Skip to main content
Log in

Oxygen isotope variations of garnets and clinopyroxenes in a layered diamondiferous calcsilicate rock from Kokchetav Massif, Kazakhstan: a window into the geochemical nature of deeply subducted UHPM rocks

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Calcsilicate and garnet-pyroxene rocks with dolomite and Mg-calcite matrices occur with UHPM diamondiferous biotite gneisses and schists of the Kokchetav Massif. The calcsilicates are characterized by high diamond grade, K-bearing diopside, and very high Mg-garnets (Mg# > 77) with variable Ca contents (Ca# = 42.5–80). A rare calcsilicate sample with alternating layers of different bulk compositions was selected for oxygen isotope and electron probe microanalysis of garnets and pyroxenes. A grain of fresh garnet with a brownish-yellow luminescent inner domain (Mg# 94) and a non-luminescent outer part (Mg# 88) was selected for in situ analysis of δ18O by ion microprobe (10 μm spot). The profile demonstrates a δ18O gradient of 1.5‰/200 μm, from 11.3 (rim) to 12.8‰ (core) VSMOW. Additional 2 mg samples of hand-picked garnet and clinopyroxene fragments from different parts of the same sample (selected by color and chemical differences) were analyzed for δ18O by laser fluorination, yielding even larger differences in δ18O: 6.3–10.6‰ in garnets and 6.1–8.1 in clinopyroxenes. The zonation in δ18O among grains of the same mineral in different lithologies may in part reflect initial heterogeneities of the finely layered sedimentary precursors. The δ18O values for the garnets are among the highest observed for UHP-origin (both for crustal or mantle rocks), confirming a sedimentary origin for these carbonate-bearing rocks, and ruling out a primitive mantle-derived protolith. Oxygen diffusion in garnet at peak metamorphism temperature (1,000°C) was arrested by rapid cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beran A, Libowitzky E (2006) Water in natural mantle minerals II: olivine, garnet and accessory minerals. In: H Keppler, JR Smyth, eds. Rev Mineral Geochim 62:169–191

    Article  Google Scholar 

  • Boyd FR (1970) Garnet peridotites and the system CaSiO3–MgSiO3–Al2O3. Mineralo Soci Am Special Publi 3:63–75

    Google Scholar 

  • Chopin C, Sobolev NV (1995) Principal mineralogic indicators of UHP in crustal rocks. In: Coleman RG, Wang X (eds) Ultra-high pressure metamorphism. Cambridge Univ Press, Cambridge, pp 96–131

    Chapter  Google Scholar 

  • Claoué-Long JC, Sobolev NV, Shatsky VS, Sobolev AV (1991) Zircon response to diamond-pressure metamorphism in the Kokchetav Massif, USSR. Geology 19:710–713

    Article  Google Scholar 

  • Clechenko CC, Valley JW (2003) Oscillatory zoning in garnet from Willsboro wollastonite skarn, Adirondack Mts, NY: a record of shallow hydrothermal processes preserved in a granulite facies terrane. J Metamorph Geol 21:771–784

    Article  Google Scholar 

  • Coghlan RAN (1990) Studies in diffusional transport: grain boundary transport of oxygen in feldspars diffusion of oxygen, strontium and the REEs in garnet and thermal histories of granitic intrusions in south-central Maine using oxygen isotopes. Ph.D. Diss, Brown University

  • Crank J (1975) The mathematics of diffusion. Oxford University Press, New York, p 414

    Google Scholar 

  • De Corte K, Cartigny P, Shatsky VS, Sobolev NV, Javoy M (1998) Evidence of fluid inclusions in metamorphic microdiamonds from the Kokchetav Massif, northern Kazakhstan. Geochim Cosmochim Acta 62:3765–3773

    Article  Google Scholar 

  • Dobretsov NL, Shatsky VS (2004) Exhumation of high-pressure rocks of the Kokchetav Massif: facts and models. Lithos 78:307–318

    Article  Google Scholar 

  • Dobretsov NL, Sobolev NV, Shatsky VS, Coleman RG, Ernst WG (1995) Geotectonic evolution of diamondiferous paragenesis, Kokchetav Complex, Northern Kazakhstan: the geologic enigma of ultrahigh-pressure crustal rocks within a Paleozoic foldbelt. The Island Arc 4:267–279

