Skip to main content

Advertisement

Log in

Hydrogen diffusion in spinel grain boundaries and consequences for chemical homogenization in hydrous peridotite

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Hydrogen can be stored in the structure of nominally anhydrous minerals as point defects, and these impurities substantially modify many physical properties of Earth’s mantle minerals. However, mantle rocks are composed of mineral grains separated by grain boundaries and interphase grains boundaries. Therefore, as a potential hydrogen reservoir, grain boundaries should be given proper attention. Here, I report an experimental investigation into hydrogen diffusion through grain boundaries in polycrystalline aggregates. Sintering and diffusion experiments were performed using a gas-medium high-pressure vessel at under pressure of 300 MPa and over a temperature range of 900–1,250°C. The diffusion assembly consisted of a polycrystalline cylinder of aluminous spinel + olivine crystals with a talc cylinder as the main hydrogen source. A Ni capsule was used to buffer the oxygen fugacity at Ni–NiO. Experimental durations varied from 5 min to 5 h. The presence of hydrogen in the crystals was measured by Fourier-transform infrared spectroscopy. The calculation of the diffusion coefficients was based on the estimation of the characteristic distance. The absence or presence of hydrogen recorded by the ‘hydrogen sensor’ olivines embedded in the aggregate allows the estimation of bounds on this characteristic distance. Results presented here suggest that hydrogen effective diffusion coefficients are only one order of magnitude faster (~10−9 m2s−1 at 1,000°C) than in an olivine single crystal along the [100] axis. Resulting diffusion coefficients for hydrogen in grain boundary are four orders of magnitude faster than in a single crystal, but this diffusivity is not fast enough to affect hydrogen mobility in mantle rocks with grain sizes greater than ~1 mm. Thus, very limited chemical homogenization would occur using grain boundaries diffusion in mantle hydrous peridotite for incompatible and volatile element, such as hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aines RD, Rossman GR (1984) Water in minerals? A peak in the infrared. J Geophys Res (B6) 89:4059–4071

    Article  Google Scholar 

  • Aucouturier M (1982) Grain boundary segregations and hydrogen embrittlement. J Physique 43(C6–12):C6–C175

    Google Scholar 

  • Bahr K, Simpson F (2002) Electrical anisotropy below low- and fast- plates: paleoflow in the upper mantle? Science 295:1270–1272

    Article  Google Scholar 

  • Balluffi RW, Allen SM, Carter WC (2005) Kinetics of materials. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  • Bedini MR, Bodinier JL, Dautria J-M, Morten L (1999) Evolution of LILE-renriched small melt fractions in the lithospheric mantle: a case study of the East African Rift. Earth Planet Sci Lett 153:67–83

    Article  Google Scholar 

  • Béjina F, Jaoul O, Liebermann RC (2003) Diffusion in minerals at high pressure: a review. Earth Planet Sci Lett 139:3–20

    Google Scholar 

  • Bell D, Rossman G (1992) Water in earth’s mantle: the role of nominally anhydrous minerals. Science 255:1391–1397

    Article  Google Scholar 

  • Bell D, Rossman G, Maldener J, Endisch D, Rauch F (2003) Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res 108(B2). doi: 1029/2001JB000679

  • Berry A, Hermann J, O’Neill HSC, Foran GJ (2005) Fingerprinting the water site in mantle olivine. Geology 33:869–872

    Article  Google Scholar 

  • Bolfan-Casanova N (2005) Water in the earth’s mantle. Mine Mag 69:229–257

    Article  Google Scholar 

  • Bolfan-Casanova N, Keppler H, Rubie DC (2000) Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa: implications for the distribution of water in the earth’s mantle. Earth Planet Sci Lett 182:209–221

    Article  Google Scholar 

  • Brady JB (1983) Intergranular diffusion in metamorphic rocks. Am J Sci 283-A:181–200

    Google Scholar 

  • Brenan JM, Watson EB (1987) Fluids in the lithosphere, 1. Experimentally-determined wetting characteristics of CO2–H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation. Earth Planet Sci Lett 85:497–515

    Article  Google Scholar 

  • Chakraborty S, Farver JR, Yund RA, Rubie DC (1994) Mg tracer diffusion in synthetic forsterite and San carlos olivine as a function of P, T and fO2. Phys Chem Miner 21:489–500

    Article  Google Scholar 

  • Chen S, Hiraga T, Kohlstedt DL (2006) Water weakening of clinopyroxene in the dislocation creep regime. J Geophys Res 111:B08203. doi:10.1029/2005JB003885

