Skip to main content

Advertisement

Log in

Strength of single-crystal orthopyroxene under lithospheric conditions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

A Correction to this article was published on 02 April 2018

Abstract

Creep strength of oriented orthopyroxene single crystals was investigated via shear deformation experiments under lithospheric conditions [P (pressure) = 1.3 GPa and T (temperature) = 973–1,373 K]. For the A-orientation (shear direction [001] on (100) plane), the samples have transformed completely to clinoenstatite and much of the deformation occurred after transformation. In contrast, for the B-orientation (shear direction [001] on (010) plane), samples remained orthoenstatite and deformation occurred through dislocation motion in orthoenstatite. The strength of orthopyroxene with these orientations is smaller than for olivine aggregates under all experimental conditions. Flow of the B-orientation samples is described by a power-law, and the pre-exponential constant, the apparent activation energy, and the stress exponent are determined to be A = 10−9.5 s−1·MPa−4.2, Q = 114 kJ/mol and n = 4.2. However, for the A-orientation, the results cannot be fit by a single flow law and we obtained the following: A = 108.9 s−1·MPa−3.0, Q = 459 kJ/mol and n = 3.0 at high temperatures (≥1,173 K), and A = 10−27.4 s−1·MPa−14.3, Q = 296 kJ/mol and n = 14.3 at low temperatures (<1,173 K). The stress exponent for the low-temperature regime is high, suggesting that deformation involves some processes where the activation energy decreases with stress such as the Peierls mechanism. Our study shows that orthopyroxene with these orientations is significantly weaker than olivine under the lithospheric conditions suggesting that orthopyroxene may reduce the strength of the lithosphere, although the extent to which orthopyroxene weakens the lithosphere depends on its orientation and connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anastasiou P, Seifert F (1972) Solid solubility of Al2O3 in enstatite at high temperatures and 1–5 kb water pressure. Contrib Mineral Petrol 34:272–287

    Article  Google Scholar 

  • Bai Q, Mackwell SJ, Kohlstedt DL (1991) High-temperature creep of olivine single crystals 1. Mechanical results for buffered samples. J Geophys Res 96:2441–2463

    Article  Google Scholar 

  • Balachandar S, Yuen D, Reuteler D (1995) Localization of toroidal motion and shear heating in 3-d high Rayleigh number convection with temperature-dependent viscosity. Geophys Res Lett 22:477–480

    Article  Google Scholar 

  • Bercovici D (2003) The generation of plate tectonics from mantle convection. Earth Planet Sci Lett 205:107–121

    Article  Google Scholar 

  • Boullier AM, Gueguen Y (1975) SP-mylonites: Origin of some mylonites by superplastic flow. Contrib Mineral Petrol 50:93–104

    Article  Google Scholar 

  • Braun J, Chery J, Poliakov A, Mainprice D, Vauchez A, Tomassi A, Daignieres M (1999) A simple parameterization of strain localization in the ductile regime due to grain size reduction: a case study for olivine. J Geophys Res 104:25167–25181

    Article  Google Scholar 

  • Bystricky M, Mackwell S (2001) Creep of dry clinopyroxene aggregates. J Geophys Res 106:13443–13454

    Article  Google Scholar 

  • Carter JL (1970) Mineralogy and chemistry of the Earth’s upper mantle based on the partial fusion–partial crystallization model. Bull Geol Soc Am 81:2021–2034

    Article  Google Scholar 

  • Chopra PN, Paterson MS (1981) The experimental deformation of dunite. Tectonophysics 78:453–473

    Article  Google Scholar 

  • Coe RS, Kirby SH (1975) The orthoenstatite to clinoenstatite transformation by shearing and reversion by annealing: mechanism and potential applications. Contrib Mineral Petrol 52:29–55

    Article  Google Scholar 

  • Demouchy S, Schneider SE, Mackwell SJ, Zimmerman ME, Kohlstedt DL (2009) Experimental deformation of olivine single crystals at lithospheric temperatures. Geophys Res Lett 36:L04304. doi:10.1029/2008GL036611