    Article  Google Scholar 

  • Dobretsov NL, Buslov MM, Zhimulev FI, Travin AV, Zayachkovsky AA (2006) Vendian-early Ordovician geodynamic evolution and model for exhumation of ultrahigh and high-pressure rocks from the Kokchetav subduction-collision zone (northern Kazakhstan). Russ Geol Geophys 47:424–440

    Google Scholar 

  • Dobrzhinetskaya LF, Wirth R, Green HW (2005) Direct observation and analysis of a trapped COH fluid growth medium in metamorphic diamond. Terra Nova 17:472–477

    Article  Google Scholar 

  • Dobrzhinetskaya LF, Wirth R, Green HW (2006) Nanometric inclusions of carbonates in Kokchetav diamonds from Kazakhstan: a new constraint for the depth of metamorphic diamond crystallization. Earth Planet Sci Lett 243:85–93

    Article  Google Scholar 

  • Harlow GE, Sorensen SS (2005) Jade (nephrite and jadeitite) and serpentinite: metasomatic connections. Intern Geol Rev 47:113–146

    Article  Google Scholar 

  • Hermann J, Rubatto D, Korsakov AV, Shatsky VS (2006) The age of metamorphism of diamondiferous rocks determined with SHRIMP dating of zircon. Rus Geol Geophys 47:513–520

    Google Scholar 

  • Hwang SL, Shen P, Chu HT, Yui TF, Liou JG, Sobolev NV, Shatsky VS (2005) Crust-derived potassic fluid in metamorphic microdiamond. Earth Planet Sci Lett 231:295–306

    Article  Google Scholar 

  • Jahn B-M, Rumble D, Liou JG (2003) Geochemistry and isotope tracer study of UHP metamorphic rocks. In: Carswell DA, Compagnoni R (eds) EMU notes in mineralogy, vol 5, pp 365–414

  • Katayama I, Ohta M, Ogasawara Y (2002) Mineral inclusions in zircons from diamond-bearing marble in the Kokchetav Massif, northern Kazakhstan. Eur J Mineral 14:1103–1108

    Article  Google Scholar 

  • Kita NT, Ushikubo T, Fu B, Valley JW (2009) High precision SIMS oxygen isotope analyses and the effect of sample topography. Chem Geol 264:43–57

    Article  Google Scholar 

  • Klein-Ben David O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri EH, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos 112S2:648–659

    Article  Google Scholar 

  • Kohn MJ, Valley JW, Elsenheimer D, Spicuzza MJ (1993) O isotope zoning in garnet and staurolite: evidence for closed-system mineral growth during regional metamorphism. Am Mineral 78:988–1001

    Google Scholar 

  • Korolyuk VN, Lavrentév YG, Usova LV, Nigmatulina EN (2008) JXA-8100 microanalyzer: accuracy of analysis of rock-forming minerals. Russ Geol Geophys 49:165–168

    Article  Google Scholar 

  • Korsakov AV, Shatsky VS, Sobolev NV (1998) The first finding of coesite in eclogites of the Kokchetav Massif. DoklAkad Nauk 360:77–81 (in Russian)

    Google Scholar 

  • Langer K, Robarick E, Sobolev NV, Shatsky VS, Wang W (1993) Single-crystal spectra of garnets from diamondiferous high-pressure metamorphic rocks from Kazakhstan: indications for OH, H2O and FeTi charge transfer. Eur J Mineral 5:1091–1100

    Google Scholar 

  • Logvinova AM, Wirth R, Fedorova EN, Sobolev NV (2008) Nanometer-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation. Eur J Mineral 20:317–331

    Article  Google Scholar 

  • Luth RW (1997) Experimental study of the system phlogopite-diopside from 3.5 to 17 GPa. Am Mineral 82:1198–1209

    Google Scholar 

  • Marakushev AA, Paneyakh NA, Zotov IA (1998) The problem of mantle petrology. Geol Geofiz (Russ Geol Geophys) 39:1750–1755 (1740–1745)

    Google Scholar 

  • Massonne H-J (1995) Experimental and petrogenetic study of UHPM. In: Coleman RG, Wang X (eds) Ultrahigh pressure metamorphism. Cambridge University Press, UK, pp 33–95