    Article  Google Scholar 

  • Chopra PN, Paterson MS (1984) The role of water in the deformation of dunite. J Geophys Res 89:7861–7876

    Article  Google Scholar 

  • Costa F, Chakraborty S (2008) The effect of water in Si and O diffusion rates in olivine and implications for the transport properties and processes in the upper mantle. Phys Earth Planet Inter 166:11–29

    Article  Google Scholar 

  • Demouchy S, Mackwell SJ (2003) Water diffusion in synthetic iron-free forsterite. Phys Chem Miner 30:486–494

    Article  Google Scholar 

  • Demouchy S, Mackwell S (2006) Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys Chem Miner 33:347–355

    Article  Google Scholar 

  • Demouchy S, Jacobsen SD, Gaillard F, Stern CR (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34:429–432

    Article  Google Scholar 

  • Demouchy S, Mackwell SJ, Kohlstedt DL (2007) Influence of hydrogen on Fe–Mg interdiffusion in (Mg, Fe)O and implications for earth’s lower mantle. Contrib Miner Petrol 154:279–289

    Article  Google Scholar 

  • Dixon JE, Leist L, Langmuir C, Schilling J-G (2002) Recycled dehydrated lithosphere observed in plume-influenced mid-ocean ridge-basalt. Nature 420:385–389

    Article  Google Scholar 

  • Harrison LG (1961) Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides. Trans Faraday Soc 57:1191–1199

    Article  Google Scholar 

  • Hayden LA, Watson EB (2007) A diffusion mechanism for core-mantle interaction. Nature 450:709–712

    Article  Google Scholar 

  • Hayden LA, Watson EB (2008) Grain boundary mobility of carbon in earth’s mantle: a possible carbon flux from the core. Proceed Nat Acad Sci 105(25):8537–8541

    Article  Google Scholar 

  • Heidelbach F, Terry MP, Bystricky M, Holzapfel C, McCammon C (2009) A simultaneous deformation and diffusion experiments: quantification of the role of deformation in enhancing metamorphic reactions. Earth Planet Sci Lett 278:386–394

    Article  Google Scholar 

  • Hier-Majumder S, Anderson IM, Kohlstedt DL (2004) Influence of protons on Fe–Mg interdiffusion in olivine. J Geophys Res 110. doi: 10.1029/2004JB003292

  • Hiraga T, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system I: analytical techniques, thermodynamics, and segregation characteristics. Geochim Cosmochim Acta 71:1266–1280

    Article  Google Scholar 

  • Hiraga T, Kohlstedt DL (2009) Systematic distribution of incompatible elements in mantle peridotite: importance of intra and—inter-granular melt-like component. Contrib Miner Petrol 158:149–167

    Article  Google Scholar 

  • Hiraga T, Anderson IM, Kohlstedt DL (2003) Chemistry of grain boundaries in mantle rocks. Am Miner 88:1015–1019

    Google Scholar 

  • Hiraga T, Anderson IM, Kohlstedt DL (2004) Grain boundaries as reservoirs of incompatible elements in the earth’s mantle. Nature 427:699–703

    Article  Google Scholar 

  • Hiraga T, Hirschmann MM, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside-forsterite system 2: applications of interface enrichment to mantle geochemistry. Geochim Cosmochim Acta 71:1281–1289

    Article  Google Scholar 

  • Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108

    Article  Google Scholar 

  • Holzapfel C, Rubie DC, Mackwell SJ, Frost DJ (2003) Effect of pressure on Fe–Mg interdiffusion in (Fe x Mg1−x )O, ferropericlase. Phys Earth Planet Inter 139:21–34

    Article  Google Scholar 

  • Huang X, Xu Y, Karato S-I (2005) Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434:746–749

    Article  Google Scholar 

  • Ingrin J, Skogby H (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. Eur J Miner 12:543–570

    Google Scholar 

  • Jacobsen SD, Smyth JR, Spetzler HA, Frost DJ (2004) Sound velocities and elastic constant of iron-bearing hydrous ringwoodite. Phys Earth Planet Inter 143–144:47–56

    Article  Google Scholar 

  • Joesten R (1991) Grain boundary diffusion kinetics in silicate and oxide minerals. In: Ganguly J (ed) Diffusion, atomic ordering and mass transport, vol 8. Advances in physical geochemistry. Springer, Berlin, pp 345–395

  • Karato S-I (1990) The role of hydrogen diffusivity in the electrical conductivity of the upper mantle. Nature 347:272–273

    Article  Google Scholar 

  • Karato S-I (2008) Deformation of earth material. Cambridge University Press, Cambridge 463 p