  • Durham WB, Goetze C (1977) Plastic flow of oriented single crystal of olivine, 1, mechanical data. J Geophys Res 82:5737–5753

    Article  Google Scholar 

  • Evans B, Goetze C (1979) The temperature variation of hardness of olivine and its implication for polycrystalline yield stress. J Geophys Res 84:5505–5524

    Article  Google Scholar 

  • Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon, New York, 167 pp

  • Gleason GC, Tullis J (1993) Improving flow laws and piezometers for quartz and feldspar aggregates. Geophys Res Lett 20:2111–2114

    Article  Google Scholar 

  • Goetze C (1975) Sheared lherzolites: from the point of view of rock mechanics. Geology 3:172–173

    Article  Google Scholar 

  • Hiraga T, Tachibana C, Ohashi N, Sano S (2010) Grain growth systematics for forsterite ± enstatite aggregates: effect of lithology on grain size in the upper mantle. Earth Planet Sci Lett 291:10–20

    Article  Google Scholar 

  • Hitchings RS, Paterson MS, Bitmead J (1989) Effects of iron and magnetite additions in olivine-pyroxene rheology. Phys Earth Planet Sci 55:277–291

    Article  Google Scholar 

  • Ingrin J, Skogby H (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur J Mineral 12:543–570

    Google Scholar 

  • Jung H, Karato S (2001) Effects of water on dynamically recrystallized grain-size of olivine. J Struct Geol 23:1337–1344

    Article  Google Scholar 

  • Karato S, Jung H (2003) Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag A83:401–414

    Article  Google Scholar 

  • Karato S, Lee K-H (1999) Stress and strain distribution in deformed olivine aggregates: inference from microstructural observations and implications for texture development. In: Szpunar JA (ed) Proceedings of the twelfth international conference on textures of materials, ITOCOM-12, vol 2. pp 1546–1555

  • Karato S, Paterson MS, Fitz Gerald JD (1986) Rheology of synthetic olivine aggregates: influence of water and grain size. J Geophys Res 91:8151–8176

    Article  Google Scholar 

  • Karato S, Jung H, Katayama I, Skemer P (2008) Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu Rev Earth Planet Sci 36:59–95

    Article  Google Scholar 

  • Keppler H, Bolfan-Casanova N (2006) Thermodynamics of water solubility and partitioning. Rev Mineral Geochem 62:193–230

    Article  Google Scholar 

  • Kocks WF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Prog Mater Sci 19:1–291

    Article  Google Scholar 

  • Kohlstedt DL, Goetze C, Durham WB (1976) Experimental deformation of single crystal olivine with application to flow in the mantle. In: Strens RGJ (ed) The physics and chemistry of minerals and rocks. Wiley, New York, pp 35–49

    Google Scholar 

  • Kohlstedt DL, Nichols HPK, Hornack P (1980) The effect of pressure on the rate of dislocation recovery in olivine. J Geophys Res 88:3122–3130

    Article  Google Scholar 

  • Kohlstedt DL, Evans B, Mackwell S (1995) Strength of the lithosphere: constraints imposed by laboratory experiments. J Geophys Res 100:17587–17602

    Article  Google Scholar 

  • Kollé JJ, Blacic JD (1983) Deformation of single-crystal clinopyroxenes: 2. Dislocation-controlled flow processes in hedenbergite. J Geophys Res 88:2381–2393

    Article  Google Scholar 

  • Korenaga J (2007) Thermal cracking and the deep hydration of oceanic lithosphere: a key to the generation of plate tectonics? J Geophys Res 112:B05408. doi:10.1029/2006JB004502

    Article  Google Scholar 

  • Mackwell SJ (1991) High-temperature rheology of enstatite: implications for creep in the mantle. Geophys Res Lett 18:2027–2030

    Article  Google Scholar 

  • Mirwald PW, Getting IC, Kennedy GC (1975) Low-friction cell for piston-cylinder high-pressure apparatus. J Geophys Res 80:1519–1525

