Skip to main content
Log in

Monazite geochronology and geochemistry of meta-sediments in the Narryer Gneiss Complex, Western Australia: constraints on the tectonothermal history and provenance

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Mt. Narryer and Jack Hills meta-sedimentary rocks in the Narryer Gneiss Complex of the Yilgarn Craton, Western Australia are of particular importance because they yield Hadean detrital zircons. To better understand the tectonothermal history and provenance of these ancient sediments, we have integrated backscattered scanning electron images, in situ U–Pb isotopic and geochemical data for monazites from the meta-sediments. The data indicate multiple periods of metamorphic monazite growth in the Mt. Narryer meta-sediments during tectonothermal events, including metamorphism at ~3.3–3.2 and 2.7–2.6 Ga. These results set a new minimum age of 3.2 Ga for deposition of the Mt. Narryer sediments, previously constrained between 3.28 and ~2.7 Ga. Despite the significant metamorphic monazite growth, a relatively high proportion of detrital monazite survives in a Fe- and Mn-rich sample. This is likely because the high Fe and Mn bulk composition resulted in the efficient shielding of early formed monazite by garnet. In the Jack Hills meta-sediments, metamorphic monazite growth was minor, suggesting the absence of high-grade metamorphism in the sequence. The detrital monazites provide evidence for the derivation of Mt. Narryer sediments from ca. 3.6 and 3.3 Ga granites, likely corresponding to Meeberrie and Dugel granitic gneisses in the Narryer Gneiss Complex. No monazites older than 3.65 Ga have been identified, implying either that the source rocks of >3.65 Ga detrital zircons in the sediments contained little monazite, or that >3.65 Ga detrital minerals had experienced significant metamorphic events or prolonged sedimentary recycling, resulting in the complete dissolution or recrystallization of monazite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amelin YV (1998) Geochronology of the Jack Hills detrital zircons by precise U-Pb isotope dilution analysis of crystal fragments. Chem Geol 146:25–38

    Google Scholar 

  • Aries S, Valladon M, Polvé M, Dupré B (2000) A routine method for oxide and hydroxide interference corrections in ICP-MS chemical analysis of environmental and geological samples. Geostand Newslett J Geostand Geoanal 24:19–31

    Google Scholar 

  • Ayers JC, Miller C, Gorisch B, Milleman J (1999) Textural development of monazite during high-grade metamorphism: hydrothermal growth kinetics, with implications for U,Th-Pb geochronology. Am Mineral 84:1766–1780

    Google Scholar 

  • Bea F, Montero P (1999) Behavior of accessory phases and redistribution of Zr, REE, Y, Th and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim Cosmochim Acta 63:1133–1153

    Google Scholar 

  • Blichert-Toft J, Albarède F (2008) Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth Planet Sci Lett 265:686–702

    Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol 134:3–16

    Google Scholar 

  • Cavosie AJ, Wilde SA, Liu DY, Weiblen PW, Valley JW (2004) Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precambrian Res 135:251–279

    Google Scholar 

  • Cavosie AJ, Valley JW, Wilde SA, EIMF (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet Sci Lett 235:663–681

  • Cavosie AJ, Valley JW, Wilde SA, EIMF (2006) Correlated microanalysis of zircon: trace element, δ18O, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains. Geochim Cosmochim Acta 70:5601–5616

  • Cherniak DJ (1993) Lead diffusion in titanite and preliminary results on the effect of radiation damage on Pb transport. Chem Geol 110:177–194

    Google Scholar 

  • Cherniak DJ, Pyle JM (2008) Th diffusion in monazite. Chem Geol 256:52–61

    Google Scholar 

  • Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol 172:5–24

    Google Scholar 

  • Cherniak DJ, Watson BE, Grove M, Harrison TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Acta 68:829–840

    Google Scholar 

  • Chernoff CB, Carlson WD (1999) Trace element zoning as a record of chemical disequilibrium during garnet growth. Geology 27:555–558

    Google Scholar 

  • Childe F, Doig R, Gariépy C (1993) Monazite as a metamorphic chronometer, south of the Grenville front, western Quebec. Can J Earth Sci 30:1056–1065

    Google Scholar 

  • Cocherie A, Legendre O, Peucat JJ, Kouamelan AN (1998) Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total lead determination: implications for lead behaviour in monazite. Geochim Cosmochim Acta 62:2475–2497

    Google Scholar 

  • Compston W, Pidgeon RT (1986) Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321:766–769