    Chapter  Google Scholar 

  • Massonne HJ (2003) A composition of the evolution of diamondiferous quartz-rich rocks from the Saxonian Erzgebirge and the Kokchetav Massif: are so-called diamondiferous gneisses magmatic rocks? Earth Planet SciLett 216:347–364

    Article  Google Scholar 

  • Mattey DP, Lowry D, Macpherson CG, Chazot G (1994) Oxygen isotope composition of mantle minerals by laser fluorination: homogeneity in peridotites, heterogeneity in eclogites. Min Mag 58A:573–574

    Article  Google Scholar 

  • Neuser RD (1995) A new high-intensity cathodoluminescence microscope and its application to weakly luminescing minerals. Bochumer geol geotechArbeiten 44:116–118

    Google Scholar 

  • Ogasawara Y (2005) Microdiamonds in ultrahigh-pressure metamorphic rocks. Elements 1:91–96

    Article  Google Scholar 

  • Ohta M, Mock T, Ogasawara Y, Rumble D (2003) Oxygen, carbon, and strontium isotope geochemistry of diamond-bearing carbonate rocks from Kumdy-Kol, Kokchetav Massif, Kazakhstan. Lithos 70:77–90

    Article  Google Scholar 

  • Page FZ, Kita NT, Valley JW (2010) Ion microprobe analysis in garnets of complex chemistry. Chem Geol 270:9–19

    Article  Google Scholar 

  • Pal’yanov YN, Khokhryakov AV, Borzdov YM, Sokol AG, Gusev VA, Rylov GM, Sobolev NV (1997) Growth conditions and real structure of synthetic diamond crystals. Geol Geofiz (Russ Geol Geophys) 38:882–918 (920–945)

    Google Scholar 

  • Pal’yanov YN, Shatsky VS, Sokol AG, Tomilenko AA, Sobolev NV (2001) Crystallization of metamorphic diamond: an experimental modeling. Dokl Earth Sci 381:935–938

    Google Scholar 

  • Pal’yanov YN, Sokol AG, Borzdov YUM, Khokhryakov AF, Sobolev NV (2002) Diamond formation through carbonate-silicate interaction. Am Mineral 87:1009–1013

    Google Scholar 

  • Pal’yanov YUN, Shatsky VS, Sobolev NV, Sokol AG (2007) The role of mantle ultrapotassic fluids in diamond formation. Proc Natl Acad of Sci of the USA 104:9122–9127

    Article  Google Scholar 

  • Perchuk AL, Burchard M, Maresch WV, Schertl H-P (2005) Fluid-mediated modification of garnet interiors under ultrahigh-pressure metamorphism. Terra Nova 17:545–553

    Article  Google Scholar 

  • Ponomarenko AI, Sobolev NV, Pokhilenko NP, Lavrent`ev YG, Sobolev VS (1976) Diamond-bearing grospydite and kyanite eclogites from the Udachnaya pipe, Yakutia. DoklAkad Nauk SSSR 226:158–161 (in Russian)

    Google Scholar 

  • Ragozin AL, Liou JG, Shatsky VS, Sobolev NV (2009) The timing of the retrograde partial melting in the Kumdy-Kol region (Kokchetav Massif, Northern Kazakhstan). Lithos 109:274–284

    Article  Google Scholar 

  • Rumble D (1998) Stable isotope geochemistry of ultrahigh-pressure rocks. In: Hacker BR, Liou JG (eds) When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks. Kluwer Academic Publishers, Dordrecht, pp 241–259

    Google Scholar 

  • Schertl H-P, Neuser RD, Sobolev NV, Shatsky VS (2004) UHP-metamorphic rocks from Dora Maira/Western Alps and Kokchetav/Kazakhstan: new insights using cathodoluminescence petrography. Eur J Mineral 16:49–57

    Article  Google Scholar 

  • Schertl H-P, Medenbach O, Neuser RD (2005) UHP-metamorphic rocks from Dora Maira, Western Alps: Cathodoluminescence of silica and twinning of coesite. Russ Geol Geophys 46:1327–1332

    Google Scholar 

  • Schulze DJ, Valley JR, Bell DR, Spicuzza MJ (2001) Oxygen isotope variations in Cr-poor megacrysts from kimberlite. Geochim Cosmoch Acta 65:4375–4384