    Article  Google Scholar 

  • Mitchell TE, Thornton PR (1963) Work-hardening characteristics of Cu and alpha-brass single crystals between 4.2 and 500 degrees K. Philos Mag 8:1127–1159

    Article  Google Scholar 

  • Ohuchi T, Nakamura M (2007) Grain growth in the forsterite–diopside system. Phys Earth Planet Inter 160:1–21

    Article  Google Scholar 

  • Paterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Minéral 105:20–29

    Google Scholar 

  • Phakey P, Dollinger G, Christie J (1972) Transmission electron microscopy of experimentally deformed olivine crystals. In: Heard HC et al (eds) Flow and fracture of rocks: the Griggs volume, Geophysical Monograph Series, vol 16. AGU, Washington, DC, pp 117–138

    Google Scholar 

  • Raleigh CB, Kirby SH, Carter NL, Ave’ Lallemant HG (1971) Slip and the clinoenstatite transformation as competing rate processes in enstatite. J Geophys Res 76:4011–4022

    Article  Google Scholar 

  • Richards MA, Yang W-S, Baumgardner JR, Bunge H-P (2001) Role of a low-viscosity zone in stabilizing plate tectonics: Implications for comparative terrestrial planetology. Geochem Geophys Geosyst 2. doi:10.1029/2000GC000115

  • Ross JV, Nielsen KC (1978) High-temperature flow of wet polycrystalline enstatite. Tectonophysics 44:233–261

    Article  Google Scholar 

  • Rybacki E, Renner J, Konrad K, Harbott W, Rummel F, Stöckhert B (1998) A servohydraulically-controlled deformation apparatus for rock deformation under conditions of ultra-high pressure metamorphism. Pure Appl Geophys 152:579–606

    Article  Google Scholar 

  • Seeger A (1957) Dislocations and mechanical properties of crystals (ed. Fisher JC), 243 pp. Wiley, New York

    Google Scholar 

  • Skemer P, Karato S (2008) Sheared lherzolite xenoliths revisited. J Geophys Res 113:B07205. doi:10.1029/2007JB005286

    Article  Google Scholar 

  • Skrotzki W, Wedel A, Weber K, Müller WF (1990) Microstructure and texture in lherzolites of the Balmuccia massif and their significance regarding the thermomechanical history. Tectonophysics 179:227–251

    Article  Google Scholar 

  • Smith BK, Carpenter FO (1987) Transient creep in orthosilicates. Phys Earth Planet Sci 49:314–324

    Article  Google Scholar 

  • Solomatov VS, Moresi L (1997) Stagnant lid convection on venus. J Geophys Res 101:4737–4753

    Article  Google Scholar 

  • Suhr G (1993) Evaluation of upper mantle microstructures in the Table Mountain massif (Bay of Islands ophiolite). J Struct Geol 15:1273–1292

    Article  Google Scholar 

  • Tackley PJ (2000) Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere. Geochem Geophys Geosyst 1. doi:10.1029/2000GC000043

  • Turcotte DL, Schubert G (1982) Geodynamics: applications of continuum physics to geological problems, 450 pp. Wiley, New York

    Google Scholar 

  • Warren JM, Hirth G (2006) Grain size sensitive deformation mechanisms in naturally deformed peridotites. Earth Planet Sci Lett 248:438–450

    Article  Google Scholar 

  • Zhang J, Green HW (2007) Experimental investigation of eclogite rheology and its fabrics at high temperature and pressure. J Metamorphic Geol 25:97–115

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Korenaga and D. Spengler for discussion and Z. Jiang for technical assistance. Official review by two anonymous reviewers improved the manuscript. This study was supported by a research fellowship from Japan Society for the Promotion of Science (to T. Ohuchi), US National Science Foundation grants (to S. Karato), and the Global COE program of Ehime University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Ohuchi.

Additional information

Communicated by H. Keppler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohuchi, T., Karato, Si. & Fujino, K. Strength of single-crystal orthopyroxene under lithospheric conditions. Contrib Mineral Petrol 161, 961–975 (2011). https://doi.org/10.1007/s00410-010-0574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0574-3

Keywords

Navigation