    Google Scholar 

  • Keppler H, Bolfan-Casanova N (2006) Thermodynamics of water solubility and partitioning. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals, 62. American Mineralogical Society Geochemical Society, Chantilly (Vir.), pp 193–230

    Google Scholar 

  • Kirchheim R (2001) Solubility and diffusivity of hydrogen in complex materials. Phys Scripta T94:58–62

    Article  Google Scholar 

  • Kohlstedt DL (2006) The role of water in high-temperature rock deformation. In: Keppler H, Smyth JR (eds) Water in Nominally Anhydrous Minerals, 62. American Mineralogical Society Geochemical Society, Chantilly (Vir.), pp 377–396

    Google Scholar 

  • Kohlstedt DL, Mackwell SJ (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem 207:47–162

    Google Scholar 

  • Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contrib Miner Petrol 123:345–357

    Article  Google Scholar 

  • Kröger FA, Vink HJ (1956) Relation between the concentrations of imperfections in crystallines solids. Academy Press, New York

    Google Scholar 

  • Le Roux V, Tommasi A, Vauchez A (2008) Feedback between melt percolation and deformation in an exhumed lithosphere-asthenosphere boundary. Earth Planet Sci Lett 274:401–413

    Article  Google Scholar 

  • Libowitzky E, Rossman GR (1997) An IR absorption calibration for water in minerals. Am Miner 82:1111–1115

    Google Scholar 

  • Mackwell SJ, Kohlstedt DL (1990) Diffusion of hydrogen in olivine: implications for water in the mantle. J Geophys Res 95(B4):5079–5088

    Article  Google Scholar 

  • Mackwell SJ, Kohlstedt DL, Paterson (1985) The role of water in the deformation of olivine single crystals. J Geophys Res 90(B13):11,319–11333

    Article  Google Scholar 

  • Mackwell SJ, Dimos D, Kohlstedt DL (1988) Trancient creep of olivine: point-defect relaxation times. Philos Mag A 57(5):779–789

    Article  Google Scholar 

  • Mackwell SJ, Bystricky M, Sproni C (2005) Fe–Mg interdiffusion in (Mg,Fe)O. Phys Chem Miner. doi:10.1007/s00269-005-0013-6

  • Matveev S, O’Neill HS, Ballaus C, Taylor WR, Green DH (2001) Effect of silica activity on OH IR spectra of olivine: implications for Low-aSiO2 mantle metasomatism. J Petrol 42(4):721–729

    Article  Google Scholar 

  • McCaig A, Covey-Crump SJ, Ben Ismail W, Lloyd GE (2006) Fast diffusion along mobile grain boundaries in calcite. Contrib Miner Petrol. doi: 10.1007/s00410-006-0138-8

  • McCammon CA (2005) The paradox of mantle redox. Science 308:807

    Article  Google Scholar 

  • Mei S, Kohlstedt DL (2000) Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res 105(B9):21,471–21481

    Google Scholar 

  • Miller GH, Rossman GR, Harlow GE (1987) The natural occurence of hydroxide in olivine. Phys Chem Miner 14:461–472

    Article  Google Scholar 

  • Misener DJ (1974) Cationic diffusion in olivine at 1400°C and 35 kbar. In: Hoffman AW et al (eds) Geochemical transport and kinetics. Carnegie Inst, Washington, DC, pp 117–129

    Google Scholar 

  • Müller T, Dohmen R, Chakraborty S (2009) Modelling infiltration driven reactions using experiments: coupled dissolution-precipitation and exchange reaction between spinel grains in the presence of water. Geochim Cosmochim Acta 73:A915

    Google Scholar 

  • Mütschele T, Kirchheim R (1987) Segregation and diffusion of hydrogen in grain boundaries of Palladium. Scripta Metal 21:135–140

    Article  Google Scholar 

  • Nakamura A, Schmalzried H (1983) On the nonstoichiometry and point defects of olivine. Phys Chem Miner 10:27–37

    Article  Google Scholar 

  • Nakamura A, Schmalzried H (1984) On the Fe2+-Mg2+-interdiffusion in olivine (II). Ber. Bunsenges. Phys Chem 88:140–145

    Article  Google Scholar 

  • Nakamura M, Watson EB (2001) Experimental study of aqueous fluid infiltration into quartzite: implications for the kinetics of fluid redistribution and grain growth driven by interfacial energy reduction. Geofluids 1:73–89

    Article  Google Scholar 

  • Nakamura M, Watson EB (2005) Grain growth control of isotope exchange between rocks and fluids. Geology 33:829–832