    Article  Google Scholar 

  • Schulze DJ, Valley JW, Spicuzza MJ, de Channer DMR (2003) The oxygen isotope composition of eclogitic and peridotitic garnet xenocrysts from the La Ceniza kimberlite, Guaniamo, Venezuela. Intern Geol Rev 45:968–975

    Article  Google Scholar 

  • Shatsky VS, Sobolev NV (2003) The Kokchetav Massif of Kazakhstan. In: Carswell DA, Compagnoni R (eds) “Ultrahigh pressure metamorphism”. EMU notes in Mineralogy, vol 5, pp 75–103

  • Shatsky VS, Sobolev NV, Vavilov MA (1995) Diamond-bearing metamorphic rocks of Kokchetav Massif (Northern Kazakhstan). In: Coleman RG, Wang X (eds) Ultrahigh pressure metamorphism. Cambridge University Press, UK, pp 427–455

    Chapter  Google Scholar 

  • Shatsky VS, Theunissen K, Dobretsov NL, Sobolev NV (1998) New indications of ultrahigh-pressure metamorphism in the mica schists of the Kulet site of the Kokchetav Massif (north Kazakhstan). Geol Geofiz (Russ Geol Geophys) 39:1039–1044 (1041–1046)

    Google Scholar 

  • Shatsky VS, Jagoutz E, Sobolev NV, Kozmenko OA, Parkhomenko VS, Troesch M (1999) Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav Massif (Northern Kazakhstan). Contrib Mineral Petrol 137:185–205

    Article  Google Scholar 

  • Shatsky VS, Pal’yanov YN, Sokol AG, Tomilenko AA, Sobolev NV (2005) Diamond formation in UHP dolomite marbles and garnet-pyroxene rocks of the Kokchetav Massif, Northern Kazakhstan: natural and experimental evidence. Intern Geol Rev 47:999–1010

    Article  Google Scholar 

  • Shatsky VS, Ragozin AL, Sobolev NV (2006a) Some aspects of metamorphic evolution of ultrahigh pressure calc-silicate rocks of the Kokchetav Massif. Russ Geol Geophys 47:105–119

    Google Scholar 

  • Shatsky VS, Sitnikova ES, Kozmenko OA, Palessky SV, Nikolayeva IV, Zayachkovskiy AA (2006b) Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav Massif). Russ Geol Geophys 47:485–498

    Google Scholar 

  • Sitnikova ES, Shatsky VS (2009) New FTIR spectroscopy data on the composition of the medium of diamond crystallization in metamorphic rocks of the Kokchetav Massif. Russ Geol Geophys 50:842–849

    Article  Google Scholar 

  • Sobolev NV, Shatsky VS (1990) Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation. Nature 343:742–745

    Article  Google Scholar 

  • Sobolev VS, Sobolev NV (1980) New evidence of the sinking to great depths of the eclogitized rocks of Earth crust. Dokl Akad Nauk SSSR 250:683–685

    Google Scholar 

  • Sobolev NV, Yefimova ES, Koptil VI, Lavrent′ev YG, Sobolev VS (1976) Inclusions of coesite, garnet and omphacite in diamonds of Yakutia-first find of coesite paragenesis. Dokl Akad Nauk SSSR 230:1442–1444 (in Russian)

    Google Scholar 

  • Sobolev NV, Galimov EM, Ivanovskaya IN, Yefimova ES (1979) Isotopic composition of carbon of diamonds containing crystalline inclusions. Dokl Akad Nauk SSSR 249:1217–1220

    Google Scholar 

  • Sobolev NV, Shatsky VS, Vavilov MA, Goryainov SV (1991) Coesite inclusion in zircon from diamondiferous gneiss from Kokchetav Massif–first find of coesite in metamorphic rocks in the USSR territory. Dokl Akad Nauk 321:184–188 (in Russian)

    Google Scholar 

  • Sobolev NV, Shatsky VS, Vavilov MA, Goryainov SV (1994) Zircon from ultra high pressure metamorphic rocks of folded regions as an unique container of inclusions of diamond, coesite and coexisting minerals. Dokl Akad Nauk 334:488–492 (in Russian)