    Google Scholar 

  • Coogan LA, Hinton RW (2006) Do the trace element compositions of detrital zircons require Hadean continental crust? Geology 34:633–636

    Google Scholar 

  • Crowley JL, Myers JS, Sylvester PJ, Cox RA (2005a) Detrital zircons from the Jack Hills and Mount Narryer, Western Australia: evidence for diverse >4.0 Ga source rocks. J Geol 113:239–263

    Google Scholar 

  • Crowley JL, Chatterjee N, Bowring SA, Sylvester PJ, Myers JS, Searle MP (2005b) U-(Th)-Pb dating of monazite and xenotime by EMPA, LA-ICPMS, and IDTIMS: examples from the Yilgarn Craton and Himalayas. Goldschmidt abstract A19

  • Crowley JL, Brown RL, Gervais F, Gibson HD (2008) Assessing inheritance of zircon and monazite in granitic rocks from the Monashee Complex, Canadian Cordillera. J Petrol 49:1915–1929

    Google Scholar 

  • de Laeter JR, Fletcher IR, Rosman KJR, Williams IR, Gee RD, Libby WG (1981) Early Archaean gneisses from the Yilgarn Block, Western Australia. Nature 292:322–324

    Google Scholar 

  • de Laeter JR, Fletcher IR, Bickle MJ, Myers JS, Libby WG, Williams IR (1985) Rb-Sr, Sm-Nd and Pb-Pb geochronology of ancient gneisses from Mt Narryer, Western Australia. Aust J Earth Sci 32:349–358

    Google Scholar 

  • DeWolf CP, Belshaw N, O’Nions RK (1993) A metamorphic history from micron-scale 207Pb/206Pb chronometry of Archean monazite. Earth Planet Sci Lett 120:207–220

    Google Scholar 

  • Dunn SJ, Nemchin AA, Cawood PA, Pidgeon RT (2005) Provenance record of the Jack Hills metasedimentary belt: Source of the Earth’s oldest zircons. Precambrian Res 138:235–254

    Google Scholar 

  • Eggins SM, Kinsley LPJ, Shelley JMG (1998) Deposition and elemental fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci 127–129:278–286

    Google Scholar 

  • Eggins SM, Grün R, McCulloch MT, Pike AWG, Chappell J, Kinsley L, Mortimer G, Shelley M, Murray-Wallace CV, Spötl C, Taylor L (2005) In situ U-series dating by laser-ablation multi-collector ICPMS: new prospects for quaternary geochronology. Quater Sci Rev 22:1373–1382

    Google Scholar 

  • Ferry JM (2000) Patterns of mineral occurrence in metamorphic rocks. Am Mineral 85:1573–1588

    Google Scholar 

  • Finger F, Broska I, Robert MP, Schermaier A (1998) Replacement of primary monazite by appatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. Am Mineral 83:248–258

    Google Scholar 

  • Fitzsimons ICW, Kinny PD, Wetherley S, Holligworth DA (2005) Bulk chemical control on metamorphic monazite growth in pelitic schists and implications for U-Pb age data. J Metamorphic Geol 23:261–277

    Google Scholar 

  • Fletcher IR, McNaughton NJ, Pidgeon RT, Rosman KJR (1997) Sequential closure of K-Ca and Rb-Sr isotopic systems in Archaean micas. Chem Geol 138:289–301

    Google Scholar 

  • Foster G, Kinny P, Vance D, Prince C, Harris N (2000) The significance of monazite U-Th-Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth Planet Sci Lett 181:327–340

    Google Scholar 

  • Froude DO, Ireland TR, Kinny PD, Williams IS, Compston W (1983) Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons. Nature 304:616–618

    Google Scholar 

  • Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156:197–215

    Google Scholar 

  • Gardés E, Jaoul O, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2006) Pb diffusion in monazite: An experimental study of Pb2+ + Th4+ <=> 2Nd3+ interdiffusion. Geochim Cosmochim Acta 70:2325–2336

    Google Scholar 

  • Geisler T, Pidgeon RT, Van Bronswijk W, Kurtz R (2002) Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chem Geol 191:141–154

    Google Scholar 

  • Gregory CJ, McFarlane CRM, Hermann J, Rubatto D (2009) Tracing the evolution of calc-alkaline magmas: in situ Sm-Nd isotope studies of accessory minerals in the Bergell Igneous Complex, Italy. Chem Geol 260:73–86

    Google Scholar 

  • Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghøj K, Schwartz JJ (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35:643–646

