longavi Volcano (36°2′S); Andean Southern Volcanic Zone, Central Chile. J Petrol 48(11):2033–2061

    Article  Google Scholar 

  126. Rooney TO, Franceschi P, Hall C (2011) Water saturated magmas in the Panama Canal region—a precursor to adakite-like magma generation? Contrib Mineral Petrol 161(3):373–388

    Article  Google Scholar 

  127. Rutherford MJ, Devine JD (1996) Preeruption pressure-temperature conditions and volatiles in the 1991 dacitic magma of Mount Pinatubo. In: Newhall CG, Punongbayan AS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines, pp 751–766

  128. Sempere T, Hérail G, Oller J, Bonhomme M (1990) Late Oligocene-early Miocene major tectonic crisis and related basins in Bolivia. Geology 18(10):946–949

    Article  Google Scholar 

  129. Shane P, Nairn IA, Smith VC (2005) Magma mingling in the 50 ka Rotoiti eruption from Okataina Volcanic Centre: implications for geochemical diversity and chronology of large volume rhyolites. J Volcanol Geotherm Res 139(3–4):295–313

    Article  Google Scholar 

  130. Shane P, Smith V, Nairn I (2008) Millennial timescale resolution of rhyolite magma recharge at Tarawera volcano: insights from quartz chemistry and melt inclusions. Contrib Mineral Petrol 156(3):397–411

    Article  Google Scholar 

  131. Sherrod DR, Vallance JW, Tapia-Espinoza A, McGeehin JP (2007) Volcan Baru, eruptive history and volcano hazards assessment. Open-file report 2007-1401. U.S. Geological Survey. doi:http://pubs.usgs.gov/of/2007/1401

  132. Sisson TW, Grove TL (1993) Experimental investigation of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Article  Google Scholar 

  133. Smithies RH (2000) The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182(1):115–125

    Article  Google Scholar 

  134. Steiger RH, Jaeger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  135. Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society Special Publications, pp 313–345

  136. Sun W, Zhou M (2008) The 860 Ma, Cordilleran type Guandaoshan dioritic pluton in the Yangtze block, SW China: implications for the origin of Neoproterozoic magmatism. J Geol 116:238–253

    Article  Google Scholar 

  137. Tappen CM, Webster JD, Mandeville CW, Roderick D (2009) Petrology and geochemistry of ca. 2100–1000 aBP magmas of Augustine volcano, Alaska, based on analysis of prehistoric pumiceous tephra. J Volcanol Geotherm Res 183(1–2):42–62. doi:10.1016/j.jvolgeores.2009.03.007

    Article  Google Scholar 

  138. Tatsumi Y (1982) Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, II. Melting phase relations at high pressures. Earth Planet Sci Lett 60:305–317

    Article  Google Scholar 

  139. Thorkelson DJ, Breitsprecher K (2005) Partial melting of slab window margins: genesis of adakitic and non-adakitic magmas. Lithos 79(1–2):25–41

    Article  Google Scholar 

  140. Tiepolo M, Tribuzio R (2008) Petrology and U–Pb zircon geochronology of amphibole-rich cumulates with Sanukitic affinity from husky ridge (Northern Victoria Land, Antarctica): insights into the role of amphibole in the petrogenesis of subduction-related magmas. J Petrol 49(5):937

    Article  Google Scholar 

  141. Tiepolo M, Vannucci R, Oberti R, Foley S, Bottazzi P, Zanetti A (2000) Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal-chemical constraints and implications for natural systems. Earth Planet Sci Lett 176(2):185–201

    Article  Google Scholar 

  142. Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67(1):417–452

    Article  Google Scholar 

  143. Trenkamp R, Kellogg JN, Freymueller JT, Mora HP (2002) Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J S Am Earth Sci 15(2):157–171

    Article  Google Scholar 

  144. van Andel TH, Heath GR, Malfait BT, Heinrichs DF, Ewing JI (1971) Tectonics of the Panama Basin, eastern equatorial Pacific. Geol Soc Am Bull 82(6):1489–1508

    Article  Google Scholar 

  145. van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosyst 3(10):1056. doi:10.1029/2001GC00025

    Article  Google Scholar 

  146. Vogel TA, Patino LC, Alvarado GE, Gans PB (2004) Silicic ignimbrites within the Costa Rican volcanic front: evidence for the formation of continental crust. Earth Planet Sci Lett 226(1–2):149–159

    Article  Google Scholar 

  147. Vogel TA, Patino LC, Eaton JK, Valley JW, Rose WI, Alvarado GE, Viray EL (2006) Origin of silicic magmas along the Central American volcanic front: genetic relationship to mafic melts. J Volcanol Geotherm Res 156(3–4):217–228

    Article  Google Scholar 

  148. Werner R, Hoernle K, Barckhausen U, Hauff F (2003) Geodynamic evolution of the Galápagos hot spot system (Central East Pacific) over the past 20 my: constraints from morphology, geochemistry, and magnetic anomalies. Geochem Geophys Geosyst 4(12):1108. doi:10.1029/2003GC000576

    Article  Google Scholar 

  149. Westbrook GK, Hardy NC, Heath RP (1995) Structure and tectonics of the Panama-Nazca plate boundary, in Geologic. Geol Soc Am Spec Pap 295:91–110

    Google Scholar 

  150. Wilson DS (1996) Fastest known spreading on the Miocene Cocos-Pacific plate boundary. Geophys Res Lett 23(21):3003–3006. doi:10.1029/96GL02893

    Article  Google Scholar 

  151. Xu J-F, Shinjo R, Defant MJ, Wang Q, Rapp RP (2002) Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 30(12):1111–1114

    Article  Google Scholar 

  152. Yogodzinski GM, Kelemen PB (1998) Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth Planet Sci Lett 158(1–2):53–65

    Article  Google Scholar 

  153. York D, Hall CM, Yanase Y, Hanes JA, Kenyon WJ (1981) 40Ar/39Ar dating of terrestrial minerals with a continuous laser. Geophys Res Lett 8:1136–1138. doi:10.1029/GL008i011p01136

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Natalia Ruiz and Eduardo Camacho for their invaluable support during the sample collection process. We wish to thank Dave Szymanski, Matt Parsons, and Carl Henderson for sample preparation and analytical assistance. We wish to acknowledge the very constructive and detailed reviews of two anonymous referees and the careful editorial handling of Tim Grove.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo J. Hidalgo.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hidalgo, P.J., Vogel, T.A., Rooney, T.O. et al. Origin of silicic volcanism in the Panamanian arc: evidence for a two-stage fractionation process at El Valle volcano. Contrib Mineral Petrol 162, 1115–1138 (2011). https://doi.org/10.1007/s00410-011-0643-2

Download citation

Keywords

  • Panamanian arc
  • El Valle volcano
  • Garnet fractionation
  • Melt extraction
  • Amphibole fractionation
  • Adakite signature