    Article  Google Scholar 

  • O’Neill HS, Wall V (1987) The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of Earth’s upper mantle. J Petrol 28:1169–1191

    Google Scholar 

  • Paterson M (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Minér 105:20–29

    Google Scholar 

  • Paterson MS (1990) Rock deformation experimentation. In: Duba A et al (eds) The brittle-ductile transition in rocks: the Head, vol 56. Geophys Monogr Ser, AGU, Washington, DC, pp 187–194

    Google Scholar 

  • Pawley AR, Wood BJ (1995) The high-pressure stability of talc and 10 A phase: potential storage site of H2O in subduction zones. Am Min 80:998–1003

    Google Scholar 

  • Pedersen A, Jònsson H (2009) Simulation of hydrogen diffusion at grain boundaries in aluminium. Acta Mater 57:4036–4045

    Article  Google Scholar 

  • Pitzer KS, Sterner SM (1994) Equations of state valid continuously from zero to extreme pressures for H2O and CO2. J Chem Phys 101:3111–3116

    Article  Google Scholar 

  • Sato H (1986) High temperature a.c. electrical properties of olivine single crystal with varying oxygen partial pressure: implications for the point defect chemistry. Earth Planet Inter 41:269–282

    Article  Google Scholar 

  • Schmalzried H (1981) Solid state reactions. Verlag Chemie, Weinheim 254 pp

    Google Scholar 

  • Soustelle V, Tommasi A, Demouchy S, Ionov D (2010) Deformation and fluid-rock interactions in supra-subduction mantle: microstructures and water contents in peridotite xenoliths from the Avacha volcano, Kamchatka. J Petrol 51:363–394

    Article  Google Scholar 

  • Sutton AR, Balluffi RW (1995) Interfaces in crystalline materials. Oxford Science Publications, Oxford, 819 p

    Google Scholar 

  • Van Orman J, Grove T, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Miner Petrol 141:687–703

    Article  Google Scholar 

  • Van Orman JA, Grove TL, Shimizu N, Layne GD (2002) Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa. Contrib Miner Petrol 142:416–424

    Article  Google Scholar 

  • Van Orman JA, Fei Y, Hauri E, Wang Y (2003) Diffusion in MgO at high pressures: constraints on deformation mechanisms and chemical transport at the core-mantle boundary. Geophys Res Lett 30. doi: 10.1029/2002GL016343

  • Wang Z, Hiraga T, Kohlstedt DL (2004) Effect of H+ on Fe–Mg interdiffusion in olivine, (Fe–Mg)2SiO4. Appl Phys Lett 85:209–211

    Article  Google Scholar 

  • Wang J, Mookherjee M, Xu Y, Karato S (2006) The effect of water on the electrical conductivity of olivine. Nature 443:977–980

    Article  Google Scholar 

  • Wernet P, Testemale D, Hazeman J-L, Argoud R, Glatzel P, Petersson LGM, Nilsson A, Bergmann U (2005) Spectroscopic characterization of microscopic hydrogen-bounding disparities in supercritical water. J Chem Phys 123:154503

    Article  Google Scholar 

  • Yoshino T, Matsuzaki T, Yamashita S, Katsura T (2006) Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443:973–976

    Article  Google Scholar 

  • Zhao Y, Ginsberg S, Kohlstedt D (2004) Solubility of hydrogen in olivine: dependence on temperature and iron content. Contrib Miner Petrol 147:155–161

    Article  Google Scholar 

Download references

Acknowledgments

SD is thankful to Takehiko Hiraga and Tony Withers for numerous and enthusiastic discussions at the very early stage of the project, as well as to Bruce Watson and two reviewers for helpful comments. Christophe Nevado and Doriane Delmas are thanked for providing high-quality thin sections. Joel Oustry is thanked for his precious assistance and patience in the mechanical workshop. Electron microprobe analyses were carried out with the help of Claude Merlet and Bernard Boyer at the Electron Microprobe Lab ‘SUD’, and FTIR analyses were performed with the help of David Maurin at the Lab. Colloids, Verre et Nanomateriaux, both facilities located at Université Montpellier 2, France. CNRS supported this study trough INSU and its SEDIT 2008 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Demouchy.

Additional information

Communicated by T. L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demouchy, S. Hydrogen diffusion in spinel grain boundaries and consequences for chemical homogenization in hydrous peridotite. Contrib Mineral Petrol 160, 887–898 (2010). https://doi.org/10.1007/s00410-010-0512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0512-4

Keywords

Navigation