    Google Scholar 

  • Harrison TM, Schmitt AK (2007) High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet Sci Lett 261:9–19

    Google Scholar 

  • Harrison TM, Catlos EJ, Montel J-M (2002) Apatite, monazite, and xenotime in metamorphic rocks. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance. Rev Mineral Petrol, vol 48 (Min Soc Am), pp 523–558

  • Harrison TM, Blichert-Toft J, Muller W, Albarède F, Holden P, Mojzsis SJ (2005) Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga. Science 310:1947–1950

    Google Scholar 

  • Harrison TM, Schmitt AK, McCulloch MT, Lovera OM (2008) Early (≥4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet Sci Lett 268:476–486

    Google Scholar 

  • Hiess J, Nutman AP, Bennett VC, Holden P (2008) Ti-in-zircon thermometry applied to contrasting Archean metamorphic and igneous systems. Chem Geol 247:323–338

    Google Scholar 

  • Hinchey AM, Carr SD, Rayner N (2007) Bulk compositional controls on the preservation of age domains within metamorphic monazite: A case study from quartzite and garnet-cordierite-gedrite gneiss of Thor-Odin dome, Monashee complex, Canadian Cordillera. Chem Geol 240:85–102

    Google Scholar 

  • Holden P, Land P, Ireland TR, Harrison TM, Foster JJ, Bruce Z (2009) Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: The first 100,000 grains. Int J Mass Spectrom 286:53–63

    Google Scholar 

  • Hopkins M, Harrison TM, Manning CE (2008) Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456:493–496

    Google Scholar 

  • Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648

    Google Scholar 

  • Iizuka T, Komiya T, Ueno Y, Katayama I, Uehara Y, Maruyama S, Hirata T, Johnson SP, Dunkley DJ (2007) Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: new constraints on its tectonothermal history. Precambrian Res 153:179–208

    Google Scholar 

  • Kelly NM, Clarke GL, Harley SL (2006) Monazite behaviour and age significance in poly-metamorphic high-grade terrains: a case study from the western Musgrave Block, central Australia. Lithos 88:100–134

    Google Scholar 

  • Kelts AB, Ren M, Anthony EY (2008) Monazite occurrence, chemistry, and chronology in the granitoid rocks of the Lachlan Fold belt, Australia: an electron microprobe study. Am Mineral 93:373–383

    Google Scholar 

  • Kinny PD, Nutman AP (1996) Zirconology of the Meeberrie gneiss, Yilgarn Craton, Western Australia: an early Archaean migmatite. Precambrian Res 78:165–178

    Google Scholar 

  • Kinny PD, Williams IS, Froude DO, Ireland TR, Compston W (1988) Early Archaean zircon ages from orthogneisses and anorthosites at Mount Narryer, Western Australia. Precambrian Res 38:325–341

    Google Scholar 

  • Kinny PD, Wijbrans JR, Froude DO, Williams IS, Compston W (1990) Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia. Aust J Earth Sci 37:51–69

    Google Scholar 

  • Kohn MJ, Malloy MA (2004) Formation of monazite via prograde metamorphic reactions among common silicates: implications for age determinations. Geochim Cosmochim Acta 68:277–279

    Google Scholar 

  • Krenn E, Ustaszewski K, Finger F (2008) Detrital and newly formed metarmophic monazite in amphibolite-facies metapelites from the Motajica Massif, Bosnia. Chem Geol 254:164–174

    Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Lanzirotti A, Hanson GN (1996) Geochronology and geochemistry of multiple generations of monazite from the Wepawaug Schist, Connecticut, USA: implications for monazite stability in metamorphic rocks. Contrib Mineral Petrol 125:332–340

    Google Scholar 

  • Lee JKW, Williams IS, Ellis DJ (1997) Pb, U and Th diffusion in natural zircon. Nature 390:159–162

    Google Scholar 

  • Maas R, McCulloch MT (1991) The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, Western Australia: trace element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons. Geochim Cosmochim Acta 55:1915–1932

    Google Scholar 

  • Maas R, Kinny PD, Williams IS, Froude DO, Compston W (1992) The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim Cosmochim Acta 56:1281–1300

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • McFarlane CRM, Harrison TM (2006) Pb-diffusion in monazite: Constraints from a high-T contact aureole setting. Earth Planet Sci Lett 250:376–384

    Google Scholar 

  • Meldrum A, Boatner LA, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62:2509–2520

    Google Scholar 

  • Menneken M, Nemchin AA, Geisler T, Pidgon RT, Wilde SA (2007) Hadean diamonds in zircon from Jack Hills, Western Australia. Nature 448:917–920

    Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178–181

    Google Scholar 

  • Montel JM (1996) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146

    Google Scholar 

  • Montel JM, Kornprobst J, Vielzeuf D (2000) Preservation of old U-Th-Pb ages in shielded monazite: example from the Beni Bousera Hercynian kinzigites (Morocco). J Metamor Geol 18:335–342

    Google Scholar 

  • Muhling JR (1990) The Narryer Gneiss Complex of the Yilgarn Block, Western Australia: a segment of Archaean lower crust uplifted during Proterozoic orogeny. J Metmor Geol 8:47–64

    Google Scholar 

  • Myers JS (1988a) Oldest known terrestrial anorthosite at Mount Narryer, Western Australia. Precambrian Res 38:309–323

    Google Scholar 

  • Myers JS (1988b) Early Archaean Narryer Gneiss Complex, Yilgarn Craton, Western Australia. Precambrian Res 38:297–307

    Google Scholar 

  • Myers JS, Williams IR (1985) Early Precambrian crustal evolution at Mount Narryer, Western Australia. Precambrian Res 27:153–163

    Google Scholar 

  • Myers JS, Williams IR, Kinny PD, Nutman AP, Pidgeon R, Wilde SA (1990) Excursion 1: Narryer Gneiss Complex. In: Ho SE, Glover JE, Myers JS, Muhling JR (eds) Third international archean symposium, Perth, excursion guidebook, vol 21. Geology Department and University Extension University of Western Australia Publisher. pp 61–95

  • Nagy G, Draganits E, Demény A, Pantó G, Árkai P (2002) Genesis and transformations of monazite, florencite and rhabdophane during medium grade metamorphism: examples from the Sopron Hills, Eastern Alps. Chem Geol 191:25–46

    Google Scholar 

  • Nelson DR (2001) An assessment of the determination of depositional ages for Precambrian clastic sedimentary rocks by U-Pb dating of detrital zircons. Sediment Geol 141–142:37–60

    Google Scholar 

  • Nemchin AA, Pidgeon RT, Whitehouse MJ (2006) Re-evaluation of the origin and evolution of >4.2 Ga zircons from the Jack Hills metasedimentary rocks. Earth Planet Sci Lett 244:218–233

    Google Scholar 

  • Nemchin AA, Whitehouse MJ, Menneken M, Geisler T, Pidgeon RT, Wilde SA (2008) A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature 454:92–95

    Google Scholar 

  • Nutman AP (2006) Comment on “Zircon thermometer reveals minimum melting conditions on earliest Earth” II. Science 311:779b

    Google Scholar 

  • Nutman AP, Hiess J (2009) A granitic inclusion suite within igneous zircons from a 3.81 Ga tonalite (W. Greenland): Restrictions for Hadean crustal evolution studies using detrital zircons. Chem Geol 261:77–82

    Google Scholar 

  • Nutman AP, Kinny PD, Compston W, Williams IS (1991) SHRIMP U-Pb geochronology of the Narryer Gneiss Complex, Western Australia. Precambrian Res 52:275–300

    Google Scholar 

  • Nutman AP, Bennett VC, Kinny PD, Price R (1993) Large-scale crustal structure of the northwestern Yilgarn Craton, Western Australia: evidence from Nd isotopic data and zircon geochronology. Tectonics 12:971–981

    Google Scholar 

  • Otamendi JE, de la Rosa JD, Patiño Douce AE, Castro A (2002) Rayleigh fractionation of heavy rare earths and yttrium during metamorphic garnet growth. Geology 30:159–162

    Google Scholar 

  • Overstreet WC (1967) The geological occurrence of monazite. US Geol Surv Prof Paper 530:1–327

    Google Scholar 

  • Parrish RP (1990) U-Pb dating of monazite and its application to geological problems. Can J Earth Sci 27:1431–1450

    Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21:115–144

    Google Scholar 

  • Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochim Cosmochim Acta 65:4215–4229

    Google Scholar 

  • Pidgeon RT (1992) Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contrib Mineral Petrol 110:463–472

    Google Scholar 

  • Pidgeon RT, Nemchin AA (2006) High abundance of early Archean grains and the age distribution of detrital zircons in a sillimanite-bearing quartzite from Mt Narryer, Western Australia. Precambrian Res 150:201–220