    Google Scholar 

  • Sobolev NV, Schertl H-P, Burchard M, Shatsky VS (2001) An unusual pyrope-grossular garnet and its paragenesis from diamondiferous carbonate silicate rocks of the Kokchetav Massif, Kazakhstan. Dokl Earth Sci 380:791–794

    Google Scholar 

  • Sobolev NV, Shatsky VS, Liou JG, Zhang RY, Hwang SL, Shen P, Chu HT, Yui TF, Zayachkovsky AA, Kasymov MA (2003) US-Russian Civilian Research and Development Fund Project: an origin of microdiamonds in metamorphic rocks of the Kokchetav Massif, Northern Kazakhstan. Episodes 26:290–294

    Google Scholar 

  • Sobolev NV, Schertl H-P, Neuser RD, Shatsky VS (2007) Relict unusually low iron pyrope-grossular garnets in UHPM calc-silicate rocks of the Kokchetav Massif, Kazakhstan. Intern Geol Rev 9:717–731

    Article  Google Scholar 

  • Sobolev NV, Logvinova AM, Efimova ES (2009) Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: implications for role of volatiles in diamond formation. Russ Geol Geophys 50:1234–1248

    Article  Google Scholar 

  • Spetsius ZV, Taylor LA, Valley JW, De Angelis MT, Spicuzza M, Ivanov AS, Banzeruk VI (2008) Diamondiferous xenoliths from crustal subduction: garnet oxygen isotopes from the Nyurbinskaya pipe, Yakutia. Eur J Mineral 20:375–385

    Article  Google Scholar 

  • Valley JW (1986) Stable Isotope geochemistry of metamorphic rocks. In: Valley JW, Taylor HP, O’Neil JR (eds) Stable Isotopes in high temperature geological processes, vol 16. Mineralogical Society of America, Washington, DC, pp 445–489

    Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 53, pp 343–385

  • Valley JW, Cole DR (2001) Stable isotope geochemistry. Rev Mineral Geochem 43:662

    Google Scholar 

  • Valley JW, Kita NT (2009) In situ oxygen isotope geochemistry by ion microprobe. In: Fayek M (ed) MAC short course: secondary ion mass spectrometry in the earth sciences, vol 41, pp 19–63

  • Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231

    Article  Google Scholar 

  • Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon Megacrysts from Kimberlite: oxygen isotope heterogeneity among mantle melts. Contrib Mineral Petrol 133:1–11

    Article  Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotopes in magmatic zircon. Contrib Mineral Petrol 150:561–580

    Article  Google Scholar 

  • Vielzeuf D, Champenois M, Valley JW, Brunet F, Devidal JL (2005) SIMS analyses of oxygen isotopes: matrix effects in Fe-Mg-Ca garnets. Chem Geol 223(4):208–226

    Article  Google Scholar 

  • Zhang RY, Liou JG, Ernst WG, Coleman RG, Sobolev NV, Shatsky VS (1997) Metamorphic evolution of diamond-bearing rocks from the Kokchetav Massif, northern Kazakhstan. J Metamorph Geol 15:479–496

    Article  Google Scholar 

  • Zonenshain LP, Kuzmin MI, Natapov LM (1990) Geology of the USSR: a plate tectonic synthesis. Geodyn Monogr Ser, Am Geophys Union, Washington, DC 242

    Book  Google Scholar 

Download references

Acknowledgments

We thank W. Faryad, R. Abart, V.V. Reverdatto and Y.-F. Zheng for helpful comments on an earlier version of the manuscript and two anonymous reviewers for their detailed suggestions related to the present version. We gained a lot from the experience of Jochen Hoefs, the editor—thank you for your valuable suggestions and final review. Fruitful discussions with Doug Rumble helped improve clarity of the results. The WiscSIMS laboratory at the University of Wisconsin is partly supported by NSF-EAR (0319230, 0744079) and DOE (93ER14389). We are grateful to R. Lehmann (RUB) for drafting work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-P. Schertl.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobolev, N.V., Schertl, HP., Valley, J.W. et al. Oxygen isotope variations of garnets and clinopyroxenes in a layered diamondiferous calcsilicate rock from Kokchetav Massif, Kazakhstan: a window into the geochemical nature of deeply subducted UHPM rocks. Contrib Mineral Petrol 162, 1079–1092 (2011). https://doi.org/10.1007/s00410-011-0641-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0641-4

Keywords

Navigation