    Google Scholar 

  • Pidgeon RT, Wilde SA (1998) The interpretation of complex zircon U-Pb systems in Archaean granitoids and gneisses from the Jack Hills, Narryer Gneiss Terrane, Western Australia. Precambrian Res 91:309–332

    Google Scholar 

  • Poitrasson F, Chernery S, Bland DJ (1996) Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth Planet Sci Lett 145:79–96

    Google Scholar 

  • Pyle JM, Spear FS (1999) Yittrium zoning in garnet: coupling of major and accessory phases during metamorphic reactions. Geol Materials Res 1:1–49

    Google Scholar 

  • Pyle JM, Spear FS (2003) Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire. Am Mineral 88:338–351

    Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL, McDonough WF (2001) Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107

    Google Scholar 

  • Rapp RP, Watson EB (1986) Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib Mineral Petrol 94:304–316

    Google Scholar 

  • Rasmuseen B, Muhling JR (2007) Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of synthetic monazite during low-grade regional metamorphism. Contrib Mineral Petrol 154:675–689

    Google Scholar 

  • Rasmuseen B, Muhling JR (2009) Reactions destroying detrital monazite in greenschist-facies sandstones from the Witwatersrand basin, South Africa. Chem Geol 264:311–327

    Google Scholar 

  • Rasmussen B, Fletcher IR, McNaughton NJ (2001) Dating low-grade metamorphic events by SHRIMP U-Pb analysis of monazite in shales. Geology 29:963–966

    Google Scholar 

  • Rubatto D, Williams IS, Buick I (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol 140:458–468

    Google Scholar 

  • Rubatto D, Hermann J, Buick I (2006) Temperature and bulk composition control on the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, Central Australia). J Petrol 47:1973–1996

    Google Scholar 

  • Schärer U, Allegre CJ (1985) Determination of the age of Australian continent by single-grain zircon analysis of Mt Narryer metaquartzite. Nature 315:52–55

    Google Scholar 

  • Seydoux-Guillaume AM, Goncalves P, Wirth R, Deutsch A (2003) Transmission electron microscope study of polyphase and discordant monazites: Site-specific specimen preparation using the focused ion beam technique. Geology 31:973–976

    Google Scholar 

  • Seydoux-Guillaume AM, Wirth R, Deutsch A, Schärer U (2004) Microstructure of 24–1928 Ma concordant monazites; implications for geochronology and nuclear waster deposits. Geochim Cosmochim Acta 68:2517–2527

    Google Scholar 

  • Smith HA, Barreiro B (1990) Monazite U-Pb dating of saturolite grade metamorphism in pelitic schists. Contrib Mineral Petrol 105:602–615

    Google Scholar 

  • Smith HA, Chamberlain CP, Zeitler PK (1992) Documentation of Neogene regional metamorphism in the Himalaya of Pakistan using U-Pb in monazite. Earth Planet Sci Lett 113:93–105

    Google Scholar 

  • Spaggiari CV (2007) The Jack Hills greenstone belt, Western Australia Part 1: structural and tectonic evolution over >1.5 Ga. Precambrian Res 155:204–228

    Google Scholar 

  • Spaggiari CV, Pidgeon RT, Wilde SA (2007) The Jack Hills greenstone belt, Western Australia Part 2: lithological relationships and implications for the deposition of ≥4.0 Ga detrital zircons. Precambrian Res 155:261–286

    Google Scholar 

  • Spaggiari CV, Wartho J-A, Wilde SA (2008) Proterozoic deformation in the northwest of the Archean Yilgarn Craton, Western Australia. Precambrian Res 162:354–384

    Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineral Soc Am, Washington

  • Spear FS, Pyle JM (2002) Apatite, monazite, and xenotime in metamorphic rocks. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance. Rev Mineral Petrol (Mineral Soc Am) 48:293–335

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Google Scholar 

  • Stern RA, Berman RG (2000) Monazite U-Pb and Th-Pb geochronology by ion microprobe, with an application to in situ dating of an Archean metasedimentary rocks. Chem Geol 172:113–130

    Google Scholar 

  • Stern RA, Bleeker W (1998) Age of the world’s oldest rocks refined using Canada’s SHRIMP: the Acasta Gneiss Complex, Northwest Territories. Geosci Can 25:27–31

    Google Scholar 

  • Suzuki K, Adachi M (1991) Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the south Kitakami terrane, northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochem J 25:357–376

    Google Scholar 

  • Suzuki K, Adachi M, Kazizuka I (1994) Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. Earth Planet Sci Lett 128:391–405

    Google Scholar 

  • Townsend KJ, Miller CF, D’Andrea JL, Ayers JC, Harrison TM, Coath CD (2000) Low temperature replacement of monazite in the Ireteba granite, Southern Nevada: geochronological implications. Chem Geol 172:95–112

    Google Scholar 

  • Trail D, Mojzsis SJ, Harrison TM (2007a) Thermal events documented in Hadean zircons by ion microprobe depth profiles. Geochim Cosmochim Acta 71:4044–4065

    Google Scholar 

  • Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB, Young ED (2007a) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem Geophys Geosyst 8:Q06014. doi:10.1029/2006GC001449

  • Ushikubo T, Kita NT, Cavosie AJ, Wilde SA, Rudnick RL, Valley JW (2008) Lithium in Jack Hills zircons: evidence for extensive weathering of Earth’s earliest crust. Earth Planet Sci Lett 272:666–676

    Google Scholar 

  • Van Orman JA, Grove TL, Shimizu N, Layne GD (2002) Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa. Contrib Mineral Petrol 142:416–424

    Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844

    Google Scholar 

  • Watt GL, Harley SL (1993) Accessory phase controls on the geochemistry of crustal melts and restites produced during water-undersaturated partial melting. Contrib Mineral Petrol 114:550–566

    Google Scholar 

  • Whitehouse MJ, Kamber BS (2002) On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth’s earliest magmatic differentiation. Earth Planet Sci Lett 204:333–346

    Google Scholar 

  • Whitney DL, Teyssier C, Fayon AK, Hamilton MA, Heizler M (2003) Tectonic controls on metamorphism, partial melting, and intrusion: timing and duration of regional metamorphism and magmatism in the Nigde Massif, Turkey. Tectonophysics 376:37–60

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Google Scholar 

  • Williams IS (1998) U-Th-Pb geochronology by ion microprobe. In: Mckibben MA, Shanks III WC, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes, vol 7. Rev Econ Geol, pp 1–35

  • Williams IS (2001) Response of detrital zircon and monazite, and their U-Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Aust J Earth Sci 48:557–580

    Google Scholar 

  • Williams IR, Myers JS (1987) Archaean geology of the Mount Narryer region, Western Australia. W Aust Geol Surv Rep 22 (32 pp)

  • Williams IS, Buick IS, Cartwright I (1996) An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, Central Australia. J Metamorphic Geol 14:29–47

    Google Scholar 

  • Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geological processes by integrating composition and chronology. Annu Rev Earth Planet Sci 35:137–175

    Google Scholar 

  • Wing BA, Ferry JM, Harrison TM (2003) Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contrib Mineral Petrol 145:228–250

    Google Scholar 

  • Wood SA (1990) The aqueous geochemistry of the rare-earth elements and yttrium. 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure. Chem Geol 88:99–125

    Google Scholar 

  • Yurimoto H, Duke EF, Papike JJ, Shearer CK (1990) Are discontinuous chondrite-normalized REE patterns in pegmatitic granite systems the results of monazite fractionation? Geochim Cosmochim Acta 54:2141–2145

    Google Scholar 

  • Zhu XK, O’Nions RK (1999) Monazite chemical composition: some implications for monazite geochronology. Contrib Mineral Petrol 137:351–363

    Google Scholar 

  • Zhu XK, O’Nions RK, Belshaw NS, Gibb AJ (1997) Lewisian crustal history from in situ SIMS mineral chronometry and related metamorphic textures. Chem Geol 136:205–218

    Google Scholar 

Download references

Acknowledgments

We are grateful to Shane Paxton for assistance with sample preparation, to EMU at ANU for access to SEM facilities, to Ian Campbell for access to LA-ICPMS, and to Les Kinsley, Charlotte Allen, Steve Eggins and Ulrike Troitzsch for analytical support. We thank William Davis and Tom Pestaj for providing precious monazite standards, and Daniela Rubatto, Aleksandr Stepanov, Allen Nutman, Jörg Hermann and Yuri Amelin for discussions. This paper benefited from critical and thorough reviews by Simon Wilde and an anonymous referee. This study was partly supported by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Iizuka.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 43 kb)

(XLS 217 kb)

(XLS 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iizuka, T., McCulloch, M.T., Komiya, T. et al. Monazite geochronology and geochemistry of meta-sediments in the Narryer Gneiss Complex, Western Australia: constraints on the tectonothermal history and provenance. Contrib Mineral Petrol 160, 803–823 (2010). https://doi.org/10.1007/s00410-010-0508-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0508-0

Keywords

Navigation